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Abstract. Dynamical complexity detection for output time series of complex systems is one of the foremost problems
in physics, biology, engineering, and economic sciences. Especially in magnetospheric physics, accurate detection of the
dissimilarity of complexity between normal and abnormal states (e.g. pre-storm activity and magnetic storms) can vastly
improve space weather diagnosis and, consequently, the mitigation of space weather hazards. A variety of complexity
measures based on linear and nonlinear analysis techniques (i.e., wavelet transforms and entropies, respectively) is applied to
the Dst index time variations in order to detect changes that can play the role of warnings for future magnetic storm occurrence.

INTRODUCTION

Accumulated evidence points to the complex character of
magnetosphere dynamics. For instance,Baker et al.[1],
Vassiliadis et al.[2] and Sharma et al.[3] studied the
occurrence of low dimensional chaos in magnetospheric
activity, while Klimas et al.[4] discussed the nonlinear
character of magnetosphere dynamics. Other studies [5,
6] witnessed several aspects of the complex character
of the plasma sheet. Thus, recent advances in the study
of complexity and complex systems open new research
perspectives to the investigation of the magnetospheric
dynamics [7].

In the context of complex system theory, we are aim-
ing to develop a quantitative identification of magnetic
storm warnings. Therefore, we have used concepts of en-
tropy and tools of information theory in order to identify
statistical patterns in the Dst index time variations. It is
expected that a significant change in the statistical pattern
represents a deviation from normal (background) behav-
ior, revealing the presence of an abnormal state related to
a magnetic storm.

The present study is focused on one year Dst data
(2001), characterized by two intense magnetic storms,
in the first and last trimester of the considered interval
(i.e., 31/3/2001 and 6/11/2001 with minimum Dst -387
nT and -292 nT, respectively). The data were retrieved
from the World Data Center for Geomagnetism, Kyoto
(http://swdcwww.kugi.kyoto-u.ac.jp/) and are presented
in Figure 1.

First, fractal spectral analysis of the Dst time series
offers information concerning normal/abnormal magne-
tospheric state discrimination by showing that the abnor-

mal state follows the fractional Brownian motion (fBm)
model and haspersistentbehavior while, on the contrary,
the normal state follows the same model but withanti-
persistentbehavior.

Then, we attempt a symbolic analysis of Dst index in
terms of non-extensive Tsallis entropy. It is well-known
that the traditional Shannon entropy works best in deal-
ing with systems composed of subsystems which can
access all the available phase space and which are ei-
ther independent or interact via short-range forces. For
systems exhibiting long-range correlations, memory, or
fractal properties, non-extensive Tsallis entropy becomes
the most appropriate mathematical tool [8, 9]. A central
property of magnetic storm emergence is the occurrence
of coherent large-scale collective behavior with a very
rich structure, resulting from repeated nonlinear interac-
tions among the constituents of the global geospace sys-
tem. Consequently, Tsallis entropy is an appropriate tool
for identifying magnetic storm precursors.

LINEAR TECHNIQUES

To analyze Dst data, we have first used computational al-
gorithms based on wavelet transforms [10, 11, 12, 13].
The wavelet spectral analysis is superior to the Fourier
spectral analysis, because it provides excellent decom-
positions of even transient, non-stationary signals [14].
It has the ability of providing a representation of the sig-
nal in both the time and frequency domains. In contrast
to the Fourier transform, which provides the description
of the overall regularity of signals, the wavelet transform
identifies the temporal evolution of various frequencies.
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This property is suitable for the signals under investiga-
tion, because they are non-stationary by their nature, and
have a time-varying frequency content.

Wavelet spectral analysis allows quantitative monitor-
ing of the signal evolution by decomposing a time se-
ries into a linear superposition of predefined mathemati-
cal waveforms, each with finite duration and narrow fre-
quency content [15]. Thus, the frequency range of the
analyzing wavelets corresponds to the spectral content
of time series components. Wavelet analysis is becom-
ing a common tool for analyzing localized variations of
power within a time series. By decomposing a time series
into time-frequency space, one is able to determine both
the dominant modes of variability and how those modes
vary in time. The advantage of analyzing a signal with
wavelets as the analyzing kernel, is that it enables one to
study features of the signal locally with a detail matched
to their scale. Owing to its unique time-frequency local-
ization, wavelet analysis is especially useful for signals
that are non-stationary, have short-lived transient compo-
nents, have features at different scales, or have singulari-
ties.

