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Abstract

Chaotic trajectories in Hamiltonian systems may have a peculiar evolution, owing to stickiness e�ects or migration to adjacent

stochastic regions. As a result, the function v�t�, which measures the exponential divergence of nearby trajectories, changes its be-

haviour within di�erent time intervals. We obtain such trajectories, through numerical integration, for a model 3D Hamiltonian

system. Having the plots of v�t� as a guide, we divide trajectories into segments, each one being assigned an E�ective Lyapunov

Number (ELN), ki. We monitor the evolution of the trajectories through a ``quasi-integral'' time series, which can follow trapping or

escape events. Using the time-delay reconstruction scheme, we calculate the correlation dimension, D�2�, of each trajectory segment.

Our numerical results show that, as the ELN of di�erent segments increases, the correlation dimension of the set on which the tra-

jectory segment is embedded, also tends to increase by a statistically signi®cant amount. This result holds only if the di�erences of the

ELN are relatively large, re¯ecting motion within di�erent phase-space domains, indicating that the transport process does not have

the same statistical properties throughout the phase space. As a consequence, D�2� can serve as a scalar index to descriminate between

regions of stickiness and regions of unimpeded transport. Ó 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction ± Motivation

In the past few years, a lot of work has been done towards a possible connection between the maximal
Lyapunov Characteristic Numbrer (LCN),

k � lim
t!1

v�t� � lim
t!1

1

t
ln

d�t�
d�0�

� �
; �1�

and transport in the phase space of Hamiltonian systems (see e.g. [1±5]). In practice, di�erent chaotic
trajectories may have di�erent k's. This, in general, means that the phase space regions spanned by dif-
ferent trajectories may be separated by some kind of ``barriers'' which inhibit transport between them.
This phenomenon is common in Hamiltonian systems with two degrees of freedom, where, if the per-
turbation is not very strong, KAM surfaces that survive the perturbation separate di�erent stochastic
layers. However, for an N-degrees-of-freedom (N P 3) Hamiltonian system, the value of the maximal
LCN, being de®ned by Eq. (1) as the limit of v�t� for t!1, should be the same for every chaotic tra-
jectory, due to Arnol'd di�usion [6,7]. Therefore, in the case of moderate perturbation, the maximal LCN
is insu�cient to describe transport phenomena in such systems, since it does not provide any information
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about the di�erent parts of the phase space in which trajectories may remain for considerable time
intervals.

For moderate values of the perturbation, the topology of the phase space is very complex. Families of
invariant sets that persist under the perturbation, being also surrounded by the ``ghosts'' of those who are
not completely destroyed, called cantori [8,9], form a set of non-zero measure. Chaotic trajectories
departing from phase space regions that are mostly stochastic avoid, generically, these ``quasi-barriers''
[5±10]. An explanation for that is given in [11] (see also [12]) by the shape of the lobes formed by the
asymptotic curves in the vicinity of the principal cantorous. However, since the set of cantori surrounding a
stable orbit has zero measure, it is possible for a chaotic trajectory to enter the ``quasi-barrier'' and stick
close to a stable orbit. The same mechanism would now prevent the trajectory from escaping. This would,
of course, result in a decrease of v�t�. The evolution inside the region of a ``quasi-barrier'' also follows the
above scenario, so that a trapped chaotic trajectory may bounce from the vicinity of one stable orbit to
another, undergoing a peculiar random-walk [13,14], before it manages to exit the ``quasi-barrier'', upon
which v�t� increases again. It is easy to understand that v�t� may not saturate in any ®nite time, if a chaotic
trajectory evolves in a way similar to the one described above.

Overlooking the problem of in®nite computation time, one usually assigns to the maximal LCN of a
chaotic trajectory the value of v�tint�, where tint is the integration time. However, this is based on the as-
sumption that the character of chaotic motion will not change for t > tint, thus ignoring the phenomena
described above. In search of a more operational tool for measuring the degree of stochasticity of trajec-
tories, variants of ®nite time Lyapunov exponents have been introduced by several authors (e.g. [15±19]. In
[10] an E�ective Lyapunov Number (hereafter ELN) was used as an indicator to descriminate between
trajectory segments of di�erent behaviour. Using the graph of v�t� a trajectory is divided into a number of
consecutive segments of duration Dti, according to the behaviour of the function v�t�. The end of a segment
is de®ned as the time ti at which v�t� tends to saturate to a de®nite value, or an abrupt change in the
monotony of v�t� occurs. In the latter case one implicitly assumes that v�t� has also saturated, but for a
short time. The ELN (or Local LCN as was originally called) of the segment is then given by the value
ki � v�ti�.

