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ABSTRACT
The acceleration of charged particles in a site of magnetic reconnection is analysed by detailed
numerical simulations. Single or multiple encounters of the particles with Harris-type recon-
necting current sheets (RCSs) are modelled as an overall stochastic process taking place within
an active region. RCS physical parameters are selected in a parameter space relevant to solar
flares. Initially, the charged particles form a thermal (Maxwellian) distribution corresponding
to coronal temperature �2 × 106 K. Our main goal is to investigate how the acceleration pro-
cess changes the shape of the particles’ kinetic energy distribution. The evolution of the kinetic
energy distribution, calculated numerically after one encounter of the particles with a single
RCS, is found to be in good agreement with our previously published analytical formulae. In
the case of consecutive encounters, we find that the kinetic distribution tends to converge to a
practically invariant form after a relatively small number of encounters. We construct a discrete
stochastic process that reproduces the numerical distributions and we provide a theoretical in-
terpretation of the asymptotic convergence of the energy distribution. We finally compute the
theoretical X-ray spectra that would be emitted by the simulated particles in a thick target
model of radiation.

Key words: acceleration of particles – radiation mechanisms: non-thermal – Sun: flares –
Sun: X-rays, gamma-rays.

1 I N T RO D U C T I O N

The study of the particle acceleration process during solar flares still
remains an important and open issue. The acceleration of ions and
electrons is the result of the energy release process occurring in these
highly energetic events, in which the magnetic energy is converted,
through magnetic reconnection, into heating, bulk motion of the
flaring plasma and particle acceleration.

In the framework of the above scenario, and on the basis of the
early work of Speiser (1965) for the proton acceleration during re-
connection in the Earth’s magnetotail, Martens (1988) and Martens
& Young (1990) argued that the flaring coronal medium is also effec-
tively collisionless so that the Speiser mechanism could be applied
to the particle acceleration during flares. In particular, similarly to
the Earth magnetotail, in solar flares it is possible that the parti-
cles be accelerated by super-Dreicer electric fields. Litvinenko &
Somov (1993) and Litvinenko (1996) studied the particle acceler-
ation in non-neutral reconnecting current sheets (RCSs) proposing
scaling formulae for the kinetic energy gain of the particles. In two
recent papers Efthymiopoulos, Gontikakis & Anastasiadis (2005)

�E-mail: cgontik@academyofathens.gr (CG); anastasi@space.noa.gr (AA);
cefthim@academyofathens.gr (CE)

and Gontikakis, Efthymiopoulos & Anastasiadis (2006), we stud-
ied in detail the dynamics of particles orbiting in an RCS, and found
general formulae for the kinetic energy gain of the particles that
contain Speiser’s and Litvinenko’s formulae as asymptotic limits.

Further insight to this problem can be obtained by taking an ini-
tially thermal distribution of particles at coronal temperature and
by simulating numerically the acceleration process. Zharkova &
Gordovskyy (2004) and Wood & Neukirch (2005) studied simula-
tions of particles with a thermal initial distribution, that are subse-
quently accelerated by non-neutral Harris-type RCSs. These authors
concluded that the accelerated particles form, in general, narrow en-
ergy and pitch angle distributions. In particular, Wood & Neukirch
(2005) pointed out that Harris-type RCSs cannot yield power-law
final kinetic distributions, while such distributions are the natural
outcome of simulations of the acceleration process within X-type
points (Wood & Neukirch 2005; Zharkova & Gordovskyy 2005).
This remark notwithstanding, we shall argue below that the X-ray
spectra emitted by the accelerated particles in a thick target model
of radiation are, anyway, broader than their kinetic energy distribu-
tions, and that these spectra approach power laws even in the case
of particles accelerated by Harris-type RCSs.