We have applied the continuous wavelet transform
with the Morlet wavelet as the basis function [16]. Our
results have been checked for consistency using the Paul
and DOG mother functions [16]. We should also stress
that there are several parameters of the wavelet transform
(e.g., frequency range, power spectral density amplifi-
cation factor, etc.), which were needed to be correctly
adjusted in order to capture different kinds of magneto-
spheric signals. This tuning of the wavelet transform is
rather time consuming, but it has been an important step
of our analysis.

If a time series is a temporal fractal then a power-
law of the formS( f ) ∝ f−β is obeyed, withS( f ) the
power spectral density andf the frequency. The spectral
scaling exponentβ is a measure of the strength of time
correlations. The goodness of the power law fit to a time
series is represented by a linear correlation coefficient,r.

The β exponent is related to the Hurst exponentH:
β = 2H + 1, with 0 < H < 1 (1 < β < 3) for the
fBm model [12]. The exponentH characterizes the
persistent/anti-persistent properties of the signal.

For the 1-year period considered here (year 2001),
applying the wavelet transform to the hourly Dst values
leads to a matrix with 65x(365x24) elements, where
65 is the number of frequencies. Then, power spectral
densities were estimated in the frequency range from
2 to 128 h, using a moving window of 256 samples.
The number of samples by which the moving window
sections overlap is 255. Finally, the spectral parameters
β and consequently Hurst exponentsH were calculated
for each window.

In Figure 1 the values of theH parameter are shown
for the Dst index data. When the correspondingH val-

ues are in the interval (0, 0.5) the time series has anti-
persistent properties, which means that if the fluctua-
tions increase with time, it is likely to decrease in the
interval immediately following and vice versa. Physi-
cally, this implies that fluctuations tend to induce sta-
bility within the system (negative feedback mechanism).
Figure 1 reveals that the Dst time series exhibits anti-
persistent properties during the quiet period (i.e. well be-
fore and after 31 March and 6 November 2001 intense
magnetic storms). IfH takes values in the interval (0.5,
1) the signal exhibits persistent properties, which means
that if the amplitude of the fluctuations increases with
time, it is likely to continue increasing in the immedi-
ately next interval. In other words, the underlying dy-
namics is governed by a positive feedback mechanism.
Figure 1 shows that Dst exhibits persistent properties
(0.5 < H < 1) around 31 March and 6 November 2001
intense magnetic storms (c.f. parts ofH plot marked in
red represent persistency). Thus, it is evident that the on-
set and development of the magnetic storms of 31/3/2001
and 6/11/2001 are associated with persistent behavior.

The valueH = 0.5 suggests that there is no correla-
tion between the repeated increments. Consequently, this
particular value takes on a special physical meaning: it
marks the transition between anti-persistent and persis-
tent behavior in the time series. To conclude, one can rec-
ognize two different regimes. The first refers to epochs
of low magnetospheric activity, where the associated Dst
time series follows anti-persistent behavior. The second
regime refers to the epoch including an intense magnetic
storm, where the Dst time series shows persistent behav-
ior.

NONLINEAR TECHNIQUES

Recently there has been renewed interest in extreme dy-
namic events in nature. In the last few years, a new
branch of research, named “the physics of complex sys-
tems” has emerged within the field of statistical mechan-
ics. An important characteristic of interconnected sys-
tems is that there are emerging properties of the sys-
tems, which are not properties of the individual con-
stituents. We refer to “a complex system” as one whose
phenomenological laws describing the global behavior of
the system are not necessarily directly related to the “mi-
croscopic” (i.e., elemental) laws that regulate the evolu-
tion of its elementary parts. In other words, “complexity”
is the emergence of a non-trivial behavior due to the in-
teractions of the subunits that constitute the system.

