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Abstract. We show how a general class of spatio-temporal nonlinear impulse-response forecast networks (Volterra networks)
can be constructed from a taxonomy of nonlinear autoregressive integrated moving average with exogenous inputs (NAR-
MAX) input-output equations, and used to model the evolution of energetic particle f uxes in the Van Allen radiation belts.
We present initial results for the nonlinear response of the radiation belts to conditions a month earlier. The essential fea-
tures of spatio-temporal observations are recovered with the model echoing the results of state space models and linear f nite
impulse-response models whereby the strongest coupling peak occurs in the preceding 1-2 days. It appears that such networks
hold promise for the development of accurate and fully data-driven space weather modelling, monitoring and forecast tools.
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1. INTRODUCTION

The chain of events leading to geospace magnetic storms
begins with the ejection of solar plasma and plasma
waves, followed by their propagation through the inter-
planetary medium and subsequent impact on the Earth’s
magnetosphere. Magnetic storms and substorms, two
of the major complex dynamic phenomena in the ter-
restrial magnetosphere, have a number of distinct ef-
fects on the geospace environment such as electron and
ion acceleration, auroral displays in the upper atmo-
sphere at high latitudes, and geomagnetically-induced
currents on the ground which may lead to electrical grid
blackouts[5, 7, 6]. A highly prominent effect is the ener-
gization of the Van Allen radiation belts (see for exam-
ple [3]) which is of particular interest to satellite opera-
tors, since radiation belt enhancements endanger space-
craft circuits and subsystems.

Many efforts in the last two decades have focused on
the development of data-derived dynamical models of the
energetic particle f ux in the radiation belts. Early lin-
ear prediction f lter studies focused on the temporal re-
sponse of daily-averaged relativistic electrons at geosta-
tionary altitudes to solar plasma, interplanetary and mag-
netospheric drivers[10, 1]. Vassiliadis et al[14] extended
this technique spatially by incorporating SAMPEX/PET
electron f ux data over a broad range of L-shells from 1.1
to 10 Earth Radii (RE). The f rst self-consistent spatio-
temporal state space models were then constructed[11],
providing "one-step ahead" predictions for the nonlinear
impulse-reponse of the radiation belts and, in particular,

provided new and important clues to the timescales (typ-
ically days) involved in the dissipation of f ux.

In order to attempt to increase accuracy and, more im-
portantly, to extend forecasts further forward in time in
preparation for the development of a radiation belt storm
warning index, we have adopted a methodology based
on assuming an equivalence between NARMAX input-
output equations and time-delay neural networks (which
we will refer to as Volterra networks). Key to the success
of this method are three fundamental theorems: the Wold
Theorem[17] for general time series decomposition of
data, Takens’ Theorem[13] for time-delay embedding of
nonlinear dynamics, and Hornik’s Theorem[8] for uni-
versal function approximator neural networks. Takens’
Theorem postulates that nonlinear input-output equa-
tions for decomposed time series data are fully capable of
representing the nonlinear dynamics of the system under
study provided that enough time lag variables are used.
Equivalent Volterra networks can then be constructed by
using time delays on the inputs and outputs and training
on time series data to identify the nonlinear functional
relation between input and output variables.

In this paper we brief y outline the method and present
initial results of a 30th order auto-regressive (feedback)
2D spatio-temporal model of the electric f ux in the
radiation belts and show how the nonlinear f nite-impulse
response transfer function as a function of lag time can
be extracted from the network.
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2. METHODOLOGY

A schematic of the overall methodology adopted here is
presented in Figure 1.

