
Advances in Hellenic Astronomy during the IYA09
ASP Conference Series, Vol. 424, 2010
K. Tsinganos, D. Hatzidimitriou, and T. Matsakos, eds.

Dynamical Complexity in Dst Time Series Using Entropy Concepts

G. Balasis, I. A. Daglis, and A. Anastasiadis

Institute for Space Applications and Remote Sensing, National Observatory of

Athens, Athens, Greece

K. Eftaxias

Section of Solid State Physics, Department of Physics, University of Athens,

Athens, Greece

Abstract. The complex system of the Earth’s magnetosphere corresponds to an open
spatially extended nonequilibrium (input - output) dynamical system. This paper ex-
plores the applicability and effectiveness of a variety of computable entropy measures
(e.g. Block entropy, T -complexity and Approximate entropy) to the investigation of
dynamical complexity in the magnetosphere. We show that as the magnetic storm ap-
proaches there is clear evidence of significant lower complexity (higher organization)
in the magnetosphere. Approximate entropy yields superior results for detecting dy-
namical complexity changes in the magnetosphere in comparison to the other entropy
measures presented herein. The analysis tools developed in the course of this study for
the treatment of Dst index can provide convenience for space weather applications.

1. Introduction

Nonlinearly evolving dynamical systems, such as space plasmas, generate complex
fluctuations in their output signals that reflect the underlying dynamics. Accurate detec-
tion of the dissimilarity of complexity between normal and abnormal magnetospheric
states (e.g. pre-storm activity and magnetic storms) can vastly improve space weather
diagnosis and, consequently, the mitigation of space weather hazards.

Various complexity measures have been developed during the last 20 years for
real-world time series in order to estimate the complexity of the corresponding dynam-
ical system. The main types of complexity measures are entropies, fractal dimensions,
and Lyapunov exponents. Fractal dimensions and Lyapunov exponents are both work-
ing well, but they generally require long datasets for statistically significant results, re-
sulting in inconvenience in many studies and applications. On the other hand, entropies
have the advantages of simplicity, extremely fast calculation, and antinoise ability. En-
tropy techniques provide convenience for detecting and capturing useful information
of time series. Some entropy measures based on symbolic dynamics adopt a range
partition to generate a partition in the symbolization transform, but their results may
be compromised by the nonstationarity of the time series. The datasets obtained from
most space physics studies are usually nonstationary, rather short, and noisy. One of
our objectives is to find an effective complexity measure that requires short datasets for
statistically significant results, provides the ability to make fast and robust calculations,
and can be used to analyze nonstationary and noisy data, which is convenient for the
analysis of magnetospheric time series.
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The hourly Disturbance storm-time (Dst) geomagnetic activity index is computed
from an average over 4 mid-latitude magnetic observatories (http://sw
dcwww.kugi.kyoto-u.ac.jp/), and hence serves as a proxy for the magnetospheric ring
current, and thus magnetic storm occurrence. Magnetic storms are the most prominent
global phenomenon of geospace dynamics, interlinking the solar wind, magnetosphere,
ionosphere, atmosphere and occasionally the Earth’s surface (Daglis & Kozyra, 2002,
Daglis et al., 2003, 2009). Magnetic storms occur when the accumulated input power
from the solar wind exceeds a certain threshold.

In this paper, we study in terms of nonlinear techniques whether certain charac-
teristic signatures emerged in Dst time series indicating the transition from pre-storm
activity to magnetic storms. We consider one year of Dst data (2001) including two in-
tense magnetic storms, which occurred on 31 March 2001 and 6 November 2001 with
minimum Dst values -387 nT and -292 nT respectively, as well as a number of weaker
events (e.g. May and August 2001 with Dst ∼ -100 nT in both cases). More precisely,
the temporal evolution of nonlinear characteristics is studied by applying a variety of
recently proposed entropy techniques: the original Dst time series is projected to a
symbolic sequence and then analyses in terms of dynamical (Shannon-like) Block en-
tropy and T -complexity follow. For the purpose of comparison we also analyze the
original Dst data by means of Approximate Entropy (ApEn). This analysis verifies the
results of symbolic dynamics.

