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Abstract. In Isliker et al. (2000b), an extended cellular automaton (X-CA) model for solar flares was introduced.
In this model, the interpretation of the model’s grid-variable is specified, and the magnetic field, the current,
and an approximation to the electric field are yielded, all in a way that is consistent with Maxwell’s and the
MHD equations. The model also reproduces the observed distributions of total energy, peak-flux, and durations.
Here, we reveal which relevant plasma physical processes are implemented by the X-CA model and in what
form, and what global physical set-up is assumed by this model when it is in its natural state (self-organized
criticality, SOC). The basic results are: (1) On large-scales, all variables show characteristic quasi-symmetries:
the current has everywhere a preferential direction, the magnetic field exhibits a quasi-cylindrical symmetry. (2)
The global magnetic topology forms either (i) closed magnetic field lines around and along a more or less straight
neutral line for the model in its standard form, or (ii) an arcade of field lines above the bottom plane and centered
along a neutral line, if the model is slightly modified. (3) In case of the magnetic topology (ii), loading can be
interpreted as if there were a plasma which flows predominantly upwards, whereas in case of the magnetic topology
(i), as if there were a plasma flow expanding from the neutral line. (4) The small-scale physics in the bursting
phase represent localized diffusive processes, which are triggered when a quantity which is an approximately linear
function of the current exceeds a threshold. (5) The interplay of loading and bursting in the X-CA model can
be interpreted as follows: the local diffusivity usually has a value which is effectively zero, and it turns locally
to an anomalous value if the mentioned threshold is exceeded, whereby diffusion dominates the quiet evolution
(loading), until the critical quantity falls below the threshold again. (6) Flares (avalanches) are accompanied
by the appearance of localized, intense electric fields. A typical example of the spatio-temporal evolution of the
electric field during a flare is presented. (7) In a variant on the X-CA model, the magnitude of the current is used
directly in the instability criterion, instead of the approximately linear function of it. First results indicate that
the SOC state persists and is only slightly modified: distributions of the released energy are still power-laws with
slopes comparable to the ones of the non-modified X-CA model, and the large scale structures, a characteristic of
the SOC state, remain unchanged. (8) The current-dissipation during flares is spatially fragmented into a large
number of dissipative current-surfaces of varying sizes, which are spread over a considerably large volume, and
which do not exhibit any kind of simple spatial organization as a whole. These current-surfaces do not grow in the
course of time, they are very short-lived, but they multiply, giving rise to new dissipative current-surfaces which
are spread further around. They show thus a highly dynamic temporal evolution.
It follows that the X-CA model represents an implementation of the flare scenario of Parker (1993) in a rather
complete way, comprising aspects from small scale physics to the global physical set-up, making though some
characteristic simplifications which are unavoidable in the frame-work of a CA.
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1. Introduction

There are two approaches to modeling the dynamic
evolution of solar flares: Magnetohydrodynamic (MHD)
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theory and Cellular Automaton (CA) models. MHD rep-
resents the traditional physical approach, being based on
fluid theory and Maxwell’s equations. It gives detailed in-
sight into the small-scale processes in active regions, but
it faces problems to model the complexity of entire active
regions and solar flares, so that it is usually applied to
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well-defined, simple topologies, or it is restricted to model
only small parts of active regions, often in reduced dimen-
sions (see e.g. Mikic et al. 1989; Strauss 1993; Longcope &
Sudan 1994; Einaudi et al. 1996; Galsgaard & Nordlund
1996; Hendrix & Van Hoven 1996; Nordlund & Galsgaard
1997; Dmitruk & Gomez 1998; Galtier & Pouquet 1998;
Georgoulis et al. 1998; Karpen et al. 1998; Einaudi &
Velli 1999). Global MHD models for solar flares are still
in a rather qualitative state. CA models, on the other
hand, can rapidly and efficiently treat complexity, i.e. spa-
tially extended, large systems, which consist of many sub-
systems (sub-processes), at the price, however, of simpli-
fying strongly the local small-scale processes. Despite this,
they are successful in explaining observed statistics of so-
lar flares (the distributions of total energy, peak flux, and
durations of observed hard X-ray time-series), giving, how-
ever, no information or insight into the small-scale pro-
cesses (e.g. Lu & Hamilton 1991; Lu et al. 1993; Vlahos
et al. 1995; Georgoulis & Vlahos 1996; Galsgaard 1996;
Georgoulis & Vlahos 1998; in the following, we will term
these models or modifications of them classical CA mod-
els; a different category of models form the completely
stochastic CA models for solar flares (e.g. MacPherson
& MacKinnon 1999), which we are not refering to in the
following).

The classical CA models were originally derived in
analogy to theoretical sand-pile models (Bak et al. 1987,
1988), and despite a vague association of the model’s
components with physical variables and processes, they
had to be considered as basically phenomenological mod-
els. Later, Isliker et al. (1998) showed that the basic
small-scale processes of the classical CA models can be
interpreted as (simplified) MHD processes, for instance
loading as strongly simplified shuffling, and redistribut-
ing (bursting) as local diffusion processes. However, the
classical CA models, even when interpreted in the way of
Isliker et al. (1998), show still a number of unsatisfying
points from the point of view of MHD: For instance, con-
sistency with MHD and Maxwell’s equations is unclear
(∇B can not be controlled), secondary quantities such as
currents and electric fields are not available.

In Isliker et al. (2000b; hereafter IAV2000), we intro-
duced the extended CA model (hereafter: X-CA model)
for solar flares, in which the MHD-inconsistencies are re-
moved, and which is more complete in the sense of MHD
than the classical CA models. The X-CA model consists
in the combination of a classical CA model with a set-up
which is super-imposed onto the classical CA, and which,
concretely, yields the following benefits: (i) The interpreta-
tion of the grid-variable is specified, turning the CA mod-
els therewith from phenomenological models into physi-
cally interpretable ones; (ii) consistency with Maxwell’s
and the MHD equations is guaranteed, and (iii) all the
relevant MHD variables are yielded in a way consistent
with MHD: the magnetic field (fulfilling ∇B = 0), the
current, and an approximation to the electric field. The
set-up is super-imposable in the sense that it does not in-
terfere with the dynamic evolution (the evolution rules) of

the CA model it is super-imposed onto, unless wished. The
solar flare X-CA model is able to deal with the complex-
ity of active regions, as are the classical CA models, but
its components are now physically interpretable in a con-
sistent way. It represents a realization of plasma-physics
(mainly MHD) in the frame of a CA model.