ELNs, as de®ned above, do have a physical meaning; they are connected to the ``memory'' of the system
in the speci®c phase-space region that the trajectory spans during the respective time interval. If a trajectory
can be divided into segments with di�erent ELNs this is an indication that it has visited several phase-space
regions. Although ¯uctuations of the function v�t� do not necessarily mean migration to an adjacent phase-
space domain, it was shown in [10] that trajectory segments which are associated to a monotonic increase of
v�t�, result in a steep increase of the cummulative phase-space volume visited by the trajectory up to time t.
On the other hand, a monotonically decreasing phase of v�t�, which may follow the increasing segment,
produces only a small variation of the cummulative volume, indicating that the trajectory returns to an
already visited domain, probably following a slightly di�erent path.

In order to distinguish between sticky and non-sticky chaotic orbits one may simply use a Poincar�e
surface of section. However, in the case of three- (or more) degrees-of-freedom Hamiltonian systems one
cannot visualize a Poincar�e section. An alternative way to monitor the evolution of a trajectory, which we
are using in this paper, is by inspecting a ``quasi-integral'' time series, uniquely de®ned for a given set of
initial conditions; this is a common practice in celestial mechanics. The statistical properties of a ``quasi-
integral'' time series should be very di�erent between regular and stochastic trajectories. On the other hand,
if a trajectory is sticky, the statistical properties of the time series may not be very di�erent from those of
a regular trajectory. Moreover, if a sticky orbit manages to escape from the ``quasi-barrier'', migrating
towards a more stochastic phase-space region, the statistical properties of the time series' subpart which
corresponds to the new trajectory segment, may also di�er from those of the previous segment.

In this paper, we use both v�t� plots (and ELNs) and a suitable ``quasi-integral'' time series to study the
dynamics of trajectories taken from a 3D Hamiltonian system. Using the v�t� plots, we split the trajectories
into segments. With the ``quasi-integral'' time series we try to distinguish between ¯uctuations of the ELN
which imply migration of the trajectory to a new phase-space region, and also changes in the statistical
properties of the time series, from those which do not. This is done by calculating the correlation dimension,
D�2�, of each time series' subpart which corresponds to a given trajectory segment. This is a particularly
interesting statistical property of the time series, since it is an invariant measure characterizing the
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phase-space subset on which this trajectory segment is embedded. Thus, the value of D�2� can be used to
quantify possible di�erences in the multifractal character of the dynamics between (i) regions where chaotic
motion is geometrically con®ned for long (but ®nite) times by imperfect barriers and (ii) phase-space re-
gions of unimpeded transport.

It is known that Hamiltonian systems generate fat fractals [20]. This means that the dynamics have
multifractal properties but, in the limit of in®nite time, the Hausdor� dimension of the set on which a
chaotic trajectory is embedded is an integer number, namely DH � 2N ÿ i, where 2N is the dimension of the
phase space, and i6N is the number of isolating integrals of motion that are globally preserved under the
perturbation. Accordingly, for a periodic orbit DH � N . A sticky trajectory, on the other hand, is forced to
remain close to a stable orbit, by the mechanism described above, thus behaving locally in a more regular
manner. The ELN of the segment corresponding to the time spent in the trap should be small. It is rea-
sonable to assume that the dimension of the embedding set also should not be very di�erent from the one
which corresponds to a stable orbit. On the other hand, away from ``quasi-barriers'', ELN should increase
and we expect the same for the dimension too.

If the above considerations are true, the statistical properties of the process, by which chaotic trajectories
tend to ®ll the available space, is not the same throughout the phase space, but are dictated by the measure
of KAM curves contained within a phase-space region. As the ELNs of trajectory segments get larger, the
dimensionality of the corresponding embedding set should also increase, provided that the di�erent ELNs
imply motion within di�erent phase-space domains and not jumps between the overlapping chaotic strips of
a ``quasi-barrier''. As a consequence, the value of the correlation dimension could be used to distinguish
between sticky trajectories and chaotic trajectories which evolve away from ``quasi-barriers''.