2. Symbolic dynamics

The discovery that simple deterministic systems can show a vast richness of behaviors
in response to variations of initial conditions and / or control parameters, has been at
the origin of an intense interdisciplinary research activity since the 1950’s (Khinchin,
1957; Nicolis, 1991, 1995). One of the outcomes of this work has been the realization
that for an appropriate description of such complex systems, one needs to resort to a
probabilistic approach (Nicolis & Gaspard, 1994). It is well known since the pioneering
work of Gibbs and Einstein that we can describe dynamics from two points of view. On
the one hand, we have the individual description in terms of trajectories in classical
dynamics, or of wave-functions in quantum theory. On the other hand, we have the
description in terms of ensembles described by a probability distribution (called the
density matrix in quantum theory) (Prigogine & Driebe, 1997). Now, once one leaves
the description in terms of trajectories, a basic question that must be dealt with concerns
the amount of information one may have access to on the temporal evolution of the
system in the course of time.

One of the approaches developed in this context is “coarse-graining”, whereby a
complex system is viewed as an “information generator” producing messages consist-
ing of a discrete set of symbols defined by partitioning the full continuous phase space
into a finite number of cells. We refer to such a description as “symbolic dynamics”
(Nicolis et al., 1989; Nicolis, 1991, 1995; Nicolis & Gaspard, 1994). One of its merits
is to provide a link between dynamical systems and information theory (Nicolis, 1991;
Ebeling & Nicolis, 1992).

From the initial dynamical system we can generate a sequence of symbols, where
the dynamics of the original (under analysis) system has been projected. This symbolic
sequence can be analyzed by terms of information theory such as entropy estimations,
information loss, automaticity and other prominent properties.
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There exist some canonical ways for generating symbolic dynamics out of a given
dynamical system (Nicolis et al., 1988, 1989; Nicolis, 1991, 1995; Ebeling & Nicolis,
1992). To produce symbolic dynamics out of the evolution of a given system, we set
up a coarse-grained description incorporating from the very beginning the idea that a
physically accessible state corresponds to a finite region rather than to a single point
of phase space. Let Ci (i = 1, 2, ...K) be the set of cells in phase space constituted
by these regions, assumed to be connected and nonoverlapping. As time goes on, the
phase space trajectory performs transitions between cells thereby generating sequences
of K-symbols, which may be regarded as the letters of an alphabet. We shall require
that, in the course of these transitions, each element of the partition is mapped by the
law of evolution on a union of elements.

In this paper, we restrict ourselves to the simplest possible coarse graining of the
magnetospheric signal. This is given by choosing a threshold C and assigning the sym-
bols “1” and “0” to the signal, depending on whether it is above or below the threshold
(binary partition). The threshold is usually the mean value of the data considered. In
this way, each time window of the original Dst time series for a given threshold is trans-
formed into symbolic sequences, which contains “linguistic” or “symbolic dynamics”
characteristics. The selection of a two-symbol alphabet satisfies terms of simplicity and
computational convenience.

3. The concepts of Block entropy, T -complexity and Approximate entropy

The term “entropy” is used in both physics and information theory to describe the
amount of uncertainty or information inherent in an object or system. Clausius intro-
duced the notion of entropy into thermodynamics in order to explain the irreversibility
of certain physical processes in thermodynamics. In statistical thermodynamics the
most general formula for the thermodynamic entropy S of a thermodynamic system is
the Boltzmann-Gibbs entropy,

SB−G = −k
∑

pi ln pi

where k is the Boltzmann constant and pi are the probabilities associated with the mi-
croscopic configurations.