The X-CA model of IAV2000, which uses classical, ex-
isting models and extends them, is to be contrasted to
the construction of completely new CA models, derived
from MHD so that they are compatible with MHD (as for
instance the recently introduced CA model of Longcope
& Noonan (2000), and the models of Einaudi & Velli
(1999), and Isliker et al. (2000a), which moreover are of a
non-SOC type).

In IAV2000, some basic properties of the X-CA model
(in different variants) in its natural state (self-organized
criticality, SOC) were revealed. In particular, it was shown
that the observed distributions of total energy, peak-
energy, and durations are as well reproduced by the
X-CA model as they are by the classical CA models. In
this article, our aim is to reveal the global physical set-up
and the plasma-physical processes the X-CA model im-
plements and represents when it is in the state of SOC.
These physical aspects of the X-CA model will be com-
pared to the flare scenario suggested by Parker (e.g. Parker
1993; see also Appendix A). We will actually show that
the X-CA model may be viewed as an implementation of
Parker’s (1993) flare scenario.

Differently, we may state the scope of this article as
follows: The X-CA model has at its heart a classical, phe-
nomenological CA model, extends it yet and makes it
physically interpretable. The X-CA model is thus a phys-
ical CA model, contrary to the classical CA models. It is
now a posteriori to be seen what physical processes and
structures the X-CA actually represents. It did, for in-
stance, not make sense (and actually was impossible) to
ask for the magnetic topology implemented by the classi-
cal CA models. Now questions like this one make sense,
but the answers are not a priori given, and they are not
contained in the frame of the classical CA models alone.
Also in this sense, the X-CA model represents a true ex-
tension of the classical CA models. Moreover, it is a priori
not clear that the physical properties of the X-CA model
we are going to reveal are compatible with what is believed
to happen physically in flares, just the statistical results
are known to be compatible with the observations. The
results of this article will yet show that the X-CA model
can indeed be considered as making physically sense in the
context of the flare modeling problem, it may be viewed
as a reasonable physical model for flares, all the more with
the modifications we will introduce.

The questions concerning the implemented plasma-
physical processes and global physical set-up we address
in this article are (Sect. 3): (1) what the magnetic topol-
ogy in SOC state represents, (2) what the loading process
actually simulates, (3) what physical small-scale processes
are implied by the model’s energy release events, (4) how
the electric field evolves in space and time during flares.
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More-over, in Sect. 4, the X-CA model is modified to be
closer to the flare scenario of Parker by using directly the
current in the instability criterion. Lastly, it will be shown
how the regions of current-dissipation, which appear dur-
ing flares, are organized in space and time (Sect. 5). We
will start by giving a short summary of the X-CA model
(Sect. 2).

2. Short summary of the extended CA (X-CA)
model

The extended CA (X-CA) model, whose detailed descrip-
tion is given in IAV2000, uses a 3–D cubic grid and the
local vector-potentialAijk = A(xijk) at the grid-sites xijk
as the primary grid-variable. In order to calculate deriva-
tives of the vector-potential, the latter is made a continu-
ous function in the entire modeled volume by interpolat-
ing it with 3–D cubic splines. In this way, the magnetic
field is determined as B = ∇ ∧ A, and the current as
J = c

4π ∇ ∧ B, both as derivatives of A and according
to MHD. The electric field is approximated by the resis-
tive term of Ohm’s law in its simple form, E = ηJ (see
the discussion of this approximation in Sect. 3.4), where
the diffusivity η is given as η = 1 at the bursting sites and
zero everywhere else (following the analysis of Isliker et al.
1998; see also Sect. 3.3).

As a measure of the stress Sijk in the primary
field Aijk we use two alternative definitions: (i) in Sect. 3
the classical or standard form Sijk ≡ dAijk := Aijk −
1
nn

∑
n.n.

An.n. (where the sum is over the first order near-

est neighbours of the central point, and nn is the number
of these neighbours), following Lu & Hamilton (1991) and
most of the classical CA models; and (ii), in Sects. 4 and 5,
taking advantage of the availability of secondary variables
in the X-CA model, we use the current as a stress mea-
sure, Sijk ≡ J ijk, which is physically more sensible than
the standard dAijk (see the discussion in Sect. 4).

The grid-variable A undergoes two different regimes
of dynamic evolution, loading (quiet evolution) and burst-
ing (redistributing): During loading, random vector-field
increments δAijk are dropped at random grid-sites. If lo-
cally the magnitude of the stress Sijk exceeds a threshold
then the system starts bursting: The vector-field is redis-
tributed among the unstable site and its nearest neigh-
bours (Aijk → Aijk − nn/(nn + 1)Sijk for the central
unstable grid-point, and Ann → Ann+1/(nn+1)Sijk for
its nearest neighbours). The amount of energy released in
one burst is estimated as Ohmic dissipation, Eburst ∼ η J2

with, as stated, η = 1 at bursting sites (for details see
Eq. (10) in IAV2000).

The model shows a transient phase before reaching
a stationary state, the state of self-organized criticality
(SOC), in which avalanches (flares) of all sizes occur, with
power-law distributions of total energy, peak energy and
durations, which agree as well with the corresponding ob-
served distributions as do the distributions yielded by the
classical CA models (see IAV2000).

One of the necessary conditions for the system to
reach the state of SOC is that the loading increments
δAijk exhibit a preferred spatial directionality (see e.g.
Lu & Hamilton 1991). The used preferred direction can
be freely chosen, it does not change the statistical results
of the model. In Sect. 3, it will yet turn out that the used
preferred direction influences the magnetic topology. We
will investigate two preferred directions: (a) Parallel to
the spatial diagonal of the simulation cube, as used in
all the classical CA models, and ultimately following the
original prescription of Lu & Hamilton (1991). We call
this the standard preferred direction. (b) We will use the
x-direction as preferred direction of loading.

