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ABSTRACT 
 
The last decade several cellular automata (CA) models have been developed in order to explain the 
solar flare statistics derived from observations. These models simulate the storage/release process 
using simple evolution rules, neglecting the details of the processes. The main advantage of this 
approach is the treatment of a large number of elementary energy release events (avalanches) and the 
reproduction of the observed solar flare statistics. On the other hand the energy release process has 
been modeled for years using MHD numerical simulations. In the MHD approach the magnetic 
reconnection (the energy release process) is simulated in detail, but it fails to treat a large number of 
reconnection events, which leads to poor statistics for comparison to solar flares. We present here 
preliminary results of a new type of CA model for solar flares, based on the insights accumulated in 
MHD simulations and the analysis of the so-far existing CA models. Our goal is to connect the two 
seemingly totally different, complementary approaches (CA and MHD) for the solar flare problem. 
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1. Introduction 
 
One of the most interesting and still unresolved 
problems in solar physics is the nature of 
energy release in the solar atmosphere, which 
is the driver of the coronal flare activity and 
possibly of coronal heating. It is believed that 
flaring activity is mainly due to the dissipation 
of magnetic energy stored previously in the 
corona. Observations indicate that this energy 
release process is fragmented into a large 
number of sub-events (Kuijpers et al. 1981; 
Benz 1985; Vilmer 1993; Aschwanden et al. 
1995). Concerning the statistical behavior of 
flaring activity, observations also revealed that 
the frequency distributions of flares as a 
function of total energy, peak luminosity, and 
duration are well-defined power laws, 
extending over several orders of magnitude 
(Denis 1985; Vilmer 1987; Ramaty & Murphy 
1987; Pick et al. 1990; Crosby et al. 1998).  
 
In the last decade several cellular automaton 
(CA) models have been developed in order to 

explain the solar flare statistics derived from 
the observations (Lu & Hamilton 1991; Lu et 
al. 1993; Vlahos et al. 1995; Galsgaard 1996; 
Georgoulis & Vlahos 1996). These models 
simulate the storage/release processes using 
simple evolution rules, neglecting the details of 
the process. The main advantage of the CA 
models is that they can treat a large number of 
elementary energy-release events (in the form 
of avalanches) and reproduce the observed 
solar flare statistics. On the other hand, solar 
flares have been modeled for years using 
numerical MHD simulations (Einaudi et al. 
1996; Georgoulis et al. 1998; and references 
therein). In this approach the energy release 
process (magnetic reconnection) is simulated 
in detail, but these simulations are time 
consuming and can only treat a small number 
of reconnection events (bursts), leading to poor 
statistics for comparison to solar flare 
observations. 
 
The main question we have posed, the last two 
years, was how the CA approach can be 



interpreted as a simplified and/or modified 
MHD approach (Isliker et al. 1998; Vassiliadis 
et al. 1998). Our goal was to give a physical 
interpretation of the existing CA models and to 
connect the two seemingly totally different, 
complementary approaches (CA and MHD) for 
the solar flare problem. Our work (Isliker et al. 
1998) allowed the extraction of more 
information from the existing solar flare CA 
models (e.g. the role of diffusivity, the physical 
units used, a deeper insight into the 
assumptions on the energy-release process). 
On the other hand, several unsatisfying 
properties of the currently existing CA models 
have been revealed, (e.g. ∇B is uncontrolled 
and the interpretation of the basic grid variable 
is unclear), making thus clear the necessity of 
an improved CA-model for solar flares.  
 
Our aim is to construct a model for solar flares 
which is hybrid: It should be a CA model, with 
all the advantages of CA, namely that it is fast, 
it models large events, therewith it allows for 
good statistics. On the other hand, our model 
should be as much consistent with MHD as 
possible, with full control over all variables.  
 