In the present work we perform numerical simulations of the
acceleration of particles (electrons and protons) within single or
multiple current sheets. In the case of flares, acceleration by a
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monolithic, large-scale, current sheet should be considered as a sce-
nario of rather theoretical interest, which however helps setting up
a number of basic formulae that are helpful in subsequent studies of
more realistic scenario. A longstanding scenario regarding energy
release in flares is the existence of multiple dissipation sites (Parker
1988). The assumption of fragmentation of the energy release in
space and time during solar flares seems to be justified by several
observations (e.g. Benz 1985; Dennis 1985; Benz & Aschwanden
1992; Crosby, Aschwanden & Dennis 1993; Aschwanden et al.
1995; Crosby et al. 1998; Krucker & Benz 1998 Aschwanden et al.
2000) indicating that the energy dissipation may occur in multiple
and stochastically evolving current sheet configurations that coexist
inside an active region. Past efforts to model this process numeri-
cally (Anastasiadis & Vlahos 1991, 1994; Anastasiadis, Vlahos &
Georgoulis 1997; Anastasiadis et al. 2004; Vlahos, Isliker & Lepreti
2004) have clarified that several physical factors affect the efficiency
of the acceleration process. A key factor is the dependence of the
particles’ acceleration length on the physical parameters of recon-
nection (e.g. strengths of the magnetic and electric fields and RCS
thickness). In the present work, we compare the specific predictions
for the acceleration length that were derived in our previous analyt-
ical studies with the results of simulations in which a large number
of particles’ orbits are integrated numerically.

We assume that the particles (electrons or protons) have initial
velocities forming a Maxwellian distribution at coronal temperature
2×106 K. Such a distribution is used as generator of initial velocities
for the orbits of a Monte Carlo sample of particles. The particles’
orbits through RCSs are then integrated numerically. Entry pitch
angles of the particles to an RCS are randomized in order to simulate
a random distribution of the orientations of the RCSs encountered
by the particles within a large active volume. Computations include
the evolution of the particles’ kinetic and pitch angle distributions,
as well as the distribution of the times of escape of each particle
from a sheet.

The paper is organized as follows. The basic RCS model, choice
of units and computational scheme are presented in Section 2.
Section 3 gives a comparison of numerical simulations with the
analytical solutions given in Efthymiopoulos et al. (2005) and
Gontikakis et al. (2006) for one encounter event. Section 4 deals
with multiple interactions of the particles with a number of current
sheets modelling a highly complex magnetic field configuration.
Section 5 gives the computation of X-ray spectra produced by the
accelerated electrons on the assumption of a thick target approxi-
mation. Finally, Section 6 summarizes the basic conclusions of the
present study.

2 R C S M O D E L A N D C O M P U TAT I O N S E T- U P

We consider the Harris-type model of Litvinenko & Somov (1993)
to represent one local current sheet within an active region. The
magnetic and electric fields inside one sheet of half-thickness a are
given in equation (1):

E = (0, 0, E),
B = (−y/a, ξ⊥, ξ‖)B0 for |y| � a. (1)

The edges of the current sheet are at y = ±a. The magnetic field
is normalized in units of B0, the value of the main reconnecting
component at the edges. The magnetic field has two components,
parallel and perpendicular to the current sheet plane, called the ‘lon-
gitudinal’ (ξ ‖) and ‘vertical’ (ξ⊥) component, respectively. The ex-
istence of a longitudinal magnetic field can be justified in either a
resistive magnetohydrodynamic context (Somov 1992; Litvinenko

& Craig 1999; Craig & Litvinenko 2002), or a purely collisionless
regime (e.g. Horiuchi & Sato 1997). In particular, it has been argued
(Litvinenko 1996) that the existence of a longitudinal field is nec-
essary in order to explain electron acceleration by direct electric
fields, since the Speiser orbits for electrons result in very small ac-
celeration lengths. Indeed, in the limit ξ‖ → 1 one finds lacc/a ∼
ξ ‖/ξ⊥ (independent of E) which is much higher than the Speiser
limit lacc/a ∼ ε/ξ 2

⊥, with ε = E m/(aB2
0 e) (m and e are the particle’s

mass and charge).
The equations of motion for a particle can be cast in a

Hamiltonian form which is convenient in all subsequent calcula-
tions. In Efthymiopoulos et al. (2005) the initial Hamiltonian func-
tion, of three degrees of freedom, is reduced to a two degrees of free-
dom Hamiltonian by a ‘momentum mapping’ (Arnold & Novikov
2000). The final Hamiltonian reads

H = 1

2
p2

y + 1

2

(
c4 + 1

2
y2

)2

+ 1

2
(I2 − ξ⊥z + ξ‖ y)2 − εz (2)

with Darboux pairs (y, py), (z, c4). The canonical momenta are
mapped to velocities via py = ẏ, c4 = ż − 1

2 y2.I2 is an inte-
gral of motion yielding the velocity of the x-component of motion
(missing in equation 2), namely,

I2 = ẋ − ξ‖ y + ξ⊥z. (3)

The above Hamiltonian describes the motions of positively charged
particles. In the case of electrons we use the same equations of
motion and then reverse the sense of the y- and z-axes, namely,
yel(t) = − y(t), zel(t) = − z(t).