The magnetic topology depends also on the boundary
conditions (b.c.) applied around the simulation cube; ac-
tually it is the combination of the b.c. with the preferred
direction of the loading increments which determines the
magnetic topology, as will be shown in Sect. 3. We will
apply two different kinds of b.c.: (1) Open b.c. (together
with the standard preferred direction of the loading incre-
ments), as introduced by Lu & Hamilton (1991) and used
(most likely) in all the classical CA models, which we call
thus the standard b.c. (2) We will apply open b.c. around
the simulation box except at the lower (x-y) boundary
plane, where we will assume closed b.c. (in combination
with the preferred loading direction along the x-axis). In
Appendix B, the details of our implementation of open
and closed b.c. are described.

3. The physical processes and global physical
set-up implemented by the extended CA model

3.1. The global topology of the magnetic field
and of the current

In IAV2000, it was demonstrated that the solar flare
X-CA model exhibits a characteristic large scale organiza-
tion of |B|, the magnitude of the magnetic field, whereas
the magnitude of the current, |J |, seems not to exhibit
any obvious large scale-organization. The question we ad-
dress here is what these structures represent and whether
they can be identified with structures in observed active
regions.

The X-CA model makes magnetic field-lines available:
through the continuation (interpolation, see Sect. 2), the
vector-potential is given also in-between grid-sites, hence
also its derivatives, and therewith as well the magnetic
field (see IAV2000 for more details). Magnetic field-lines at
a fixed time can then be constructed as usual by integrat-
ing along the continuously given magnetic field, starting
from some initial point.

3.1.1. The quasi-symmetries and their origin

A typical single magnetic field line in the simulation box
of the X-CA model in its standard form (see Sect. 2),
which starts at an arbitrary point, winds itself around
the diagonal and closes on itself, or it leaves the modeled
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Fig. 1. Magnetic field lines yielded by the X-CA model in its
standard form, originating from randomly selected points. The
vectors along the diagonal represent the (rescaled) currents
(off-diagonal currents are not shown). Near the diagonal a neu-
tral line is situated.

cube. In Fig. 1, a number of field lines is shown, starting
from randomly chosen points in the simulation box (at
an arbitrary, fixed time in the loading phase during the
SOC state, and for a grid-size 30×30×30). The magnetic
field obviously shows cylindrical quasi-symmetry.

Figure 1 also shows the currents at the diagonal (the
currents at the other grid-sites are not shown for purposes
of better visualization): they are preferentially aligned
with the diagonal, and this preferential direction is ac-
tually exhibited everywhere in the simulation box and at
all times during SOC-state, so that also the current shows
a quasi-symmetry.

The reason for these quasi-symmetries is the quasi-
symmetry imposed on the primary grid-variable by the
loading rule: The loading increments are asymmetric,
namely with preferential direction parallel to the diago-
nal (Sect. 2). Since the bursting rules are isotropic and
symmetric in the three components of A, the vector po-
tential A maintains the quasi-symmetry of the loading
increments and is preferentially aligned with the diagonal
(parallel to (1, 1, 1)). As a result of this quasi-symmetry
of the vector-potential, the magnetic field (∼∇ ∧A) and
the current (∼∇ ∧ B) must exhibit the mentioned sym-
metries: If we introduce cylindrical coordinates, with the
z′-axis along the diagonal of the cube and r the perpendic-
ular distance from the z′-axis, then, in obvious notation,
due to its quasi-symmetry A reduces to A ≈ Az′(r) ez′ ,
from where it follows that B must be of the form B =
∇∧A ≈ −∂Az′∂r eφ (all the other terms vanish), and finally

for J we get J = c
4π∇∧B ≈ −

c
4π

1
r
∂
∂r

(
r ∂Az′∂r

)
ez′ .

A consequence of these quasi-symmetries is that the
current is always and everywhere more or less perpen-
dicular to the magnetic field, though in general with a

Fig. 2. Magnetic field lines yielded by the modified X-CA
model (see Sect. 3.1.2), originating from randomly selected
points. The vectors shown in the shaded bottom plane rep-
resent the local (rescaled) currents (the currents at the other
grid-sites are not shown). A neutral line is situated very
roughly along the shown currents.

small parallel component, since the symmetries are always
slightly distorted.

3.1.2. The magnetic field topology

In the standard form of the X-CA model, the magnetic
field is obviously described by quasi-cylindrically symmet-
ric, closed field-lines around a more or less straight neu-
tral line, which follows roughly the diagonal, as shown in
Fig. 1.

A second, different magnetic topology is formed by the
X-CA model in its non-standard form, where we let the
preferential direction of the loading increments be along
the x-direction, and we apply closed boundary conditions
at the lower boundary (the x-y-plane), keeping though all
the other boundaries open (see Sect. 2).

The field lines form now an arcade above the bot-
tom (shaded) x-y-plane (Fig. 2), centered along a more
or less straight neutral line in this plane (which follows
very roughly the currents shown in Fig. 2 – note that, as
in Fig. 1, only a subset of the currents is shown, for better
visualization). If we interpret the shaded x-y-plane as the
photosphere, then the picture is reminiscent of an arcade
of loops.

The effect of the modifications on the magnetic topol-
ogy can be explained as follows: The new preferred direc-
tionality of the loading increments causes the neutral line
(the symmetry axis) to be parallel to the x-axis, and to
go through the mid-point of the grid (the argumentation
is analogous to the one in Sect. 3.1.1). The new boundary
condition at the bottom plane causes the symmetry axis
(neutral line) to move down into the bottom x-y-plane,
so that the field lines open and leave the simulation box
through the bottom plane.
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photosphere

v

B

neutral line

filed-line
magnetic

δA

Fig. 3. Sketch to illustrate the loading process: the loading
increments δA can be considered as being proportional to
v ∧B, with v the velocity of the implicitely assumed plasma,
and B the magnetic field.

We just note that the statistical results the X-CA
model yields in this modification are still compatible with
the observations (power-law distributions of peak-flux and
total flux, with indices of roughly 1.8 and 1.4, respectively,
i.e. the SOC state persists).