A basic reason for our interest in “complexity” is
the striking similarity in behavior near the critical point
among systems that are otherwise quite different in na-
ture in Nature. Perhaps one of the main reasons for the
growing interest in complex networks is that many sys-

66



tems in the real world, either naturally evolved or arti-
ficially designed, are indeed organized in a networked
fashion. The main feature of collective behavior is that an
individual unit’s action is dominated by the influence of
its neighbors; the unit behaves differently from the way
it would behave on its own. Finally, ordering phenomena
emerge as the units simultaneously change their behavior
to a common pattern [17, 18]. The emphasis in the struc-
ture formation in complex systems is bridging the gap be-
tween what one element does and what many of them do
when they function cooperatively. Consequently, it fol-
lows that the science of complexity is about revealing the
principles that govern the ways in which these new prop-
erties appear. Indeed, an important challenge in this field
of research is to distinguish characteristic epochs in the
evolution of precursory activity and identify them with
the equivalent last stages in the extreme event preparation
process. We attempt to approach this challenge bringing
together experimental precursory data and aspects hav-
ing their roots in statistical physics.

Complexity is a measure of off-equilibrium “order”.
The entropy provides a way of quantifying the or-
der/disorder of a time series.

A way to examine transient phenomena is to analyze
the pre-storm Dst time series into a sequence of distinct
time windows. The aim is to discover a clear difference
of dynamical characteristic as the extreme event is ap-
proaching. It is expected that as a magnetic storm ap-
proaches, there is a clear transition from higher to lower
complexity. If the analysis yields different complexity
values for a number of consecutive time-windows, then
a different pre-storm epoch in the time series, probably
corresponding to a characteristic stage of the magnetic
storm preparation process, can be recognized. In sum-
mary, a time-dependent complexity is employed to char-
acterize the level of precursory “injury”.

Shannon entropy

The term “entropy” is used in both physics and infor-
mation theory to describe the amount of uncertainty or
information inherent in an object or system. Clausius in-
troduced the notion of entropy into thermodynamics in
order to explain the irreversibility of certain physical pro-
cesses in thermodynamics. In statistical thermodynamics
the most general formula for the thermodynamic entropy
S of a thermodynamic system is the Boltzmann-Gibbs
entropy,

SB−G = −k∑ pi ln pi

where k is the Boltzmann constant andpi are the proba-
bilities associated with the microscopic configurations.

The Boltzmann-Gibbs entropy translates over almost
unchanged into the world of quantum physics to give the
von Neumann entropy,

S= −k Tr(ρ lnρ)

whereρ is the density matrix of the quantum mechanical
system.

Shannon recognized that a similar approach to
Boltzmann-Gibbs entropy could be applied to informa-
tion theory. In his famous 1948 paper [19], he introduced
a probabilistic entropy measureHS:

HS(X) = −
n

∑
i=1

p(xi) logb p(xi), (1)

whereb is the base of the logarithm used andp denotes
the probability mass function of a discrete random vari-
ableX with possible values{x1, ...,xn}.

Symbolic dynamics

The basic idea of symbolic dynamics is quite simple.
One divides the phase space into a finite number of parti-
tions and labels each partition with a symbol (e.g. a letter
from some alphabet). Instead of representing the trajec-
tories by infinite sequences of numbers-iterates from a
discrete map or sampled points along the trajectories of
a continuous flow, one watches the alteration of symbols.
Of course, in so doing one loses an amount of detailed in-
formation, but some of the invariant, robust properties of
the dynamics may be kept, e.g. periodicity, symmetry, or
the chaotic nature of an orbit [20].

In the framework of symbolic dynamics, time series
are transformed into a series of symbols by using an ap-
propriate partition which results in relatively few sym-
bols. After symbolization, the next step is the construc-
tion of “symbol sequences” (“words” in the language
symbolic dynamics) from the symbol series by collect-
ing groups of symbols together in temporal order.

To be more precise, the simplest possible coarse-
graining of a time series is given by choosing a threshold
C (usually the mean value of the data considered) and
assigning the symbols “1” and “0” to the signal, depend-
ing on whether it is above or below the threshold (binary
partition).

Non-extensive Tsallis entropy

The uncertainty of an open system state can be quan-
tified by the Boltzmann-Gibbs entropy, which is the
widest known uncertainty measure in statistical mechan-
ics. Boltzmann-Gibbs entropy cannot, however, describe
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nonequilibrium physical systems with large variability
and multi-fractal structure such as the solar wind. In-
spired by multi-fractal concepts,Tsallis [8, 9] has pro-
posed a generalization of the Boltzmann-Gibbs statistics,
which is briefly described here.