The Boltzmann-Gibbs entropy translates over almost unchanged into the world of
quantum physics to give the von Neumann entropy,

S = −k Tr(ρ ln ρ)

where ρ is the density matrix of the quantum mechanical system.
Shannon recognized that a similar approach to Boltzmann-Gibbs entropy could be

applied to information theory. In his famous 1948 paper (Shannon, 1948), he introduced
a probabilistic entropy measure HS :

HS(X) = −

n∑

i=1

p(xi) logb p(xi),

where b is the base of the logarithm used and p denotes the probability mass function
of a discrete random variable X with possible values {x1, ..., xn}.
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3.1. Dynamical (Shannon-like) Block entropy

Block entropies, depending on the word-frequency distribution, are of special interest,
extending Shannon’s classical definition of the entropy of a single state to the entropy
of a succession of states (Nicolis & Gaspard, 1994; Karamanos & Nicolis, 1999). Each
entropy takes a large (small) value if there are many (few) kinds of patterns, therefore, it
decreases while the organization of patterns is increasing. In this way, the block entropy
can measure the complexity of a signal.

In particular, we estimate the block entropies by lumping. Lumping is the reading
of the symbolic sequence by “taking portions”, as opposed to gliding where one has
essentially a “moving frame”. In general, the basic novelty of the entropy analysis by
lumping is that, unlike the Fourier transform or the conventional entropy by gliding, it
gives results that can be related to algorithmic aspects of the sequences.

It is useful to transform the initial raw data of the magnetospheric signal into sym-
bolic sequences taking values in the alphabet {0, 1}, according to the rules Ai = 1 if
A(ti) > E[A(ti)] and Ai = 0 if A(ti) < E[A(ti)], where A(ti) are the values of the
measured field at time ti and E[A(ti)] =< A(ti) > is the mean value in the particular
time windows, as it is nicely stated in Schwarz et al. (1993).

Consider a subsequence of length N selected out of a very long (theoretically
infinite) symbolic sequence. We stipulate that this subsequence is to be read in terms
of distinct “blocks” of length n,

... A1...An
︸ ︷︷ ︸

B1

An+1...A2n
︸ ︷︷ ︸

B2

... Ajn+1...A(j+1)n
︸ ︷︷ ︸

Bj+1

... (1)

We call this reading procedure “lumping”.
The following quantities characterize the information content of the sequence

(Khinchin, 1957; Ebeling & Nicolis, 1992)
i) The dynamical (Shannon-like) block-entropy for blocks of length n

H(n) = −
∑

(A1,...,An)

p(n)(A1, ..., An) · ln p(n)(A1, ..., An) (2)

where the probability of occurrence of a block A1...An, denoted p(n)(A1, ..., An), is
defined by the fraction (when it exists) in the statistical limit as

No. of blocks, A1...An, encountered when lumping

total No. of blocks
(3)

starting from the beginning of the sequence, and the associate entropy per letter

h(n) =
H(n)

n
. (4)

ii) The conditional entropy or entropy excess associated with the addition of a
symbol to the right of an n-block

h(n) = H(n + 1) − H(n). (5)

iii) The entropy of the source (a topological invariant), defined as the limit (if it
exists)



Dynamical Complexity in the Magnetosphere 61

h = lim
n→∞

h(n) = lim
n→∞

h(n) (6)

which is the discrete analog of metric or Kolmogorov entropy.
We now turn to the selection problem that is to the possibility of emergence of

some preferred configurations (blocks) out of the complete set of different possibilities.
The number of all possible symbolic sequences of length n (complexions in the sense
of Boltzmann) in a K-letter alphabet is (Karamanos & Nicolis, 1999)

NK = Kn. (7)

Yet not all of these configurations are necessarily realized by the dynamics, nor they
are equiprobable. A remarkable theorem due to McMillan (Khinchin, 1957; Nicolis
& Gaspard, 1994), gives a partial answer to the selection problem asserting that for a
block (A1, ..., An) the following holds

pn(A1, ..., An) ∼ e−H(n) (8)

for almost all blocks (A1, ..., An). In order to determine the abundance of long blocks
one is thus led to examine the scaling properties of H(n) as a function of n.