3.2. What the loading process simulates

The interpretation of the loading process depends on the
magnetic topology. Let us first consider the variant of the
X-CA model where the magnetic field forms an arcade of
field lines, as in Fig. 2 (Sect. 3.1.2). The vector-potentialA
in coronal applications is in general assumed to evolve
according to

∂A

∂t
= v ∧B + η

c2

4π
∇2A− η c

2

4π
∇(∇A) +∇χ, (1)

which is the integrated induction equation of MHD, and
where η is the diffusivity and χ an arbitrary function. The
loading process’ role is to mimic the quiet evolution of ac-
tive regions, i.e., according to Parker’s flare scenario, the
shuffling of the magnetic field due to random foot-point
motions (see Appendix A). In terms of MHD, this implies
that the convective term in Eq. (1) governs the temporal
evolution. Let us thus assume that the loading increments
δA represent perturbations due to this convective term,
i.e. δA ∼ (v ∧ B) (from Eq. (1)), so that the loading
process implicitly implements the effect of a plasma with
velocity v. Since the increments of loading δA are prefer-
entially along the x-axis (see Sect. 3.1.2), and since B is
from left to right in Fig. 2 – note the preferential direction
of the currents near the neutral line –, the direction of v
follows from the relation δA ∼ (v ∧B) as being from the
neutral line radially up- and outwards (radial in the sense
of being perpendicular to the neutral line). The sketch in
Fig. 3 illustrates the situation. Thus, the preferential di-
rection of the loading can obviously be interpreted as if
there were a plasma which flows predominantly upwards,
out of the shaded x-y-plane in Fig. 2 (see also Fig. 3).

In case of the X-CA model in its standard form, the
magnetic topology (closed magnetic field lines around a
straight neutral line, as in Fig. 1) would imply, by the
same argumentation as before, that the loading must be

considered as if there were a plasma expanding perpendic-
ularly away from the neutral line, symmetrically into all
radial directions.

In conclusion, the loading increments δA can be inter-
preted as being parallel to v∧B, with v the velocity of an
assumed up- or out-flowing plasma, respectively, and, as a
consequence, the direction of δA depends on the direction
of B, the pre-existing magnetic field (not, however, on
|B|, the magnitude of B). – Note that this interpretation
is valid only in SOC state, when the magnetic field has or-
ganized itself into its characteristic large-scale structure.

3.3. Small scale processes: bursts

Isliker et al. (1998) have shown that the redistribution
(burst) rules we use (see Sect. 2) can be interpreted as
A evolving in the local neighbourhood of an unstable site
according to the simple diffusion equation

∂A

∂t
= η∇2A, (2)

with the boundary condition (n∇)A = 0 around the local
neighbourhood, and with diffusivity η = 1. It is impor-
tant to stress, however, that the X-CA redistribution rules
for A do not represent the discretized version of Eq. (2),
but they represent the transition in one time step from
a given initial local field to the asymptotic solution of
Eq. (2) (see Isliker et al. 1998). The time-step ∆t of the
X-CA model therewith is roughly the diffusive time, and
the grid-spacing ∆h is roughly the diffusive length scale
(as the value of the diffusivity, the numerical values of ∆t
and ∆h are not specified and set to one).

The evolution of A according to Eq. (2) in the
X-CA corresponds exactly to what the induction equa-
tion of MHD (Eq. (1)) is expected to reduce to for the
case of anomalous diffusion in cylindrical symmetry: (a)
According to Parker’s flare scenario, the diffusivity at
unstable sites is anomalous, i.e. increased by several or-
ders of magnitude (see Appendix A), so that the con-
vective term can be assumed to be negligible in the
induction equation. (b) The quasi-symmetry of the vector-
potential (Sect. 3.1.1) implies that A is of the form A ≈
Az′(r)ez′ (by using the same cylindrical coordinate sys-
tem as in Sect. 3.1.1), so that ∇A ≡ (1/r) ∂/∂r (rAr) +
(1/r) ∂Aφ/∂φ+ ∂Az′/∂z

′ ≈ 0, and therewith ∇(∇A) ≈ 0
in the induction equation.

The most characteristic simplifications made by the
X-CA model are: (i) The boundary conditions are unre-
alistically simple. They actually imply that

∫
n.n.

AdV is
conserved in the diffusion events (see Isliker et al. 1998).
(ii) All the diffusion events have the same diffusivity, dif-
fusive length scale and diffusive time.

The amount of energy released in the diffusion events
of the X-CA model is determined through the expression
for Ohmic dissipation (see Sect. 2), following directly the
MHD prescription.

Lastly, we turn to the instability criterion of the
X-CA model in its standard form (the non-standard
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Fig. 4. The electric field-vectors during a flare, at three different time-steps: at the beginning of the flare (bold-vector, projected
grid-site in x-y–plane marked with a rectangle); after nine time-step (marked with “x”); after 91 time-steps (marked with
triangles). The vectors are shown in 3–D parallel projection, rescaled for visualization purposes, with length proportional to |E|.
Note that the electric fields of three different time-steps are shown together for visualization purposes, in the model actually
only one set appears at a time, the fields of the previous time-steps have become zero again, at later times.

instability criterion is discussed in Sect. 4): Bursts oc-
cur in the model if the local stress (|dAijk|) exceeds a
threshold (see Sect. 2)). In IAV2000, it has been shown
that there, where the stress |dAijk| exceeds the threshold,
also |J ijk| is increased, and after a burst both |dAijk| and
|J ijk| are relaxed. Actually, |J ijk | is an approximately lin-
ear function of |dAijk | for large enough |dAijk|, monoton-
ically increasing with |dAijk| (see IAV2000). This is very
reminiscent of Parker’s flare scenario (see Appendix A):
During the loading phase, a diffusivity η = 0 is assumed
everywhere. If a threshold in the stress, which is a lin-
ear function of the current, is reached somewhere, then
η = 1 in the local neighbourhood, and diffusion sets on.
As in Parker’s flare scenario, the diffusivity thus assumes
anomalous values (one), if a linear function of the current
reaches a certain threshold. Otherwise it is small (ordi-
nary) and effectively set to zero.

3.4. The electric field

Of particular interest is the electric field in the
X-CA model, since it is the cause for particle accelera-
tion and the associated non-thermal radiation of flares.