The aim of statistical mechanics is to establish a di-
rect link between the mechanical laws and classical
thermodynamics. One of the crucial properties of the
Boltzmann-Gibbs entropy in the context of classical ther-
modynamics is extensivity, namely proportionality with
the number of elements of the system. The Boltzmann-
Gibbs entropy satisfies this prescription if the subsystems
are statistically (quasi-) independent, or typically if the
correlations within the system are essentially local. In
such cases the system is called extensive.

In general, however, the situation is not of this type
and correlations may be far from negligible at all scales.
In such cases the Boltzmann-Gibbs entropy is non-
extensive.Tsallis [8, 9] introduced an entropic expres-
sion characterized by an indexq which leads to a non-
extensive statistics,

Sq = k
1

q−1

(

1−
W

∑
i=1

pq
i

)

, (2)

wherepi are the probabilities associated with the micro-
scopic configurations,W is their total number,q is a real
number, andk is Boltzmann’s constant. The value ofq
is a measure of the non-extensivity of the system:q→ 1
corresponds to the standard extensive Boltzmann-Gibbs
statistics.

This is the basis of the so called non-extensive sta-
tistical mechanics, which generalizes the Boltzmann-
Gibbs theory. The entropic indexq characterizes the de-
gree of non-additivity reflected in the following pseudo-
additivity rule:

Sq(A+B) = Sq(A)+Sq(B)+ (1−q)Sq(A)Sq(B). (3)

The casesq > 1 and q < 1, correspond to sub-
additivity, or super-additivity, respectively. For subsys-
tems that have special probability correlations, extensiv-
ity is not valid for Boltzmann-Gibbs entropy, but may
occur forSq with a particular value of the indexq. Such
systems are sometimes referred to as non-extensive. The
parameterq itself is not a measure of the complexity of
the system but measures the degree of non-extensivity of
the system. It is the time variations of the Tsallis entropy
for a givenq (Sq) that quantify the dynamic changes of
the complexity of the system. LowerSq values character-
ize the portions of the signal with lower complexity.

Herein, we estimateSq based on the concept of sym-
bolic dynamics and by using the technique of lumping
(for details the reader is referred to [21]). To be more pre-

cise, the simplest possible coarse graining of the Dst in-
dex is given by choosing a thresholdC (usually the mean
value of the data considered) and assigning the symbols
“1” and “0” to the signal, depending on whether it is
above or below the threshold (binary partition). Thus, we
generate a symbolic time series from a 2-letter (λ = 2)
alphabet (0,1), e.g. 0110100110010110. . ..

Reading the sequence by lumping of lengthL = 2 one
obtains 01/10/10/01/10/01/01/10/. . .. The number of
all possible kinds of blocks isλ L = 22 = 4, namely
00, 01, 10, 11. Thus, the required probabilities for the
estimation of the Tsallis entropyp00, p01, p10, p11 are
the fractions of the blocks 00, 01, 10, 11 in the symbolic
time series.

TheSq for the word lengthL is

Sq(L) = k
1

q−1

(

1− ∑
(A1,A2,...,AL)

[p(L)A1,A2,...,AL ]
q

)

.

(4)
Broad symbol-sequence frequency distributions pro-

duce high entropy values, indicating a low degree of or-
ganization. Conversely, when certain sequences exhibit
high frequencies, lower entropy values are produced, in-
dicating a high degree of organization.

Next, we focus on calculations related to the tradi-
tional Shannon entropy and the non-extensive Tsallis en-
tropy. Figure 1 gives the temporal evolution of Dst along
with corresponding time variations of the Hurst expo-
nent, H, Shannon entropy and Tsallis entropy for the
whole year of 2001. In terms of entropy measures, we
see how nicely Tsallis entropy variations identify the dif-
ferent complexity regimes in the Dst time series (c.f. red
part of the corresponding plot). Figure 1 further demon-
strates that Tsallis entropy along with Hurst exponent
yield superior results in comparison to Shannon entropy
regarding the detection of dynamical complexity in the
Earth’s magnetosphere (i.e., offer a clearer picture of the
transition from normal state to magnetic storms). A pos-
sible explanation for this is that Tsallis is an entropy
obeying a non-extensive statistical theory, which is dif-
ferent from the usual Boltzmann-Gibbs statistical me-
chanics obeyed by Shannon entropy. Therefore, it is ex-
pected to better describe the dynamics of the magneto-
sphere, which is a nonequilibrium physical system with
large variability.