This paper is organized as follows: in the next 
section the basic characteristics (processes) of 
our model are presented, followed by the 
overall structure and the necessary definitions 
(Section 3). In Section 4 we present some 
preliminary results concerning the solar flare 
statistics. Finally, in Section 5 we summarize 
our work and discuss some of the open 
problems that we plan to address in the near 
future. 
 
2. Description of the Model 
 
Our model is constructed for a slab geometry, 
with 2-D vector-fields in a 2-D space (x,y),  
assuming that in the z-direction changes are 
negligible. The 2-D grid is quadratic, with the 
basic grid-variables the z-component of the 
vector potential A and a 2-D velocity field u.  
 
1. Initial Setup. We start with a random vector 
potential in the plane (x,y) with Az(x,y) ∈       
[-0.3,0.3], an initial random, spatially 
uncorrelated disturbance. According to MHD, 
the magnetic field B and the current J are 
secondary grid-variables, namely derivatives 
of A: B=∇xΑ and 4π/c J=∇xB. The above 
derivatives are calculated by performing a 2-D 

cubic spline interpolation through the entire 
grid. This is done to have MHD consistent 
definitions of B and J and in order to secure 
the equation ∇B=0 which is not present in the 
so far existing CA models. The velocity field 
(the second primary grid variable) is a random 
function, uncorrelated in time and space, with 
a probability distribution of power law form 
with index –1.8 in the range [u1,u2],  
corresponding to Alfven velocity values of  
magnetic filed from 1G to 300 G. 
  
2. Temporal Evolution. The evolution of the 
vector potential is according to the induction 
equation, expressed in terms of the vector 
potential:  
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where n is the diffusivity. The first term on the 
right hand side of the above equation  
(convective term) dominates the loading phase 
of our CA model (n is generally small in the 
corona). The second and the third terms 
(diffusive terms) on the right hand side 
dominate in the bursting phase, where n due to 
some instability has drastically increased.  
 
2.1 Loading. In the loading phase, Az evolves 
only according to the convective term of eq. 
(1), which is implemented in the form of an 
iteration with 
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so that  
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with δt a free parameter. We note that using 
the above approach no field is added to our 
grid, but the existing field is shuffled, 
deformed through the fluid and that the loading 
depends on the pre-existing magnetic filed B. 
 
2.2. Instability Criterion. The loading phase is 
iterated until a local, current dependent 
threshold is exceed, which causes the 
diffusivity n to increase (assuming that n has 
become anomalous) and the diffusion process 



to dominate over the convection. We use the 
following instability criterion 
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where σ is a topological factor which is 
positive if Az is convex in one direction and  
anti-convex in the other direction, else it is 
negative. This factor identifies with its sign 
current sheet like topologies with scale length 
the grid size.  
 
2.3 Bursting. If the threshold is exceeded ( eq. 
(4) is fulfilled) at a grid site, then Az evolves 
solely according to the diffusive part of the 
induction equation (eq.(1)) in the local 
neighborhood of this site (the site plus its 4 
nearest neighbors). The redistribution rules are 
derived as the asymptotic solution of the 
diffusive equation with fixed boundaries and 
can be summarized as follows: 
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where xn.n runs over the four nearest neighbors 
and the central point xij , and <Bbefore>n.n  is the 
average value of the magnetic field before the 
burst in the local neighborhood. We note that 
this redistribution rule is similar to Lu & 
Hamilton (1991) but not equal, as in their case 
the magnetic field is conserved. 
 
3. Triggering. We assume that in case a burst 
occurs a disturbance may travel through the 
grid. This is possible if we assume that waves 
or beams of accelerated particles can travel 
away from the activated site, reaching some 
random grid sites. The number of sites to be 
triggered is a free parameter that controls the 
activity level of our model.  We model the 
triggering the same way as the loading (using 
eq. (2)-(3)) but with the upper boundary for the 
velocity u2=c/3, in order to mimic loosely the 
propagation of fast electrons.  
 