In the X-CA model, the electric field is approximated by
the resistive term of Ohm’s law in its simple form, E = ηJ
(Sect. 2), which can be expected to be a good approxima-
tion, since in the applications we are interested in events
of current dissipation. This argument is actually based on
Parker’s flare scenario (see Appendix A), together with
the assumption that Ohm’s law in its simple form is a
reasonable approximation in coronal active regions: the
diffusivity is small at most times in active regions (build-
up phase, loading phase), and the simple Ohm’s law for the
electric field (E = ηJ− 1

cv ∧B) reduces toE = − 1
cv ∧B.

However, if the diffusivity becomes anomalous at a burst-
ing site, as described in Appendix A, and increases by sev-
eral orders of magnitude, then the electric field must be
expected to be dominated by the resistive part, E = ηJ ,
and it is this contribution to the electric field which will
be the cause of particle acceleration during flares. We thus
assume in our applications the E-field usually to be zero
(assuming in the non bursting phase the velocities to be
small and therewith the electric field to be negligible),
and only if the instability criterion is fulfilled at some
grid-sites, an electric field of the form E = ηJ appears
for one time-step. If the burst is over (in the following
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time-step, and if the site does not again fulfill the insta-
bility criterion), the electric field is zero again.

In Fig. 4, the electric field as it appears during a flare
(avalanche) in the SOC state of the X-CA model is illus-
trated (for a 30× 30× 30-grid): We chose a medium-size
flare, which lasted 181 time-steps. In the figure, the electric
field is shown for three different time steps in the course of
the flare: At the onset of the flare, one grid-site is unstable,
and it carries an electric field, whereas all the other grid-
sites have a zero electric field. After nine time-steps, the
instabilities have traveled away from the initially unstable
site and are spread around it, and the electric field ap-
pears correspondingly at these sites. After 91 time-steps,
the unstable sites are spread over a larger volume, which
is not surrounding the initial site anymore, the instabili-
ties have traveled to a different region in the grid, where
the corresponding electric fields appear.

Remarkably, the electric-fields which appear are all of
comparable intensity, and they are all more or less along
the same preferential direction. The former is due to the
fact that the current is an approximately linear func-
tion of dA for large values of dA, as stated earlier (see
IAV2000 for details), which itself is just above the thresh-
old, so that through the relation E = ηJ all the electric
field magnitudes are similar. The parallelity is due to the
quasi-symmetry obeyed by the current in the SOC state
(Sect. 3.1.1): the current is preferentially along the diag-
onal of the cubic grid, and as a consequence of the rela-
tion E = ηJ , the electric field has the same preferential
direction.

Likewise, the electric field is always more or less per-
pendicular to the magnetic field, exhibiting though in gen-
eral a small parallel component. This is a again a conse-
quence of the relation E = ηJ and of the corresponding
property of the current (see Sect. 3.1.1).

4. A modification of the extended CA model:
The current as the critical quantity

One difference between the X-CA model in its standard
form and Parker’s flare scenario is that the current |J ijk| is
not directly used as a critical quantity (see Appendix A),
but rather |dAijk | (see Sect. 2 and the discussion in
Sect. 3.3). This leads us to modify the X-CA model, and
to use as the stress measure S directly the current J (see
Sect. 2). The new instability criterion is

|J ijk| > Jcr. (3)

(with Jcr = f c
4πAcr, where f is chosen from Fig. 4 of

IAV2000 such that the thresholdAcr for |J ijk| corresponds
roughly to the threshold for |dAijk|). Redistribution
events in this variant can thus directly be considered as
representing current driven instabilities. The use of J ijk
instead of dAijk also in the redistribution rules is moti-
vated through the following argument: the use of dAijk

can be justified by Eq. (2), which is hidden behind the
bursts in the X-CA model, since dAijk is an approxima-
tion to ∇2A (see IAV2000). However, since the induction

Fig. 5. Probability distribution of total energy a) and peak
flux b) for the X-CA model in its standard form according to
Sect. 2 (solid), and using the current in the instability criterion
and in the redistribution rules, see Sect. 4 (dashed). The energy
units are arbitrary.

equation (Eq. (1)), when neglecting the convective term,
can equivalently be written as

∂A

∂t
= −ηcJ +∇χ, (4)

it is more natural from the point of view of MHD to use
J ijk also in the redistribution rules. The result of these
modifications is (using a grid-size 30×30×30) that accord-
ing to first results the SOC state persists, with power-law
distributions (Fig. 5) which are a bit steeper (5% to 10%),
and a large scale structure of the magnetic field which is
very close to the one of the non-modified X-CA model (see
Sect. 3.1, and IAV2000).

We just note that when using J ijk only in the insta-
bility criterion, but not in the redistribution rules (where
still dAijk is used), it turns out that sooner or later the
model finds itself in an infinite loop, independent of the
value of Jcr. The reason is that |J ijk| is an approximately
linear function of |dAijk| only for large stresses |dAijk|,
but the opposite is not true, there are cases where |J ijk| is
large but |dAijk| is almost zero (see IAV2000 for details).
In these cases, a burst should happen (|J ijk| is large), but
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the almost zero dAijk cannot redistribute the fields, and
the algorithm falls into an endless loop.

5. The spatial organization of the
current-dissipation regions

Before turning to flares, it is worthwhile to illustrate how
the spatial regions of intense, but sub-critical current are
spatially organized during the quiet evolution (loading) of
the X-CA model, since any structures the current forms
in the quiet evolution are the base on top of which the
flares take place. A three-dimensional representation of
the surfaces of constant current-density at a sub-critical
level (|J | = const. = 9.1 × 1010) is shown in Fig. 6, for
an arbitrary time during the loading phase in the SOC-
state (i.e. no grid-sites are unstable in the figure), as given
by the X-CA model in the version of Sect. 4. The cur-
rent in the entire simulation box ranges from 0.1 × 1010

to 12.0 × 1010, and the threshold is Jcr = 12.02 × 1010

(the units are arbitrary). The current-density obviously
organizes itself into a large number of current surfaces of
varying sizes, all smaller though than the modeled vol-
ume, and homogeneously distributed over the simulation
box. The numerical values of the current densities span a
range until just very little below the threshold, which is
actually typical for the loading phase, and consequently
the system can easily become unstable at some grid-site
through further loading.