As we have already mentioned, the Fourier spectrum or the standard convention
of the entropy analysis by gliding, do not help us to distinguish between symbolic se-
quences with completely different levels of complexity and spectra (Karamanos, 2001).
Unlike the previous methods, the novelty of the entropy analysis by lumping gives re-
sults, which can be connected with algorithmic aspects of the sequences, in particular
with the property of the sequence to be generated by deterministic or stochastic au-
tomata (see Karamanos, 2001). Also, the entropy analysis by lumping of some weakly
chaotic systems, gives a rather characteristic entropy spectrum, as explained in (Kara-
manos, 2001). This shows that the entropy analysis by lumping is much more sensitive
in algorithmic and ergodic properties of (weakly) chaotic systems than the classical
conventional entropy analysis by gliding, or the correlation functions.

3.2. T -complexity

In this Section we introduce the grammar-based complexity measure referred here as
the T -complexity or T -entropy. T -entropy is a different grammar-based complexity /
information measure defined for infinite, as well as finite strings of symbols (Titchener,
1998, 2000; Ebeling et al., 2001; Steuer et al. 2001). It is a weighted count of the
number of production steps required to construct the string from its alphabet. Briefly,
it is based on the intellectual economy one makes when rewriting a string according to
some rules. The basic fact for the T -complexity is that it puts the problem of the algo-
rithmic compressibility in a well understandable basis (and also in a firm mathematical
basis).

Let us note again that the method of T -entropy is based on the rewriting of a word
according to some basic rules. This way of rewriting is unique and therefore leads to a
unique characterization by the corresponding T -complexity measure. Before analyzing
in some depth the results coming from the application of the notion of T -complexity in
real-world problems, we would like to describe how the T -complexity is computed, at
least for finite strings.



62 Balasis et al.

The T -complexity of a string is defined by the use of one recursive hierarchical

pattern copying (RHPC) algorithm (Titchener, 2000). It computes the effective number
of T -augmentation steps required to generate the string.

The T -complexity may be thus computed effectively from any string and the re-
sultant value is unique.

We shall denote by N the set of natural numbers, and let N
+ = N \ {0}. Let the

set A = {a1, ..., al}, l > 1, be a finite alphabet. The elements of A are called symbols

or characters and the cardinality of A is denoted by #A, i.e., #A = l. A∗ denotes the
free monoid generated by A under concatenation. The elements of the set A∗ are called
strings; λ denotes the empty string. We further denote the set A∗ \ {λ} by A+.

The string x(n) is parsed to derive constituent patterns pi ∈ A+ and associated
copy-exponents ki ∈ N

+, i = 1, 2, ..., q, where q ∈ N
+ satisfying:

x = p
kq
q p

kq−1

q−1 ...pki

i ...pk1

1 α0, α0 ∈ A. (9)

Each pattern pi is further constrained to satisfy:

pi = p
mi,i−1

i−1 p
mi,i−2

i−2 ...p
mi,j

j ...p
mi,1

1 αi, (10)

αi ∈ A and 0 ≤ mi,j ≤ kj .

The T -complexity CT (x(n)) is defined in terms of the copy-exponents ki:

CT (x(n)) =

q
∑

i

ln(ki + 1). (11)

One may verify that CT (x(n)) is minimal for a string comprising a single repeat-
ing character. From equation (11) we have:

lnn ≤ CT (x(n)). (12)

The upper bound is more difficult to derive. However, for n > n0 (Ebeling et al., 2001)

CT (x(n)) ≤ li(ln 2 ln(#An)), (13)

where li(z) =
∫ 0
z

du/ lnu is the logarithmic integral function. For a binary alphabet
n0 ≃ 15, i.e. small enough to be of no consequence as we are typically concerned with
strings in the range of n = 102 − 104 bits. In practice we parse the string repeatedly
from left-to-right but select the patterns from right to left.