In the next section we introduce the Hamiltonian model and describe the techniques used for dimension
estimates. Our results are presented in Section 3. The last part of this paper, Section 4, is devoted to
conclusions and discussion.

2. Model and techniques

We study trajectories in a well known 3D Hamiltonian system [21±23] which describes three non-linearly
coupled oscillators. The Hamiltonian per unit mass is of the form

H � 1

2
�p2

x � p2
y � p2

z � �
1

2
Ax2 � 1

2
By2 � 1

2
Cz2 ÿ �xz2 ÿ gyz2 � h; �2�

where the ®rst four terms correspond to the Hamiltonian, H0, of the integrable non-coupled system. The
parameters were set at A � 0:9, B � 0:4, C � 0:225, � � 0:56, g � 0:2 and h � 0:00765 in all our experi-
ments. For this set of values the phase space contains two chaotic domains, of di�erent volume, which
communicate (for a detailed discussion on the phase space structure see [21±23]). The canonical equations
are integrated using a fourth order Runge±Kutta integrator with adaptive stepsize control [24], for various
initial conditions in the x±y plane (z � 0), with px�0� � py�0� � 0. The accuracy parameter was set to
0:5� 10ÿ15 and the consistency of the energy integral was checked. We follow a standard numerical
technique for the calculation of the maximal LCN (see e.g. [25]), integrating simultaneously two trajec-
tories, one ``central'' and one ``nearby'', di�ering in x0 by Dx � 10ÿ7 and in pz;0 by Dpz, as calculated through
the energy integral. Phase space projections on the z±pz plane and t±v�t� plots for di�erent types of tra-
jectories are shown in Figs. 1±5. For all the trajectories examined, we stop the integration after
tint � 1:5� 106.

When � and g are non-zero, H0 is no longer a constant of motion and one can construct the so-called
``quasi-integral'' time series H0�ti� (i � 1; 2; . . . ; n), which is uniquely de®ned for any given set of initial
conditions. Figs. 1±5 also show the corresponding t±H0�t� graphs for the ®ve trajectories mentioned. By
comparing the H0�ti� plots with the corresponding ones for v�t�, one can observe that, in the cases where
v�t� shows relatively large variations, the behaviour of the H0�ti� time series also changes. In particular, the
maximum amplitude of oscillation of H0�ti�, as well as the distribution of spikes of di�erent magnitudes
contained in the graph, change signi®cantly.
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We quantify the di�erences between the trajectory segments by calculating the correlation dimension,
D�2�, from the time series subpart that corresponds to each segment. The q-order generalized dimensions,
which constitute the D�q�-spectrum, are invariant quantities which give important geometrical and topo-
logical information about the phase space set (actually the measure de®ned on it) on which the trajectory is
embedded. In particular, the q � 0 case, called capacity dimension, is an approximation to the Hausdor�
dimension of this set (i.e. the support of the measure). If there were di�erences in the value of D�0� between
sticky and non-sticky chaotic trajectories this would mean that the transport process takes place, e�ectively,
on a subspace of di�erent dimensionality. If the dynamics have multifractal properties, something which is
known for Hamiltonian systems, the rest of the generalized dimensions (actually the q � 1 and q � 2 cases)
are equally, if not more, important. The q � 1 case, called information dimension, characterizes the non-
uniformity of the measure. It actually measures how the average information needed to specify a point x
with accuracy � scales with �. Due to its relation to the Shannon information (see [31]) D�1� is the most
signi®cant dimension for a multifractal measure. The correlation dimension (q � 2) measures how corre-
lations between points that lie within a neighborhood of size � scales with �. As the D�q�-spectrum is a non-
increasing function of q, D�2� can be considered as a lower bound for D�1�. Moreover, the de®nition of D�2�

ensures a much smaller error in its estimation from a limited set of data and, therefore, makes D�2� the most
reliable ± D�2� is the one used in most applications. A detailed description of the set generated in phase space
and the appropriate measure de®ned on it would consist of calculating the whole D�q�-spectrum and
quantifying the di�erences between the spectra of sticky and non-sticky chaotic trajectories. This is however
beyond the scopes of the present paper.