Of particular interest is the spatial structure of the un-
stable regions during flares, i.e. of the regions of current-
dissipation (see Sect. 3.3), whether and how these re-
gions are spatially organized, and also how one spatial
structure emerges from the immediately previous one. In
Fig. 7, the regions of current-dissipation are shown for
two different time-steps during a flare (i.e. the surfaces of
|J | = Jcr ≡ 12.02× 1010, which enclose the regions where
the current is above the threshold): A flare starts with
one single, usually very small, region of super-critical cur-
rent. This small region does not grow, but multiplies in its
neighbourhood, it gives rise to spreading of unstable re-
gions, i.e. of current-dissipation regions. The secondary re-
gions of current-dissipation multiply again, etc., and after
not too many time-steps the appearing current-dissipation
regions become numerous and vary in size, the larger ones
having the shape of current surfaces, as in Fig. 7 (top pan-
els), which is at an early stage in the flare. These current-
surfaces multiply further and travel through the grid, giv-
ing rise now to even larger numbers of current surfaces, as
in Fig. 7 (bottom panels), which is at a later time, during
the main phase of the flare. The degree of fragmentation
has increased, and the current surfaces are spread now
over a considerable volume. The picture in Fig. 7 (bottom
panels) is typical for a flare of intermediate duration (the
flare lasted 177 time-steps) as far as the size of the largest
current surfaces, the degree of fragmentation, and the spa-
tial dispersion are concerned, though the concrete picture
continuously changes in the course of time. Towards the

Fig. 6. Three-dimensional representation of the (shaded) sur-
faces of constant (sub-critical) current-density (|J | = 9.1 ×
1010) at an arbitrary time during the loading phase, in the en-
tire simulation box (top panel), and zoomed (bottom panel).

end of the flare, the current surfaces tend to become less
numerous, and finally they die out quickly.

6. Summary, discussion and conclusions

6.1. Summary

The extended CA (X-CA) model, introduced in IAV2000,
is consistent with Maxwell’s and the magnetic part of
the MHD equations, and makes all the secondary vari-
ables (currents, electric fields) available. In IAV2000, it
was shown that the X-CA model (in different variants) re-
produces as well as the classical CA models the observed
distributions of total flux, peak-flux, and durations, and
that it can be considered as a model for energy release
through current-dissipation, which was confirmed here
and supported with more facts. In this article, our aim was
to reveal the small-scale physics and the global physical
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Fig. 7. Three-dimensional representation of the current-dissipation regions appearing during a flare, i.e. of the (shaded) surfaces
of constant current-density equal to the threshold (|J | = Jcr = 12.02 × 1010), for different times during a flare: at time-step 16
after the beginning (top-panels, left: the entire simulation box, right: zoom of the dotted region), and at time-step 51 (bottom-
panels, left: the entire simulation box, right: zoom of the dotted region).

set-up implemented by the X-CA model when it is in the
SOC state. The basic results are:

1. Quasi-symmetries of all the grid variables: A con-
sequence of the SOC state are the characteristic quasi-
symmetries of the fields: preferential alignment with the
cube-diagonal for the vector potential and the current,
and cylindrical quasi-symmetry around the diagonal for
the magnetic field (for the model in its standard form).

2. Magnetic field topology: For the preferred direction-
alities of loading and boundary conditions adopted here,
the global topology of the magnetic field has two varieties:
either it forms an arcade of magnetic field lines, centered
along a neutral line for the modified X-CA model, or it
forms closed magnetic field lines around and along a more
or less straight neutral line for the model in its standard
form.

3. Interpretation of the loading process: In the vari-
ant of the model where the magnetic field forms an arcade

of field lines above a bounding surface which includes a
neutral line, loading can be considered as if there were
a plasma which flows upwards from the neutral line. In
the variant of the model where the magnetic field consists
in closed field lines along a neutral line, loading can be
considered as if there were a plasma which expands away
from the neutral line.

4. Small scale processes (bursts): The redistribution
events occurring at unstable sites can be considered as lo-
calized diffusion processes, accompanied by energy release
through current-dissipation. The diffusion is accomplished
in one-time step, going from the initial state directly to
the asymptotic solution of a simple diffusion equation. The
diffusivities, diffusive length-scales and diffusive times are
the same for all bursts.

5. Spatio-temporal evolution of the electric field:
The X-CA model yields the spatio-temporal evolution of
the intense and localized electric fields, which appear at
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the sites of current-dissipation during flares. Typically, the
electric fields are of similar magnitude and similar direc-
tion, and the locations where they appear travel through
the grid in the course of time.

6. The current as the critical quantity: A modifi-
cation which brings the X-CA model closer to Parker’s
flare scenario and plasma physics is the replacement of
the standard stress measure with the current, so that di-
rectly a large current is responsible for the occurring of a
burst. First results indicate that the SOC state basically
persists under this modification, the large scale structure
of the magnetic field remains the same, the distributions
of total and peak energy remain power-laws, with a slight
tendency towards steepening.

7. The nature of the instability criterion and the
diffusivity: The local diffusion events start if a locally
defined stress exceeds a threshold. This local stress corre-
sponds either to an approximately linear function of the
current for large stresses (in the standard version of the
X-CA model; see Sect. 3.3), or directly to the current (in
the version of Sect. 4). The X-CA model thus implicitly
implements Parker’s flare scenario that an instability is
triggered if the current J (or a linear function of it) ex-
ceeds some threshold, with the result that the resistiv-
ity increases and diffusion dominates the time evolution.
Physically, one would think of the diffusion to become
anomalous; in the X-CA model the resistivity switches lo-
cally from zero to one during one time-step.

8. Global organization of the current-dissipation
regions: The current-dissipation is spatially and tempo-
rally fragmented into a large number of practically inde-
pendent, dispersed, and disconnected dissipation regions
with the shape of current-surfaces, which vary in size and
are spread over a considerable volume. These current-
surfaces do not grow in the course of time, but they mul-
tiply and are short-lived.