STEP 1: Construction of a taxonomy of
NARMAX input-output equations

We began with a generalisation of the Wold time series
decomposition [17] having the form,

J(t) = c+Ψ(t)+ ε(t)≡ Ĵ(t)+ ε(t) (1)

where J(t) is the electron f ux time series, Ĵ(t) = c+Ψ(t)
are the model predictions, c is a constant (zero in the
absence of trend), ε(t) = J(t)− Ĵ(t) are the prediction
errors and Ψ(t) is an “information function” constructed
from lag series Φp, Θq, Ωr

ΦpJ(t) =
p

∑
i=1

ϕi fi
[

LiJ(t)
]

(2)

Θqε(t) =
q

∑
j=1

θ jg j
[

L jε(t)
]

(3)

ΩrI(t) =
r

∑
k=1

ωkhk

[

LkI(t)
]

(4)

with coeff cients ϕi, θ j, ωk, general functions fi, g j, hk
and lag operators,

LiJ(t) = J(t − i) (5)

L jε(t) = ε(t − j) (6)

LkI(t) = I(t − k), (7)

such that,

J(t) = c +
p

∑
i=1

ϕi fi [J(t − i)]+
q

∑
j=1

θ jg j [ε(t − j)]

+
r

∑
k=1

ωkhk [I(t − k)]+ ε(t) (8)

in accordance with the Nonlinear AutoRegressive
Moving-Average eXogenous input NARMAX(p,q,r)
process. The introduction of general functions f ,
g and h into the lag series allows for a generalisa-
tion of the polynomial NARMAX models of Leon-
taritis and Billings (1985)[4]. Furthermore, in the
case that the nonlinear system is driven by sev-
eral inputs s then we will have a vector of inputs
Il = I = [I1, I2, . . . , Is]

† and a corresponding vector of
input lag series Ωrl = Ωr = [Ωr1 ,Ωr2 , . . . ,Ωrs ] where
rl = r = [r1,r2, . . . ,rs] so that each Il can have its own lag

order rl . In this general case, the nonlinear time series
decomposition will be given by,

J(t) = c+ΦpJ(t)+Θqε(t)+Ωr • I(t)+ ε(t) (9)

and represents the general NARMAX(p,q, r) process.
Note that, our notation allows the NARMAX process
to be written as an explicit sum of terms rather than
the traditional presentation which would describe, for
example, the NARMAX(p,q,r) process in terms of a
general polynomial function F as follows, follows[4],

J(t) = c + F {J(t − 1),J(t − 2) . . . ,J(t − p);

ε(t − 1),ε(t − 2), . . . ,ε(t − q);

I(t − 1), I(t − 2), . . . , I(t − r)}+ ε(t).

It is precisely the linear nature of the explicit sum in-
troduced above that permits the development of a con-
nectionist solution via neural network architectures. To
recap, the information function contains linear combina-
tions of (general nonlinear) operators acting on the au-
toregressive time-delayed (lagged) time series of radia-
tion belt f ux J(t − p), moving-average lagged equation
errors ε(t − q), and lagged exogenous inputs I(t − r).
The particular class of model chosen depends on how
exactly Ψ(t) is def ned from the form of the functions
fi, g j and hk and the order of the autoregression, the
moving average and the exogenous inputs. Table 1 below
shows some key examples from the general taxonomy of
NARMAX(p,q, r) input-output equations.

STEP 2: Inclusion of nonlinear dynamics
via time-delay embedding

Since Takens’ Theorem[13] means that there is a 1-to-
1 mapping between a time series and the underlying dy-
namical state space, then, provided that a nonlinear func-
tional is used and enough lag variables are incorporated
into the specif cation of the input-output model, equiv-
alence will exist between any given NARMAX(p,q, r)
process and the nonlinear dynamical system it aims to
represent. Assuming for now that the model orders p,
q and r can be identif ed using phase space techniques
(such as false nearest neighbours) then the problem at
hand reduces to solving the follow equation for the non-
linear time series decomposition of the radiation belt f ux
J(t) in terms of the unknown coeff cients φi, φ j, ωl,k and
the functions fi, g j and hl ,k,

J(t) = c + ϕ1 f1 [J(t − 1)]+ · · ·+ϕp fp [J(t − p)]

+ θ1g1 [ε(t − 1)]+ · · ·+θqgq [ε(t − q)]

+ ω1,1h1,1 [I1(t − 1)]+ · · ·
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FIGURE 1. The overall methodology we have adopted together with a comparison of the observed SAMPEX/PET electron
f ux observations normalised to the interval [-1,1] with initial results from our 2D spatio-temporal model based on the nonlinear
autoregressive NAR(30) Volterra network.