CONCLUSIONS AND DISCUSSION

Non-extensive Tsallis entropy sensitively shows the
complexity dissimilarity among different “physiologi-
cal” (normal) and “pathological” states (intense magnetic
storms). Tsallis entropy implies the emergence of two
distinct patterns: (i) a pattern associated with the intense
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magnetic storms, which is characterized by a higher de-
gree of organization (ii) a pattern associated with normal
(quiet-time) periods, which is characterized by a lower
degree of organization.

The wavelet spectral analysis in terms of Hurst expo-
nent,H, also shows the existence of two different pat-
terns: (i) a pattern associated with the intense magnetic
storms, which is characterized by a fractional Brownian
persistent behavior (ii) a pattern associated with normal
periods, which is characterized by a fractional Brownian
anti-persistent behavior.

We stress that the anti-persistent time windows cor-
respond to the time windows of high entropy, while the
persistent time windows correspond to the time windows
of low entropy.

In summary, a combination of linear and nonlinear
analysis techniques proved to be a powerful tool, show-
ing evidence that the occurrence of an intense magnetic
storm is imminent, and thus, providing convenience for
space weather applications.

It is expected that the results will contribute to a better
understanding of magnetic storm mechanism focusing on
two fundamental questions that are as yet unanswered: (i)
is there a way of estimating the time to global instability?
(ii) is the evolution towards global instability irreversible
after the appearance of distinguishing features in the Dst
time series?

Recently,Balasis et al.[22] demonstrated that other
entropy measures such as block entropy, T-complexity
and approximate entropy can also be used to characterize
the dynamics of the magnetosphere.Consolini et al.[23]
attempted a verification of the magnetospheric nonequi-
librium dynamics by investigating the long-term evolu-
tion of the Earth’s magnetosphere, as monitored by Dst.
They were able to provide a proof of the existence of a
steady state far from equilibrium for the Earth’s magne-
tosphere.

Other studies also indicate the existence of two differ-
ent regimes in the dynamics of magnetosphere.Sitnov et
al. [24] suggest that the substorm dynamics resembles
second-order phase transitions, while magnetic storms,
are shown to reveal the features of first-order nonequilib-
rium transitions. The anti-persistency / persistency well
meet the second order / first order phase transition corre-
spondingly. Metastability and topological complexity of
magnetic field, emerging fromChang’smodel [25] also
justify the evidence for transition from pre-storm activ-
ity to magnetic storms found in our study. Furthermore,
Chang et al.[26, 27] andVörös et al.[28] described
intermittent turbulence in space plasmas which is con-
sistent with the ideas derived here. RecentlyVörös et
al. [29] examined the statistical properties of magnetic
fluctuations in the Venusian magnetosheath and wake re-
gions. They found multiscale turbulence at the magne-
tosheath boundary layer and near the quasi-parallel bow

shock.
Additionally, similar behavior to our observations (i.e.,

reduction of multiscale complexity) was observed in
high-latitude geomagnetic activity prior to strong sub-
storms using a different methodology.Uritsky and Pu-
dovkin[30] andUritsky et al.[31] presented cellular au-
tomata models which allowed interpretation of the ob-
served effects in terms of transitions between critical, su-
percritical and subcritical states. In [32] the authors pro-
vided evidence for similar behavior in the spatial scaling
of the auroral brightness.Wanliss et al.[33] applied sym-
bolic dynamics analysis to Dst time series for modeling
magnetic storms. They presented evidence for intermit-
tency and nonGaussianity, which are reflective of large
magnetic storms. It was also suggested that the ring cur-
rent is always out of equilibrium and may undergo state
changes via multiplicative cascades.
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FIGURE 1. From top to bottom: Dst time series along with time variations of Hurst exponents,H, Shannon entopies and Tsallis
entropies,Sq. The 31 March and 6 November 2001 magnetic storms are marked with red. The red dashed line inH plot marks the
transition between anti-persistent and persistent behavior. The red dashed line inSq plot marks a possible boundary value for the
transition to the lower complexity characterizing the different state of the magnetosphere. The triangles denote 5 time intervals in
which: first, third and fifth time windows correspond to anti-persistent (0< H < 0.5) or high Tsallis entropies epochs; second and
fourth time windows correspond to persistent (0.5 < H < 1) or lower Tsallis entropies epochs.
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