The choice of units is described in detail in Gontikakis et al. (2006,
section 2). A typical value of the main magnetic field is B0 = 100 G.
A super-Dreicer electric field E of 100 V m−1 corresponds to ε =
10−5 for electrons and ε = (mp/me) × 105 � 1.8 × 10−2 for protons.
In the dimensionless form of equation (2) the RCS half-thickness a
is the unit of length, the inverse gyrofrequency ω−1

B = m/qB0 is the
unit of time (�6 × 10−10 s for electrons and 10−6 s for protons). We
take a range of possible values of the dimensionless magnetic and
electric field parameters, namely: ξ ‖ ∈ [0, 1], ξ⊥ ∈ [10−3, 10−2],
ε ∈ [10−5, 10−4].

We consider injections of particles into a current sheet with a
Maxwell–Boltzmann velocity distribution corresponding to coronal
temperature T = 2 × 106 K. This is used to obtain a sample of
initial velocity moduli for 10 000 particles per simulation. Particle
injections are made at three different positions along the y-axis, that
is, from the edges (y = ±0.9) or from the central plane. The choice
|y| = 0.9, that is, slightly inside the sheet’s formal edge, is dictated
by the fact that the mean thermal velocity of the particles is typically
larger than the drift velocity (vdrift = ε) by one or more orders of
magnitude, so that, when |y| = 1 is a sharp edge (as in equation 1),
injection at that point (|y| = 1) would result in the particles always
exiting the sheet after half a gyrocycle. The physical motivation
behind the third choice, y = 0, is discussed in Gontikakis et al.
(2006).

Initial particle velocities are distributed isotropically in the half-
hemisphere of velocity space pointing towards the sheet, for injec-
tions at the edges, or the full sphere for injections at the central
plane. This corresponds to a broad initial pitch angle distribution
with a maximum at θ � 90◦. Since the equations of motion are sym-
metric with respect to translations in the z-axis we may always set
the initial value of z equal to z = 0 without loss of generality. The
initial values of y, z, ẋ are then used to determine the value of I2

(equation 3) used in the integration of each particle. This is done by
solving numerically Hamilton’s equations of motion, derived by (2),
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separately for each particle, that is, by assuming that the motion of
each particle is not influenced by the motions of the other particles.

The numerical integration of the particles orbits is performed up to
105 time-steps corresponding to a total time 50 µs for electrons and
to 0.1 s for protons. When a particle reaches y = ±1 it is considered
as escaping the current sheet and the integration moves to the next
particle. The stored output data are the kinetic energy, pitch angle,
time of escape as well as the side of escape (y = 1 or −1) of each
particle. In the simulations of multiple particle–RCS encounters, the
output velocities of the particles after interacting with one RCS are
used to specify the moduli of input velocities of the same particles
into the next RCS.

3 S I N G L E E N C O U N T E R S

In the present section we examine in detail one step of the stochastic
acceleration process, namely the interaction of the particles with a
single current sheet. Some characteristics of the final distributions,

Figure 1. Electron kinetic energy distributions before (dot–dashed) and after (solid) the interaction with a single Harris-type RCS with parameters: (a) ξ‖ = 0,
ξ⊥ = 10−3, ε = 10−5; (b) ξ‖ = 0.1, ξ⊥ = 10−3, ε = 10−5; (c) ξ‖ = 1, ξ⊥ = 10−3, ε = 10−5; (d) ξ‖ = 0, ξ⊥ = 10−2, ε = 10−5; (e) ξ‖ = 0.1, ξ⊥ = 10−2, ε =
10−5; (f) ξ‖ = 1, ξ⊥ = 10−2, ε = 10−5; (g) ξ‖ = 0, ξ⊥ = 10−3, ε = 5 × 10−5; (h) ξ‖ = 0.1, ξ⊥ = 10−3, ε = 5 × 10−5; (i) ξ‖ = 1, ξ⊥ = 10−3, ε = 5 × 10−5.
In each simulation, three sets of 10 000 particles are injected at the initial positions x = z = 0 and y = 0.9, 0 or −0.9. Vertical dotted lines correspond to an
analytical estimate of the kinetic energy gain for the three different injection points.

after the interaction, are common for both electrons and protons:
(i) for most particles the kinetic energy gain is restricted in a rela-
tively small energy range and (ii) final pitch angle distributions are
narrower than the initial distributions. Both phenomena depend also
somewhat on the choice of the RCS field values. A more detailed
description of the experiments is given in the sequel, separately for
electrons and protons.