Fig. 1. (a) t±v�t� plot, (b) the H0�t� timeseries and (c) z±pz projection for x0 � 0:009, y0 � 0:02625.

Fig. 2. (a) t±v�t� plot, (b) the H0�t� timeseries and (c) z±pz projection for x0 � ÿ0:045, y0 � 0:02.
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The correlation dimension D�2� is given by the logarithmic slope of the correlation integral C2�r�,

D�2� � lim
r!0

d�log C2�r��
d�log r� ; �3�

where C2�r� is calculated through the formula [28]

C2�r� � 1

Np

XNp

i�1

1

Z

XNp

jiÿjj>W

H�r
"

ÿ j~xi ÿ~xjj�
#
; �4�

where ~xi; ~xj are phase space vectors, W is the autocorrelation time of the trajectory, Np the number of
points used, Z a normalization parameter, H�x� the Heaviside step function, and r is the radius of a n-
dimensional hypersphere centered at ~xi, where n is the dimension of the state space. The restriction
jiÿ jj > W excludes all ~xj's that are time-correlated with ~xi, as they would a�ect the estimate of the geo-
metrical (spatial) structure of the set. Since we are interested in comparing the resulting D�2� values for
di�erent trajectory segments, the same number of points Np has to be used in all of the estimates.

C2�r� can also be calculated using the time series of any analytic function of the system's variables.
Takens [26] was the ®rst to prove that one can reconstruct certain properties of the n-dimensional state
space of a dynamical system by properly constructing a new vector space from a time series, provided that

Fig. 3. (a) t±v�t� plot, (b) the H0�t� timeseries and (c) z±pz projection for x0 � 0:01725, y0 � 0:032.

Fig. 4. (a) t±v�t� plot, (b) the H0�t� timeseries and (c) z±pz projection for x0 � 0:1, y0 � 0:0633.
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the metric properties of the original space are conserved. The method of creating the vectors of the re-
constructed space, ~y�ti�, from a given time series, Y �ti�, is known as the time-delay reconstruction scheme.
For a time instant ti, the vector ~yi is given by

~yi � �Y �ti�; Y �ti � s�; Y �ti � 2s�; . . . ; Y �ti � �de ÿ 1�s��; �5�

where s is a properly de®ned time-delay parameter and de is the (embedding) dimension of the Takens
space. It is crucial that de P �2D� 1�, where D is the dimension of the underlying object, in order to achieve
an embedding (in our case D6 5). An extensive discussion on embedology is given in [27]. The use of the
time-delay scheme requires an involved procedure in de®ning the embedding parameters, i.e. the delay time,
s, and the embedding dimension, de, as well as the minimum number of points needed, Np. Practical details
concerning this subject can be found, for example, in [28] or [29]. We just mention at this point that the
number of points used in our calculations, Np, is indeed adequate for reliable estimates of D�2�, in all of our
cases. The choice of Np was based on the results of [30], according to which the ratio m � �Np Dt�=W , where
t is the time interval between two successive points, should be at least m > 50. This also depends on the
value of the dimension of the underlying object. In our case D�2� is de®nitely less than 2nÿ 1 � 5, where
n � 3 is the number of degrees of freedom, and m, according to the results of [30], should be of the order of
100 or greater. In all the segments studied in this paper we were able to go up to m � 200. For extended
discussions on non-linear time series analysis techniques, the reader is referred to Ref. [31].

As mentioned above, any analytic function of the variables can be used for a correlation dimension
estimate. We selected H0�ti� having in mind a possible analogy with speci®c astronomical problems. In

Fig. 5. (a) t±v�t� plot, (b) the H0�t� timeseries and (c) z±pz projection for x0 � 0:0095, y0 � 0:0415.
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particular, when integrating trajectories in a given model for asteroidal motion, the orbital elements as-
sociated with the Delaunay actions are usually recorded as time series, which are also ``quasi-integrals''.
Migration of an asteroid after t � TE to a more chaotic region of the phase space is then visualized by much
wilder oscillations present in the time series. Such an event is also seen, and recorded by H0�ti�, in our
model. Therefore, it is reasonable to expect that the results for H0�ti� in the present model should be
applicable in the case of other ``quasi-integral'' time series as well.