6.2. Discussion

The magnetic topology in the X-CA model (Sect. 3.1.2)
has to be compared to the current picture we have of a
flaring active region, where the field topology is complex,
with structures on all scales, and with no simple orga-
nization of the entire flaring region. A judgment of the
X-CA model’s magnetic field topology depends on what
part of an active region one intends to describe. If we
assume or intend to model entire active regions or sub-
stantial parts of them, then we would naturally prefer the
variant of the X-CA model where the magnetic field forms
an arcade of field lines (Fig. 2). Qualitatively, the picture
the model gives is not bad, though the observations show
a still higher degree of complexity (more than one, and
non-straight neutral lines, etc.). Moreover, it seems un-
likely that well separated, isolated loops can be identified
in the model’s magnetic field structure. These two discrep-
ancies should preferredly be interpreted as simplifications
the model makes – although, they alternatively might also

be interpreted in the way that the magnetic topology rep-
resents only a part of an active region, or even just the
inner part of one single loop. However, this second in-
terpretation would just open new questions of adequacy,
which replace the discussed ones.

More difficult to judge is what the magnetic field topol-
ogy of the standard variant of the model, the closed field-
lines along a straight neutral line (Fig. 1), might corre-
spond to. Such structures are not observed, so that they
would have to correspond to small-scale structures, below
today’s observational capabilities. We might, for instance,
assume that these structures are the X-CA model’s rep-
resentation of an eddy of three-dimensional MHD turbu-
lence.

The variant of the X-CA model which yields the arcade
of field lines has physically more realistic boundary con-
ditions (closed boundaries at the bottom plane; Sects. 2
and 3.1.2) than the standard form (open boundaries at the
bottom plane), if we assume the bottom plane to represent
the photosphere: Coronal flares (avalanches) may propa-
gate out of the simulation cube in all directions, assuming
that we are not modeling the entire corona, they should,
however, not propagate freely into the photosphere, where
the physical conditions are strongly different from the ones
in the corona, but they should rather leave the photo-
spheric magnetic field basically unchanged. Note that the
discussed boundary conditions are relevant in our model
(as well as in the classical CA models) only for the bursts,
not though for loading, which we discuss next.

The loading process has the interesting interpretation
that it implicitly assumes a velocity field which systemat-
ically flows upwards against the arcade of magnetic field-
lines (or expands the closed field lines, in the case of the
other magnetic topology), which is very reminiscent of
the realistic scenario of newly emerging, upwards mov-
ing flux, pushing against the already existing magnetic
flux and causing in this way occasional magnetic diffusion
events, i.e. events of energy release (Sect. 3.2). Despite
this interesting interpretation, the loading process is still
unsatisfyingly simplified: (a) The loading increments δA
do depend on the direction of the pre-existing magnetic
field (see Sect. 3.2), but they should also depend on the
magnitude of B if one assumes them to represent distur-
bances according to the v∧B term of the induction equa-
tion. (b) The loading process acts everywhere and inde-
pendently in the entire simulation box, whereas according
to Parker’s flare scenario (see Appendix A), it should act
independently only on one boundary of the simulation box
and propagate from there into the system, since an active
region is driven only from one boundary, the photo-sphere,
(by random foot-point motions and newly emerging flux),
from where perturbations propagate along the magnetic
field-lines into the active region. We just note that also
all the more or less different loading processes of the clas-
sical CA models suffer from the problems (a) and (b). A
velocity field was explicitly introduced into a CA so far
only by the CA model of Isliker et al. (2000a), which is,
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however, a non-classical CA model, with evolution rules
directly derived from MHD.

An interesting property – or prediction – of the
X-CA model is the preferred directionality of the appear-
ing currents and electric fields, parallel to the neutral line
(Sects. 3.1.1 and 3.4). Since both the currents and the elec-
tric fields are only indirectly observable, this prediction is
difficult to verify with observations. The length-scale over
which the currents and electric fields are parallel depends
on what part of an active region the X-CA model actually
represents.

It is also worthwhile noting that the currents are ev-
erywhere more or less perpendicular to the magnetic field
(Sect. 3.1.1), and therewith the magnetic field in the phys-
ical set-up of the X-CA model is not force-free, opposite to
what is usually assumed in MHD for the coronal plasma
in its quiet evolution. As the current, so is the electric
field always more or less perpendicular to the magnetic
field, having in general, though, a small parallel compo-
nent (Sect. 3.4).

The model’s diffusive small-scale physics in the burst
mode represents quite well anomalous diffusive processes,
despite some characteristic simplifications (Sect. 3.3). The
most peculiar assumption made in the X-CA model is
the conservation law for the vector-potential (

∫
AdV =

const.), which holds during bursts and which is a nec-
essary condition for the X-CA model, as for the classi-
cal CA models, to reach the SOC state (see e.g. Lu &
Hamilton 1991; Lu et al. 1993). As a consequence, also∫
B dV is conserved during bursts. The physical mean-

ing of this conservation law seems unclear: in MHD, for
instance, not directly

∫
AdV or

∫
B dV are expected to

be conserved, but
∫
AB dV , the magnetic helicity (if the

integration volume is chosen adequately; see e.g. Biskamp
1997).

The regions of intense, but sub-critical current-density
in the quiet evolution of the X-CA model are organized
in current surfaces of various sizes (Sect. 5). A simi-
lar picture, though with characteristic differences (e.g.
with much less fragmentation), has been reported in the
3-D MHD simulations of coronal plasmas by Nordlund &
Galsgaard (e.g. 1997). The pictures yielded by the X-CA
model and by the MHD simulations are different not least
due to the fact that the MHD simulations have high spa-
tial resolution, and they model a smaller volume than the
X-CA model does, so that, among others, the current sur-
faces in the X-CA model are spatially less resolved, they
are smaller, and they do not reach the size of the entire
simulation box as they do in the MHD simulations.

The current-dissipation regions at any time during a
flare in the X-CA model do not show any sign of global
spatial organization between them, and they can defi-
nitely not be considered as the dissipation and destruc-
tion of a well defined, simple structure (as for instance
the disruption of a single, extended current-sheet would
be). Moreover, the energy dissipation shows a highly dy-
namic spatio-temporal behaviour: The current-dissipation
regions are not statically maintained at fixed grid-sites

during a flare (as it would be the case if they were contin-
uously fed with in-streaming plasma), but they are short
lasting and travel through the grid, exploring the near-
to-unstable regions. As a consequence, the volume partic-
ipating in the energy release process is considerably large
at most times during a flare, a flare in the X-CA model
is never a localized process. Lastly, note that all the ever
changing current-dissipation regions which participate in
a flare carry their own, independent magnetic field-lines,
which are rooted in the photosphere (in the variant of the
model with the magnetic field topology in the form of an
arcade, Fig. 2).