3.1 Electrons

In the numerical experiments of electrons interacting with a single
RCS, the electron energy distributions after the interaction are, in
general, shifted towards higher values of the kinetic energy com-
pared to the initial thermal distribution (Fig. 1). The amount of the
shift reflects the efficiency of the RCS as accelerator. The mean
thermal kinetic energy at temperature 2 × 106 K is 89 eV. In the
numerical realization of the initial distribution by a finite number of
particles (Nparticles = 10 000), there is a resolution limit reached at an
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energy 6.2 keV, after which the Maxwellian distribution is poorly
sampled and the numerical distribution exhibits an abrupt cut-off.

The dispersion of kinetic energies in the final distributions of
all experiments is of the same order of magnitude as in the ini-
tial thermal distribution. However, we find that the dispersion de-
creases somewhat as the value of the longitudinal magnetic field
ξ ‖ increases. This is in agreement with previous results of Wood &
Neukirch (2005, their fig. 9) and Zharkova & Gordovskyy (2004),
who explored numerically distributions similar to ours in the limit
of a strong longitudinal field (ξ‖ → 1).

For ξ ‖ �= 0, the kinetic energy gain depends on the injection
position (y = ±0.9 or 0). As a rule, electrons injected at the lower
edge (y = 0.9) acquire larger amounts of kinetic energies than those
injected from the centre (y = 0) or upper edge (y = −0.9). As
a result, when all injection positions are taken into account, the
final distribution often appears to have three well distinct peaks
(Fig. 1, except for the panels a, d, g). The energy values at which
the peaks appear can be given by an approximate analytical theory.
The maximum kinetic energy gain for one particle can be expressed
as a function of the field parameters, the position of injection into
the sheet and the initial energy of the particle. The final formula
(Efthymiopoulos et al. 2005; Gontikakis et al. 2006) reads

Emax(E0, ẋ0, y0, yout; ξ‖, ξ⊥, ε) = ε

ξ 2
⊥

(
ξ⊥ I2 + ξ‖ξ⊥ yout + ε

+
√

2ξ⊥ I2ε + 2ξ‖ξ⊥ youtε + ε2 + 2ξ 2
⊥ E0

)
, (4)

where E0 is the initial kinetic energy of a particle injected at y =
y0, the value of I2 is set equal to I2 = ẋ0 − ξ‖ y0, and the exit of the
particle is through the edge y = yout. We may compute an average
value of Emax for a thermal distribution of particles by setting E0 =
〈E0〉 = 89 eV and ẋ0 = 〈ẋ0〉 = 0 in the above formulae. We also set
yout = 1 since the maximum of the acceleration length always occurs
when the exit of electrons is from the lower edge (yout = 1). The
analytical predictions based on the above assumptions are shown as
dashed vertical lines in each panel of Fig. 1. The agreement with the
peaks of the numerical distributions is always good and it allows us
to conclude that most electrons acquire kinetic energies which are
close to the maximum value allowed by equation (4). Only for very
strong values of the longitudinal field (ξ ‖ = 1 in Figs 1c, f and i) the
electrons end up with an energy which is a fraction (of the order of
unity) of the analytically predicted value. In fact, it can be demon-

Figure 2. Initial (dot–dashed) and final (solid) pitch angle distributions for the same numerical simulations as in (a) Figs 1(a)–(c) for electrons, and (b)
Figs 4(a)–(c) for protons. In the case of electrons, larger values of ξ‖ correspond to narrower final pitch angle distributions, while the opposite is true in the
case of protons.

strated that the motion of most particles in this limit is restricted
on invariant surfaces (invariant tori) that correspond to the preser-
vation of an adiabatic invariant Efthymiopoulos et al. (2005). This
results in the particles leaving the sheet at a point corresponding to
the intersection of an invariant surface with the sheet’s edge, yield-
ing a value of the kinetic energy upon exit which can be below the
upper limit of equation (4). On the other hand, when ξ ‖ is relatively
small (ξ ‖ < 0.1), the motions of most electrons within the sheet
are chaotic, and the electrons acquire kinetic energies which are, in
general, very close to the maximum limit given by equation (4).