The T -information IT (x(n)) of the string x(n) is defined as the inverse logarith-
mic integral of the T -complexity divided by a scaling constant ln 2 (Ebeling et al.,
2001):

IT (x(n)) = li−1

(
CT (x(n))

ln 2

)

. (14)

In the limit n → ∞ we have that IT (x(n)) ≤ ln(#An). The form of the right-
hand side may be recognizable as the maximum possible n-block entropy of Shan-
non’s definition (see Section 3.1). The neperian logarithm implicitly gives to the T -
information the units of nats (nat is a logarithmic unit of information or entropy, based
on natural logarithms and powers of e, rather than the powers of 2 and base 2 logarithms
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which define the bit; the nat is the natural unit for information measures). IT (x(n)) is
the total T -information for x(n). The average T -information rate per symbol, referred
here as the average T -entropy of x(n) and denote by hT (x(n)), is defined along similar
lines,

hT (x(n)) =
IT (x(n))

n
(nats/symbol). (15)

Clearly we note that in the limit of n → ∞, hT (x(n)) ≤ ln(#A) = K. The
correspondence between the T -information and T -entropy on the one hand and Shan-
non’s entropy definitions on the other hand, is reinforced in subsequent investigations
(Titchener, 1998, 2000; Ebeling et al., 2001). An example of an actual calculation of
the T -complexity for a finite string is given in (Titchener, 1998, 2000; Ebeling et al.,
2001).

3.3. Approximate entropy

Related to time series analysis, approximate entropy (ApEn) provides a measure of the
degree of irregularity or randomness within a series of data (of length N ). ApEn was
pioneered by Pincus as a measure of system complexity (Pincus, 1991). It is closely
related to Kolmogorov entropy, which is a measure of the rate of generation of new
information. This family of statistics is rooted in the work of Grassberger & Procaccia
(1983) and has been widely applied in biological systems (Pincus & Goldberger, 1994;
Pincus & Singer, 1996 and references therein).

The approximate entropy examines time series for similar epochs: more similar
and more frequent epochs lead to lower values of ApEn. In a more qualitative point of
view, given N points, the ApEn-like statistics is approximately equal to the negative
logarithm of the conditional probability that two sequences that are similar for m points
remain similar, that is, within a tolerance r, at the next point. Smaller ApEn-values
indicate a greater chance that a set of data will be followed by similar data (regularity),
thus, smaller values indicate greater regularity. Conversely, a greater value for ApEn
signifies a lesser chance of similar data being repeated (irregularity), hence, greater
values convey more disorder, randomness and system complexity. Thus a low / high
value of ApEn reflects a high / low degree of regularity. The following is a description
of the calculation of ApEn. Given any sequence of data points u(i) from i = 1 to N ,
it is possible to define vector sequences x(i), which consist of length m and are made
up of consecutive u(i), specifically defined by the following:

x(i) = (u[i], u[i + 1], ..., u[i + m − 1]). (16)

In order to estimate the frequency that vectors x(i) repeat themselves throughout
the data set within a tolerance r, the distance d(x[i], x[j]) is defined as the maximum
difference between the scalar components x(i) and x(j). Explicitly, two vectors x(i)
and x(j) are “similar” within the tolerance or filter r, namely d(x[i], x[j]) ≤ r, if the
difference between any two values for u(i) and u(j) within runs of length m are less
than r (i.e. |u(i + k)−u(j + k)| ≤ r for 0 ≤ k ≤ m). Subsequently, Cm

i (r) is defined
as the frequency of occurrence of similar runs m within the tolerance r:

Cm
i (r) =

[number of j such that d(x[i], x[j]) ≤ r]

(N − m − 1)
,

where j ≤ (N − m − 1).
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Taking the natural logarithm of Cm
i (r), the function Φ

m(r) is defined as the aver-
age of ln(Cm

i (r)):

Φ
m(r) =

∑

i

lnCm
i (r)/(N − m − 1) (17)

where
∑

i is a sum from i = 1 to (N − m − 1). Φ
m(r) is a measure of the prevalence

of repetitive patterns of length m within the filter r.
Finally, approximate entropy, or ApEn(m, r, N), is defined as the natural loga-

rithm of the relative prevalence of repetitive patterns of length m as compared with
those of length m + 1:

ApEn(m, r, N) = Φ
m(r) − Φ

m+1(r). (18)