Another important issue that one has to keep in mind, when working with time series, is the concept of
stationarity, i.e. the independency of its statistical properties with respect to absolute time. For a deter-
ministic process, as in our case, this is always true except for possible transition phases, for which any ®nite
value of D�2� found will be meaningless [32]. In this paper we use a stationarity test proposed by Isliker and
Kurths [32], based on a numerical estimation of the invariant measure.

3. Results

In this section we present numerical results concerning trajectories of di�erent types. After discussing the
phenomenology of the evolution of these trajectories, and de®ning the appropriate number of segments, we
present the results of the D�2� estimates for these segments.

3.1. Phenomenology

Fig. 1 presents the z±pz projection, t±v�t� and t±H0�t� plots for a regular trajectory. The function v�t� is
monotonically decreasing with time, and it would reach zero at in®nite time, if the trajectory is to remain
regular. However, keeping in mind the discussion included in the introduction, our knowledge about the
time evolution of any trajectory goes as far as the integration time. Since we cannot be sure whether the
trajectory will indeed remain regular, it is safer to say that this may be a segment belonging to a sticky
trajectory but, for this time interval, the upper bound for the ELN is k � 5� 10ÿ6. In the z±pz plane the
trajectory remains in a ``ring'' structure for all times. Although a phase space projection does not provide a
lot of physically meaningful information, unlike a surface of section, it is sometimes useful in distinguishing
between the parts of the phase space in which di�erent types of trajectories evolve (this will become more
clear in the following paragraphs). We label the part of the z±pz plane covered by this ring as region A.
Finally, the H0�t� time series has the shape of a low amplitude oscillating function, which seems almost
periodic. The stationarity test was successful, so that any subpart is apt for correlation dimension estimates.

The trajectory in Fig. 2 shows a completely di�erent character than the previous one. The evolution of
v�t� is typical of a chaotic trajectory, saturating quickly to a positive ELN value, k � 1:4� 10ÿ3. One can
claim, of course, that saturation is a matter of interpretation. A strict de®nition of saturation may be used,
e.g. by demanding that the slope of the observed plateau, as measured by a least-squares ®t, is equal to zero,
within a desired signi®cance level. However, if relatively long segments of monotonic increase (or decrease)
of v�t� are not present in the graph, we do not think that one should complicate things more than necessary.
In the projection plot, the occupied ``ring'' on the z±pz plane has smaller width than the one in Fig. 1,
indicating that the two trajectories do not span the same phase-space region (we label this thinner ``ring'' as
region B). H0�ti� is characterized by erratic excursions, in contrast to the quasiperiodic behaviour of
Fig. 1(b). In spite of the appearance of some narrow gaps in the H0�ti� plot at t � 3:5� 105, which
correspond to a small hump seen in the v�t� plot, the stationarity test was successful again.

The last three trajectories are the most interesting for the purpose of this paper. The trajectory presented
in Fig. 3 seems initially regular, as v�t� is decreasing. After t1 � 1:8� 105, v�t� saturates to an ELN value of
k1 � 1:6� 10ÿ4, before it starts to rise again, reaching a plateau of k2 � 8:9� 10ÿ4 at t2 � tint. This evolution
is indicative of trapping in a sticky domain where, after t � t1, escape to a somewhat more chaotic region is
visualised. An interesting feature in this plot is a small peak of v�t� around t � 105. This indicates that the
trajectory may have entered temporarily in a slightly more stochastic region of the ``quasi-barrier'' and
returned to the previous chaotic region, instead of proceeding to the next one as discussed in [10]. Fig. 3(c)
shows again a ``ring'' structure which is very similar to the one seen in Fig. 1(c). It is, however, a little wider in
pz and it looks distorted, compared to the one formed by the regular trajectory of Fig. 1, as it should be for a
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sticky trajectory which winds around the stable orbits contained in region A. Looking at H0�t�, Fig. 3(b), we
cannot distinguish between the two segments. The importance of this observation will become more evident
in the following paragraphs. The stationarity test did not yield any problems in neither segment.