When ξ ‖ �= 0, equations (3) and (4) imply that the maximum
kinetic energy depends on the point of injection y0; as y0 decreases,
I2 and Emax increase. Thus, the kinetic energy gain is maximum for
electrons injected at the upper edge (y0 = −0.9). From the physical
point of view, these are electrons traversing the sheet all across its
width, thus they ‘feel’ the electric field for times larger than the
electrons injected at the lower edge y0 = 0.9. Furthermore, as
the value of ξ⊥ decreases, the kinetic energy gain increases due
to the 1/ξ 2

⊥ factor in equation (4). This is clearly seen in Figs 1(d)–
(f). In fact, in the limit ξ⊥ → 0 the electrons follow Speiser orbits
for which Emax ∼ ε2/ξ 2

⊥.
The pitch angle distributions of electrons interacting with an RCS

become steeper for higher values of ξ ‖ (Fig. 2a). When ξ ‖ = 0 the
pitch angles of electrons escaping from the lower edge of the current
sheet reach values up to 60◦, while in the case of escape from the
upper edge the pitch angles are larger than 90◦. Due to the opposite
orientations of the magnetic field at the RCS edges, the final distri-
butions of the pitch angles are rather symmetric with respect to the
value of 90◦ (Fig. 2a, where we also show the initial pitch angle dis-
tribution (dot–dashed line) resulting from an isotropic distribution
of velocities in a hemisphere of velocity space pointing towards the
sheet). A non-zero longitudinal magnetic field introduces a prefer-
ential edge of the sheet (lower for electrons, upper for protons in the
orientation of the fields as in equation 1) from which the majority of
particles escape. This phenomenon can also be explained theoreti-
cally (Efthymiopoulos et al. 2005). In particular, for electrons with
energy E0 there is a threshold value of ξ ‖ = (ε2 + 2E0ξ

2
⊥)/2ξ⊥ε

above which escapes are possible exclusively from the lower edge
yout = 1.

Finally, the time needed for electrons to escape from the RCS
depends also mainly on ξ ‖ and on the injection point (Fig. 3a). We
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Figure 3. Distribution of the times of escape of (a) electrons and (b) protons from a single RCS. The model parameters are the same as those of Fig. 2(a) for
electrons and Fig. 2(b) for protons. Thick lines (the three-peaked curve in panel a and the one-peaked curve at 1–2 ms in panel b) correspond to ξ‖ = 1 dashed
lines to ξ‖ = 0.1 and thin lines to ξ‖ = 0.

find that the time of escape decreases on average as the value of ξ ‖
increases. This leads to the effect that while the time particles spend
within the RCS decreases the amount of kinetic energy that they
gain increases on average.

3.2 Protons

In the numerical simulations for protons we adopt the same values
of the dimensionless magnetic field parameters as for electrons, and
rescale the value of the dimensionless electric field by a factor mp/me

(see Section 2).
The kinetic energy distributions before and after the interaction

of the protons with an RCS are shown in Fig. 4. Clearly, the main
difference with respect to the corresponding electron distributions
is that an important fraction of protons are not accelerated. This
happens mainly in the case of injections from the edges. The typical
orbit for protons entering the sheet at the edges is to perform a
single gyration and then escape without any energy gain. For some
model parameters up to half of the protons retain the initial thermal
distribution (Fig. 4). Thus the final distributions for protons typically
show a thermal branch of non-accelerated protons and a branch
of accelerated protons, shifted with respect to the initial thermal
distribution.

The sets of initial conditions leading to the non-accelerated or
the accelerated component form two well-separated domains in ve-
locity space. Fig. 5 shows the initial conditions in velocity space
for particles injected at the upper edge (y = 0.9). We find that the
initial velocities of accelerated protons are always restricted in a
domain defined by the inequalities Vz > −Vx and Vy > V th, with
a threshold value determined numerically as V th � 0.5. In the case
of non-accelerated protons, we still find a threshold Vy < V th with
V th � 0.5 whenever Vz > −Vx , or Vy > V th whenever Vz < −Vx for
the majority of initial conditions. However, the initial conditions of
a small fraction of non-accelerated protons lie within the domain of
initial conditions of the accelerated protons, so that there is a small
overlap of the two domains.