Thus, ApEn(m, r, N) measures the logarithmic frequency that similar runs (with-
in the filter r) of length m also remain similar when the length of the run is increased
by 1. Thus, small values of ApEn indicate regularity, given that i increasing run length
m by 1 does not decrease the value of Φ

m(r) significantly (i.e., regularity connotes
that Φm[r] ≈ Φ

m+1[r]). ApEn(m, r, N) is expressed as a difference, but in essence it
represents a ratio; note that Φ

m[r] is a logarithm of the averaged Cm
i (r), and the ratio

of logarithms is equivalent to their difference. A more comprehensive description of
ApEn may be found in (Pincus, 1991; Pincus & Goldberger, 1994; Pincus & Singer,
1996).

In summary,ApEn is a “regularity statistics” that quantifies the unpredictability of
fluctuations in a time series. Intuitively, one may reason that the presence of repetitive
patterns of fluctuation in a time series renders it more predictable than a time series in
which such patterns are absent. ApEn reflects the likelihood that “similar” patterns of
observations will not be followed by additional “similar” observations. A time series
containing many repetitive patterns has a relatively smallApEn; a less predictable (i.e.,
more complex) process has a higher ApEn.

4. Results

Figure 1 gives the temporal evolution of Dst along with corresponding time variations
of the Block entropy, the T -complexity and, the ApEn for the whole year of 2001.
All the relative entropy measures were calculated using a moving time window of
256 hours. We see how nicely the entropy measures identify the different complex-
ity regimes in the Dst time series (c.f. red part of the corresponding plots). Figure 1
further demonstrates that theApEn entropy yields superior results in comparison to the
other entropy measures regarding the detection of dynamical complexity in the Earth’s
magnetosphere (i.e., offer a clearer picture of the transition). A possible explanation for
this is that ApEn is more stable when dealing with nonstationary signals of dynamical
systems (such the magnetospheric signal) than the other entropy measures presented
here.

5. Conclusions and Discussion

Block entropy, T -complexity and Approximate entropy sensitively show the complex-
ity dissimilarity among different “physiological” (quiet-time) and “pathological” states
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(intense magnetic storms). They imply the emergence of two distinct patterns : (i) a
pattern associated with the intense magnetic storms, which is characterized by a higher
degree of organization, and (ii) a pattern associated with normal periods, which is char-
acterized by a lower degree of organization.

The present study confirms the conclusions of a previous work based on an inde-
pendent linear fractal spectral analysis (Hurst exponent) using wavelet transforms (Bal-
asis et al., 2006). The Hurst exponent analysis also shows the existence of two different
patterns: (i) a pattern associated with the intense magnetic storms, which is character-
ized by a fractional Brownian persistent behavior; (ii) a pattern associated with normal
periods, which is characterized by a fractional Brownian anti-persistent behavior.

Furthermore, the non-extensive Tsallis entropy has been recently introduced (Bal-
asis et al., 2008), as an effective complexity measure for the analysis of the Dst index.
Tsallis entropy has been also shown to sensitively detect the complexity dissimilarity
between pre-storm activity and intense magnetic storms in the Earth’s magnetosphere.

We stress that the anti-persistent time windows correspond to the time windows
of higher entropies, while the persistent time windows correspond to the time windows
of lower entropies. Importantly, a recent analysis presented by Carbone and Stanley

[2007] shows that anti-correlated time series, with Hurst exponent 0.5 < H < 1, are
characterized by entropies greater than correlated time series having 0.5 < H < 1.
This suggestion is in agreement with our results.

An important remark is the agreement of the results between the linear analysis in
terms of the Hurst exponent and nonlinear entropy analyses. A combination of linear
and nonlinear analysis techniques can offer a firm warning that the onset of an intense
magnetic storm is imminent.
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Figure 1.: From top to bottom: Dst time series along with time variations of Block en-
tropies, Approximate entopiesApEn and T -complexities. The 31March and 6 Novem-
ber 2001 magnetic storms are marked with red. The red dashed line inApEn plot marks
a possible boundary value for the transition to the lower complexity characterizing the
different state of the magnetosphere.
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