The trajectory in Fig. 4 can be split into three segments. In the beginning, v�t� is ¯uctuating around the
value k1 � 1:4� 10ÿ2. After t1 � 5:5� 104 the trajectory obviously sticks to some ``quasi-barrier'' and v�t�
drops down to the value k2 � 5:1� 10ÿ3 at t2 � 1:8� 105. Finally, after t2, the orbit escapes from the
``trap'', reaching again an ELN value of k3 � 1:2� 10ÿ2 at t � tint. The z±pz projection is much di�erent
from the previous orbits. The inner part of the ``ring'' (hereafter region C) is now visited, indicating that this
strongly chaotic trajectory occupies a di�erent, and larger, area in the z±pz plane. H0�ti� is characterized by a
much more random-looking behaviour. The distinction between the aforementioned three phases can also
be seen in the H0�ti� graph, as gaps are present at t1 and t2, where the time series changes shape. Again,
neither of the three segments had any problems passing the stationarity test.

The last of the trajectories presented here (Fig. 5) has the richest phenomenology. As one can see in
Fig. 5(a), the trajectory can be divided into four distinct regimes. From t � 0 to t1 � 3� 104 v�t� drops with
time down to the value k1 � 3:5� 10ÿ4. This implies that the motion is almost quasiperiodic during this
time interval. The second part (3� 1046 t6 8� 104 � t2) is characterized by an increase of v�t� up to the
value k2 � 9� 10ÿ4, followed by a much longer part (8� 1046 t6 5� 105 � t3) of a slow decrease of the
divergence rate, k3 � 5:3� 10ÿ4. In the last segment v�t� increases steeply, a sign that the trajectory has
migrated to another region of the phase space, characterized by a much larger ELN, k4 � 8� 10ÿ3 at
t � tint. The z±pz projection is similar to the previous one (Fig. 4(c)), since they both ®ll the inner part of the
ring structure seen in the previous projection plots. However, there is a stricking di�erence between Fig. 4(c)
and Fig. 5(c) in the detail of the boundaries, as borderlines, similar to the ones which bound region A in
Fig. 3(c), are also present in Fig. 5(c). This di�erence can be understood if one looks at Fig. 6, which is the
projection plot taken for t6 t3, where it is clearly shown that the ``®lling'' of the inner region of the ring
(region C) does not occur until t P t3. This fact is a con®rmation that the wilder oscillations of H0�t�, for
t > t3, denote migration of the trajectory from one phase space region (A) to another (C).

Using the v2-test we veri®ed stationarity for the ®rst three segments of this trajectory. As far as the
fourth part is concerned, the stationarity test failed, so that the invariant measure generated by the whole
part cannot be reproduced by any subpart of the desired length. In this last part of the trajectory one can
distinguish between a transition phase (t36 t6 8� 105�, where v�t� continues to increase steeply, and a
saturation phase (t P 8� 105), where v�t� ``relaxes'', forming a plateau at t � tint. In the transition phase the
stationarity test failed and, hence, the process during this time interval can not be classi®ed within the
framework of the present analysis. On the other hand, the test was successful for the part constituting the
saturation phase (t P 8� 105).

3.2. Dimension estimate

We proceed by performing correlation dimension estimates for all the trajectory segments mentioned.
Fig. 7 is a typical ``slope plot'', i.e. the derivative of the correlation integral vs. the radius, log�r�. In the
graph, di�erent curves corresponding to di�erent embedding dimensions are superimposed. In order to

Fig. 6. The z±pz projection for t6 t3, x0 � 0:0095, y � 0:0415.
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estimate the dimension accurately, one has to de®ne a ``plateau'' in these graphs, keeping in mind that the
result should be, more or less, independent of the embedding dimension and looking at as small radii as the
statistical ¯uctuations allow. After de®ning the plateau, a least squares ®t is performed in order to deter-
mine the value of D�2�. The results for all the segments are shown in Table 1, where each segment is labeled
by a Latin number denoting the trajectory (I±V, using the order at which the trajectories were presented),
and a Greek letter (a±d) numbering the segment, in order of increasing time. The ELN of each segment is
also given in Table 1.

Since dimensionality di�erences are observed, it is important to ensure whether they are statistically
signi®cant, or not. Ellner [33] has shown that the error for a Maximum Likelihood Estimate (MLE) of the
correlation dimension is given, on a 95% signi®cance level, by

D�2� � 1:96 D�2����������
N=2

p 1��������������������������������
1ÿ �r0=rmax�D�2�

q ; �6�

where D�2� is the dimension we measure, N the number of points used, r0 the radius at which the plateau
begins, and rmax is the radius at which C2�r� saturates to zero.