3. Structure of the CA - Definitions 
 
The overall structure of our CA model, in 
numbering steps, is 
 
1) initializing 

2) loading 
3) scanning: searching for unstable sites. If 

there are none, return to loading (2) 
4) scanning and bursting: redistribute the 

unstable sites, identified in the scanning 
(3) or (6). 

5) triggering: only if bursts occurred in (4) 
6) scanning: search for unstable sites. If there 

are any go to bursting (4), else return to 
loading (2). 

 
Following, we define the time step, the 
released energy per time step, a burst, a flare, 
the duration of a flare, the total flare energy 
and the peak-flux of a flare. These definitions 
are important for the solar flare statistics. 
 
As one time step in our model is considered the 
steps (4) and (5) together. The released energy 
per time step is the sum of all the energy 
released by bursts in this time step. A burst is 
considered a single redistribution event in step 
4. We term a flare the loop (4,5,6) from the 
occurring of the first burst in (4) until the 
activity has died out and the model has 
returned via the scanning (6) to loading (2). 
The duration of the flare is the number of time 
steps it lasted. The total flare energy is the sum 
of all energies released in the duration of the 
flare. The peak-flux is the maximum of the 
energies of all the time steps of the flare.   
 
4. Results 
 
In this Section we present some preliminary 
results from our CA model. All results 
presented are for a 20x20 spatial grid. 
 
For visualization of the grid and the 
redistribution rules, in Figures 1 and 2 the 
interpolated magnetic field lines are presented 
for the half grid size. The two figures have one 
time step difference. In Figure 1 the site  (7,8) 
is unstable. Note the field line structures of that 
site after one time step in Figure 2. As the sight 
was unstable, it relaxed by redistributing the 
magnetic filed, affecting its neighborhood.  
 
In Figure 3 the frequency distribution of the 
total flare energy Etot (solid line) and the peak-
flux Epeak (dashed line) of 1000 flares are 
presented. The x-axis is energy in ergs. Both 
frequency distributions have an extended 
power law shape with index –1.87 for Etot and 
– 2.12 for Epeak .  



Figure 1: Magnetic Field line plot of a region in our CA 
model at a given time t. The sight (7,8) is unstable, as the 
threshold is exceed.  

 
Figure 2: The same as in Figure 1, but for time t+1. Note 
the different structure of the magnetic filed lines at the 
neighborhood of the sight (7,8). 
 

 
Figure 3: The frequency distributions of the total flare 
energy Etot and the peak-flux Epeak for 1000 flares. The x-
axis is energy in ergs. 
 

Finally, in Figure 4 the duration distribution of 
the 1000 flares is presented. Note that the x-
axis is in time steps. 
 
5. Summary and Discussion 
 
We have presented preliminary results from a 
new type of CA model that we have 
constructed at the interplay of CA and MHD. 
Our aim was to remove many unsatisfying 
properties of the currently existing CA models 
that we have revealed in our previous work 
(Isliker et al. 1998) and to connect the MHD 
approach with the CA one. For instance the 
interpretation of the grid variables is clear and 
consistent, and ∇B=0 is fulfilled. We believe 
that this kind of connection can allow us in the 
near future to perform studies, not only on the 
solar flare statistics problem but also on the 
problems of radiation and/or acceleration of 
particles in solar flares (see for example 
Anastasiadis, Vlahos and Georgoulis 1997).   

 
Figure 4: The duration distribution of 1000 flares. The x-
axis is in time steps (arbitrary units). 
 
Our model is able to produce extended power 
laws for the frequency distributions of total 
released energy and peak-flux for solar flares. 
In order these results to be consistent with the 
recent observations of solar flare statistics an 
extensive parametric study, in respect to the 
free parameters of the model, is needed. The 
main free parameters in our model are: the 
intensity of the loading (the δt), the distribution 
of the turbulent velocity field (index and 
range), the number of triggered burst sights, 
the threshold for bursting Jcr and the 
percentage of the grid which is loaded in each 
loading step. 
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