Finally, it is worthwhile noting an essential differ-
ence between MHD simulations and the X-CA model:
MHD simulations do not so far invoke anomalous resistiv-
ity. In MHD simulations, η is given a fixed and constant
numerical value (which moreover is usually adjusted to the
grid-size for numerical reasons). The X-CA model, on the
other hand, incorporates the kinetic plasma physics which
rules the behaviour of the resistivity η, simulating the ef-
fect of occasionally appearing anomalous resistivities due
to current instabilities (see Sect. 3.3). As all the classical
CA models, it can so far not model current dissipation
in the frame of a constant, ordinary diffusivity as the re-
sult of the interplay of shears in the magnetic field and
the velocity field. A complete model for solar flares should
ultimately incorporate both dissipation mechanisms.

Due to this difference, a comparison of the current-
dissipation regions of the X-CA model in the flaring phase
to MHD simulations seems not realistic.

6.3. Conclusions

The X-CA model represents an implementation of
Parker’s (1993) flare scenario, covering aspects from small-
scale plasma physics and MHD to the large scale physi-
cal set-up and magnetic topologies: most aspects are in
good accordance with Parker’s flare scenario, even though
some give rise to ambiguous interpretations with associ-
ated open questions, and some involve unsatisfying simpli-
fications which need improvement. One should be aware
that CA models, which by definition evolve according to
rules in a discrete space and in discrete time-steps, have
by their nature to make simplifications, and one cannot
expect them to give exactly the same picture as the ob-
servations or MHD simulations, one can just demand that
the simplifications are adequate and reasonable, that the
over-all picture is as close as possible to the physical one,
and, of course, that the quantitative results they give (e.g.
concerning energy release) are in good accordance with the
observations.

The X-CA model allows different future applications
and questions which could not be asked so far in the frame
of classical CA models, and it gives more or refined re-
sults. One application is a more detailed comparison of the
X-CA model to observations. For instance, particles can
now be introduced into the model, their thermal radiation
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can be monitored, and they can be accelerated through
the electric fields to yield non-thermal emission (e.g. syn-
chrotron emission; an earlier study of particle acceleration
in a classical CA model was made by Anastasiadis et al.
1997, who had to estimate the electric field still indirectly).
Very promising on the side of the X-CA model is that the
energy dissipation is fragmented and spread over a con-
siderably large volume, with a large number of dissipation
regions, so that particle acceleration in the frame of the
X-CA model can be expected to be very efficient.

An important property of the X-CA model is not least
its flexibility, which allows to implement concrete plasma-
physical or MHD ideas in the frame-work of a CA. This
was demonstrated here and in IAV2000 by several mod-
ifications: the direct use of the current in the instability
criterion, the energy release in terms of Ohmic dissipa-
tion, and by the modifications which led to a more realistic
magnetic topology.
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Appendix A: Short summary of Parker’s flare
scenario

The flare scenario of Parker (e.g. 1993) can briefly be
summarized as follows (whereby also a few basic obser-
vational facts concerning flares and active regions shall be
mentioned): Active regions are characterized by a highly
complex magnetic topology, with sub-structures on a large
variety of scales (e.g. Bastian & Vlahos 1997; Bastian
et al. 1998). Generally, in an active region the diffusivity
η is small (the magnetic Reynolds number is much larger
than unity), and convection dominates the evolution of
the magnetic field, i.e. the magnetic field is built-up and
continuously shuffled due to random photospheric foot-
point motions (the magnetic fields are ultimately rooted
in the turbulent convection zone). In this way, magnetic
energy is stored in active regions. Occasionally, magnetic
structures with high shear may locally be formed, in which
the current is increased. If the current is intense enough,
then it is expected from plasma-physics that a kinetic in-
stability is triggered, most prominently the ion-acoustic
instability. This instability causes in turn the diffusivity
η of the plasma to become locally anomalous and there-
with to increase drastically (by several orders of magni-
tude, see e.g. references in Parker 1993). The evolution
of the magnetic field is then governed locally by diffusion,
convection is negligible. In these local diffusion processes,
energy is released due to Ohmic dissipation with a rate
ηJ2, until the free energy is more or less dissipated and
the current has fallen to a much smaller value, so that
also η returns to its ordinary value. In flares, such local

diffusion events (bursts) appear in a large number during
a relatively short period of time, spread over this time-
interval and in space, and releasing in their sum consider-
able amounts of energy. Flares are thus considered to be
fragmented into many sub-events, and there is some kind
of chain-reaction or domino-effect, whose exact form is an
open problem of flare modeling (CA models for instance
consider a domino-effect to be operating).

Appendix B: Open and closed boundary
conditions

The boundary conditions (b.c.) around the simulation
cube affect the redistribution rules and the definition of
the stress measure Sijk. In case of open b.c., an implicit
layer of zero-field around the grid is assumed, held con-
stant during the entire time-evolution. The numerical fac-
tor nn in the definition of dAijk and in the redistribution
rules (see Sect. 2) has a fixed value, nn = 6, assuming that
every grid point has six nearest neighbours (the grid we
use is cubic), independent of whether it is at the bound-
aries or not. Consequently, in the definition of dAijk the
sum has always six terms, the Ann outside the grid con-
tributing zero. The continuation method which is used to
determine B and J explicitly takes the zero-layer around
the grid into account (see IAV2000).

In the case of closed b.c., no communication takes
place between the field in the grid and the region out-
side the grid. The definition of dA is adjusted to dA =
A−1/mn

∑′Ann, where the primed sum is now only over
the nearest neighbours which are inside the grid, and mn

is the number of these interior nearest neighbours (mn can
thus be less than 6). The continuation method does not
assume any layer of pre-fixed field around the grid in order
to determine B and J . The redistribution rules are for-
mally the same as introduced in Sect. 2, just that again nn
is replaced by mn, the effective number of nearest neigh-
bours inside the grid.

As stated in Sect. 2, we use two version of b.c., one
where all the boundaries are open, and a mixed b.c., with
open boundaries at all the boundary planes except for a
closed boundary at the lower x-y plane, i.e. we assume a
layer of zero-field around the grid and take it into account,
except at the lower boundary, which is treated differently,
as described above.
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