Fig. 8 is a graphic representation of the results of Table 1. One can immediately see that the trajectory
segments which evolve within region A (I, IIIa, IIIb, Va, Vb and Vc), for which k6 10ÿ3, yield the same,
statistically, values for the correlation dimension, D�2� � 2:3. On the other hand, the segments during which

Fig. 7. The ``slope plot'' for Segment Vc.

Fig. 8. Graphic representation of the results presented in Table 1. For segments with k P 10ÿ3 the correlation dimension increases

from � 2:3 to � 2:9.

Table 1

ELN vs. correlation dimension

Segment no ELN, k D�2� � D�2�

I 5:0� 10ÿ6 2:24� 0:11

II 1:4� 10ÿ3 2:53� 0:13

IIIa 1:6� 10ÿ4 2:24� 0:11

IIIb 8:9� 10ÿ4 2:10� 0:11

IVa 1:4� 10ÿ2 2:80� 0:14

IVb 5:1� 10ÿ3 2:85� 0:15

IVc 1:2� 10ÿ2 2:80� 0:14

Va 3:5� 10ÿ4 2:36� 0:12

Vb 9:0� 10ÿ4 2:22� 0:11

Vc 5:3� 10ÿ4 2:28� 0:12

Vd 8:0� 10ÿ3 2:92� 0:15
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motion takes place in region C (and for which kP 5� 10ÿ3) have D�2� � 2:9. This di�erence in the D�2�

values is veri®ed to be statistically signi®cant. Trajectory II is an intermediate case, having k � 1:4� 10ÿ3

and D�2� � 2:53� 0:13. Its error bar overlaps with the one for the segment V a. However, the z±pz projection
shows that it moves in a di�erent region (B). Also, note that the value of D�2� for the regular trajectory (I) is
the same as for the chaotic (but sticky) segments that evolve in the same phase-space region.

4. Conclusions ± Discussion

The results presented in the previous section are characteristic of the di�erent types of evolution dis-
cussed in the introduction. In particular, a regular trajectory (I) indicates the existence of a family of in-
variant sets, which acts as a ``quasi-barrier'', immersed in the stochastic web. Trajectories III and V are
trapped in the ``quasi-barrier'' (segments IIIa; b and Va±Vc), visiting several of the overlapping chaotic
strips which surround the stable orbits. We have labeled the region occupied by the ``quasi-barrier'' as
region A. On the other hand, trajectories II and IV lie in two distinct, as suggested by the z±pz projections
and their ELN's, stochastic regions (B and C, respectively), possibly separated by the ``quasi-barrier''. The
fact that trajectory V manages to exit from region A and migrate to region C con®rms that these two phase
space regions communicate. This is also evident from the fact that trajectory IV also sticks to region A.
However, the ELN of segment IVb remains relatively high and the trapping period is small, indicating that
the trajectory sticks to the outermost part of the ``quasi-barrier'' (termed as `sticky region II' in [11]) from
which it escapes within a short time.

Following the ``quasi-integral'' time series, H0�ti�, we are able to detect changes in the dynamics which
correspond to trapping or escape events. Moreover, the results presented in the previous section, con-
cerning dimension estimates, are in agreement with the discussion made in the introduction. In particular,
the dimension of the phase-space subset on which a sticky segment is embedded does not di�er from the
dimension of the set on which a regular orbit lies. On the other hand, for non-sticky chaotic trajectory
segments, with signi®cantly higher values of ELN, the dimension of the embedding set also tends to increase
by a statistically signi®cant amount. The exact values of the ELNs (and the D�2�'s) depend, of course, on the
speci®c dynamical system, as well as on the control parameters involved. Since D�2� is a statistical property
of the H0�ti� time series, the aforementioned result is another indication that the statistical properties of the
transport process, which governs the evolution of trajectories, are not the same throughout the phase space.
Instead, they are governed by the measure of the remaining KAM curves within a phase-space region, and
their sticky borders, as has been suggested recently [13,14].