TABLE 1. A taxonomy of input-ouput models in the NARMAX(p,q, r) class

Functions f , g, h Autoregression
Order

Moving-Avergae
Order

Inputs Model

1 1 0 0 AR(1)=Random walk
1 p 0 0 AR(p)
1 p 0 r ARX(p,r)
1 p 0 r ARX(p, r)
1 0 q 0 MA(q)
1 0 ∞ 0 MA(∞)=Wold Decomposition
1 0 q r MAX(q,r)
1 0 q r MAX(q, r) (multivariate)
1 p q 0 ARMA(p,q)
1 p q r ARMAX(p,q,r)
1 p q r ARMAX(p,q, r) (multivariate)
f p 0 0 NAR(p)

f ,h p 0 r NARX(p,r)
f ,h p 0 r NARX(p, r) (multivariate)
g 0 q 0 NMA(q)

g,h 0 q r NMAX(q,r)
g,h 0 q r NMAX(q, r) (multivariate)
f ,g p q 0 NARMA(p,q)

f ,g,h p q r NARMAX(p,q,r)
f ,g,h p q r NARMAX(p,q, r) (multivariate)
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+ ω1,r1h1,r1 [I1(t − r1)]

+ ω2,1h2,1 [I2(t − 1)]+ · · ·

+ ω2,r2h2,r2 [I2(t − r2)]

...

+ ωs,1hs,1 [Is(t − 1)]+ · · ·

+ ωs,rshs,rs [Is(t − rs)]+ ε(t). (10)

STEP 3: Construction of nonlinear Volterra
network models

Hornik’s Theorem[8] tells us that nonlinear multilayer
perceptrons (feed-forward neural networks) are univer-
sal and exact function approximators. Feedforward neu-
ral networks with lagged inputs create short-term mem-
ory and incorporate nonlinear dynamics into the net-
work state space, and in the case that the activation
functions of the artif cial neurons are linear, then they
such networks operate as f nite impulse-response (FIR)
f lters[16]. Such networks are connectionist analogs of
the linear FIR integral models of Vassiliadis et al[14].
Here, we present results from nonlinear FIR networks
(which we call Volterra networks as they redeem the
mathematical properties of the nonlinear Volterra inte-
gral), constructed from NARMAX(p,0, r) input-output
equations, and whose general architecture is shown in
Figure 2.

3. RESULTS

3.1. Identification of physical models

We trained Volterra networks on daily-averaged
SAMPET/PET measurements of the radiation belt f ux
from 01/01/1995 minus 30 days to day 335 using the
Levenberg-Marquardt backpropagation algorithm[12]
over 100 epochs and with 10 adaptive passes at each
step in L-shell (0.1 RE). This allowed us to use the
networks to predict data during the whole of 1995 for
comparison with observed values. The year 1995 was
selected so that the results could also be compared with
those obtained by [11] with state space models. Figure
1 shows schematically the overall methodology we have
adopted together with a comparison of the observed
SAMPEX/PET electron f ux observations normalised
to the interval [-1,1] with initial results from the a
30th-order nonlinear autoregressive NAR(30) Volterra
network. In order to measure the degree of success in re-
producing observed values J(t) from the network model
predictions Ĵ(t), we used the data-model correlation

coeff cient C described in [14]:

C =
1
T

1
σJσĴ

∫ T

0

(

Ĵ(t)−
〈

Ĵ(t)
〉

)(

J(t)−〈J(t)〉
)

dt

(11)
where 〈J(t)〉 and σJ are the mean and standard deviation
of J(t). Since the neuron activation function and neuron
connection weights in Volterra networks are extractable
and therefore explicit, the network architecture can be
converted into equations with known AR(p), MA(q) and
X(r) coeff cients φp, θq, ωl,k and functions f , g and
h, specif ed through the form of the neuron activation
functions (in the case of the Volterra networks used in
this work, hyperbolic tangent functions).

3.2. Extraction of the nonlinear FIR
transfer function

The spatio-temporal evolution of the radiation belt f ux
calculated from the linear f nite-impulse response to a
generalised input driver I(t) over a range of lag intervals
τ = Ts to τ = Tf and parameterised by L-shell is given by
the solution of the integral,

J(t;L) =
∫ Tf

τ=Ts

H(τ;L)I(t − τ)dτ, (12)

for H(τ;L) [14]. In an AR(p) model, the generalised
input driver I(t) is simply the auto-regressed lagged time
series of the f ux J(t − p). The corresponding integral
equation is,

J(t;L) =
∫ p

τ=0
H(τ;L)J(t − τ)dτ. (13)

Since the time lags are taken to be integer multiples of
the data sampling rate (i.e. τ = 1 day), then dτ = 1 and
the integral can be written as the discrete sum,

J(t;L) =
p

∑
τ=0

H(τ;L)J(t − τ;L) (14)

= H(0;L)J(t)+H(1;L)J(t − 1)

+ H(2;L)J(t − 2)+ . . .+H(p;L)J(t − p).

In the case that the lagged time series in the FIR f lters
of the Volterra network in Figure 2 are linear then for p
lags and m neurons in the hidden layer of the FIR f lter,
the network output constructed from the weights Wpm of
the neurons connecting each time-lagged input is,

J(t;L) = J(t − 0;L)(W0,0 +W0,1 + . . .+W0,m)

+ J(t − 1;L)(W1,0 +W1,1 + . . .+W1,m)

+ J(t − 2;L)(W2,0 +W2,1 + . . .+W2,m)
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FIGURE 2. A schematic diagram of equivalent Volterra networks constructed from NARMAX(p,q, r) input-output equations.

...

+ J(t − p;L)(Wp,0 +Wp,1+ . . .+Wp,m)

=
p

∑
τ=0

J(t − τ;L)
q

∑
j=0

Wτ, j. (15)

Comparing the equation for the linear impulse-response
transfer function H(τ;L), then we see that,

H(τ;L) =
q

∑
j=0

Wτ, j (16)

i.e. the linear impulse-response transfer function for each
τ is just the sum of the network weights in the hidden
layer connected to the lagged time series J(t − τ). In the
case of nonlinear f nite-impulse response, the transfer
function will still be the sum of network weights but now
the reconstructed transfer function will include a sum
of weighted nonlinear activation functions (hyperbolic
tangent functions).

In Figure 3a, a spatio-temporal model of the electron
f ux calculated with a NAR(30) process is shown. Al-
though the 30 lags used in the nonlinear FIR f lter makes
it impractical to write down the full physical model ob-
tained by the optimum network solution, in Figure 3b, we
reproduce the nonlinear response obtained from the non-
linear FIR transfer function with the "one-step" ahead

state-space results of [11] for the same data and L-shell
for comparison. It can be seen that the Volterra network
results echo the geometrical features of the nonlinear
spatio-temporal response obtained by state space buts,
but with higher resolution due to the increase in infor-
mation content provided by the use of mutliple lags (in
this case 30 time steps-ahead). Figure 3c shows a visual
comparison of the raw data with the Volterra model cal-
culated in the centre of the main response at L = 3.6RE .
Figure 3d shows the value of the data-model correlation
coeff cient C calculated over all L-shells peaking as ex-
pected in the centre of the main response.

4. DISCUSSION

These early results suggest that the construction of
equivalent Volterra networks from NARMAX input-
output equations has potential for improving the spatio-
temporal modelling of the radiation belts and for recov-
ering the nonlinear dynamics implicit in the data. We
are currently in the process of including exogenous in-
puts for solar plasma, interplanetary and magnetospheric
drivers into the Volterra network architecture so as to
move toward identif cation of a 2D spatio-temporal phys-
ical model of the Van Allen belts.
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FIGURE 3. The nonlinear 2D spatio-temporal impulse-response during the year 1995. Figure 3a) shows the nonlinear FIR
transfer function as calculated from the weights of the Volterra NAR(30) network. Figure 3b) reproduces the response from the
"one-step" ahead state-space model of Rigler et al[11] (their Figure 4) for the same data, while Figure 3c) shows a visual data-model
comparision at the centre of the main response at L = 3.6 while Figure 3d shows the value of the data-model correlation coeff cient
C calculated over all L-shells.
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