Consequently, D�2� can serve as a measure of `transportability' for chaotic orbits, discriminating between
phase-space regions where stickiness governs the dynamics, and regions of unimpeded transport. The in-
sensitivity that D�2� exhibits towards small variations of the ELN is, in this sense, an advantage. Trajectory
V, for example, is divided into four segments according to the graph of v�t�, but the ®rst three segments,
which have di�erent ELNs but span the same phase-space domain, are characterized by the same value of
D�2�. Performing the stationarity test for the subpart of H0�t� corresponding to segments Va±Vc, i.e. H0�ti�
for 06 t6 t3, we found that it is, as a whole, stationary, and a unique value of D�2� � 2:3 can be obtained.
Conversely, the segment Vd gives D�2� � 2:9. Thus, using D�2� as an index, one need not calculate v�t� at all,
but simply divide the time series into the minimum possible number of stationary subparts and calculate the
value of the correlation dimension for each of those subparts. However, this tool is not good for distin-
guishing between regular and sticky orbits. For this purpose, a combination with other numerical methods,
for example calculation of the power spectrum of a short part of the time series (see also [18,34]) would be
needed.

One of the main problems, concerning asteroidal motion, is to estimate the ``event'' time, TE, which is the
time for an asteroid to become planet-crosser. Varvoglis and Anastasiadis [5] have shown that a positive
correlation between TE and the Lyapunov time, TL �� 1=k), can be established from the solution of a
di�usion equation, provided that all resonances are overlapping. Murison et al. [3] found numerically the
same relation for trajectories in the Elliptic Restricted Three Body Problem, using a perturbing planet ten
times heavier than Jupiter. This relation is violated by some asteroids, which reside on chaotic orbits but do
not become planet-crossers for much longer times than those predicted by the TE�TL� relation (522-Helga is
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a well known example). Milani and Nobili [35] termed this behaviour stable chaos (see also [36]). The results
for trajectories II and V in our model demonstrate a similar behaviour: although II has a higher ELN than
V for t < 5� 105 � TE, it does not migrate to region B, while V escapes from region A to region B, ex-
ploring a much bigger area of phase space. Hence, it may be the case that asteroids exhibiting stable chaos
move in a region restricted by ``quasi-barriers'', such that they remain in it for a long time, exploiting a
much smaller volume of phase space than they would in the case of unrestricted transport. Given a model
that describes asteroidal motion, one can use the method presented in this paper to check whether ``quasi-
barriers'' are indeed present in the neighbourhood of asteroids exhibiting stable chaotic behaviour.

The problem of formulating a statistical description for weakly chaotic Hamiltonian systems, in which
regular regions surrounded by stickiness zones cover a large part of the available phase space, is closely
related to the de®nition and calculation of proper transport coe�cients. In a recent paper [37] the notion of
local transport coe�cients (for 2D area-preserving maps) was introduced and their relation to the coe�-
cients calculated through the mean exit times from a given subset of the phase space [38] was shown. These
local coe�cients come from relaxing the quasi-linear approximation and assuming phase randomization to
occur after su�ciently long times. Thus, in regions where regular motion prevails, long-time correlations
are also taken into account and, consequently, the value of these local coe�cients is decreased. Chaotic
orbits characterized by large Lyapunov exponents and, at the same time, long-time correlated action
changes were also found recently [39] in a Hamiltonian model describing the motion of asteroids in the
Solar system. An attempt to connect the autocorrelation time of the action time series with the escape time
from a certain action-space region was also made, without much success. It was then argued that more
re®ned nonlinear tools, like the mutual information or relevant entropy-like quantities (see [31]), have to be
considered in order to derive quantitative statistical laws for the ongoing transport process and to connect
them with properly de®ned transport coe�cients. Note, however, that the calculation of entropy-like
quantities depends on the choice of a partition (largely arbitrary) of the phase space, i.e. the choice of a
symbolic sequence, thus not being invariant under smooth coordinate transformations. On the other hand,
the calculation of generalized dimensions (which are invariant) closely related to these entropies is free from
such conventions. The results of the present paper show that the correlation dimension, which can be
considered as a lower bound for the information dimension, behaves in a way similar to that of the local
transport coe�cients de®ned in [37], namely chaotic trajectory segments evolving close to regular regions of
the phase space are forced to generate sets with lower values of D�2� than those segments evolving far away
from such ``quasi-barriers''. Evidently more work needs to be done in order to answer how the value of this
dimension, but also other relevant quantities, is related to the time spent, or equivalently the local di�usion
coe�cient, in regions where motion is geometrically con®ned by layers of imperfect barriers.
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