Unlike the case of electrons, the final kinetic energy distribu-
tions of protons are not very sensitive to the value of the longitu-
dinal magnetic field ξ ‖. When ξ ‖ �= 0, accelerated protons escape
preferentially from one edge of the sheet, while non-accelerated
protons escape equally probably from both sides of the sheet. Final
kinetic energy distributions are centred at mean values of the order of

10 ∼ 100 MeV, with narrow dispersions of the order of 100 eV, that
is, the same order as in the initial thermal distribution. These results
can be explained again on the basis of equation (4). The main point
to note is the increased value of the dimensionless electric field ε.
Physically, this implies that the character of motion inside the sheet
is determined by the electric rather than the magnetic field. This is
because the typical gyroradii for protons in thermal motion are of the
same order of magnitude as the RCS half-width so that the Speiser
type of orbits becomes irrelevant for most protons. On the other
hand, equation (4) is still valid so that the peaks of the numerical
distribution are again well represented by this formula (Fig. 4).

The final pitch angle distributions of protons (Fig. 2b) are typ-
ically separated also in two components. In the case of non-
accelerated protons, the initial and final pitch angle distributions
have roughly the same form. On the contrary, in the case of accel-
erated protons the final pitch angle distribution is a function peaked
close to 0◦ (when ξ ‖ = 0 a second peak appears also at 180◦ corre-
sponding to protons escaping the sheet from the lower edge y = −1).
Another difference with respect to electrons is that the pitch angle
distributions of accelerated protons become broader as the value of
ξ ‖ increases (see also Zhu & Parks 1993). Finally, the distribution
of the times of escape of protons clearly shows a separation between
the non-accelerated protons, for which the mean time of escape is
of the order of the gyroperiod at the edge of the sheet, and the ac-
celerated protons that spend about 103−104 gyroperiods within the
sheet before they escape (Fig. 3b).

4 M U LT I P L E PA RT I C L E – R C S E N C O U N T E R S
M O D E L L E D A S A S TO C H A S T I C P RO C E S S

The scenario of particle acceleration via a monolithic current sheet
may be of relevance only in the case of the largest (eruptive) flares.
In a more realistic scenario, which is applicable particularly in
the case of smaller (compact) flares, it is necessary to consider
complex magnetic topologies within which multiple current sheets
are formed. In this section we present simulations of a stochastic
acceleration process in such a complex magnetic topology. In par-
ticular, we consider an initially thermal distribution of particles that
have consecutive encounters with more than one current sheets. Each
encounter is viewed as an impulsive event that is well separated in
time from the next encounter. This is because the characteristic
times of escape of particles from one sheet are smaller by orders of
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Figure 4. As in Fig. 1, but for the proton kinetic energy distributions. The dimensionless electric field parameter ε is rescaled with respect to the values given
in Fig. 1 by a factor of mp/me = 1.84 × 103.

magnitude from the dynamical time-scale of evolution of the mag-
netic field configuration.

After one particle–RCS encounter is accomplished, the particles
are assumed to follow a random walk path in configuration space that
leads them to a second encounter with a different RCS in a random
location within the same active region. The process may then be
repeated ad infinitum. In every consecutive step the dimensionless
field parameters (ξ⊥, ξ ‖, ε) are assigned random values from a
homogeneous distribution in the intervals 0 � ξ ‖ � 1, 10−3 � ξ⊥ �
10−2 and 5 × 10−6 � ε � 3 × 10−5 for electrons or 3.7 × 10−3 �
ε � 5.5 × 10−2 for protons. We furthermore randomize the injection
pitch angle of each particle. We thus allow particles to enter the new
sheet isotropically from either edge (but not from the centre).

Figs 6 and 7 show an example of the time evolution of the kinetic
energy distribution after 10 consecutive particle–RCS encounters in
the case of electrons and protons, respectively. In both figures, panel
(a) shows the initial thermal distribution. As shown in Fig. 6(b), the
electron kinetic energy distribution after the interaction with the first
current sheet presents two peaks that correspond to the two entry
points at y = 0.9 and y = −0.9 (Section 3.1). In the next step, each
peak is split in two new peaks, etc. Thus, after N steps the number of

peaks is of the order of O(2N ). If we assign a localized (say Gaussian)
distribution around each peak, as N increases the local distributions
have a significant overlap. This results in that the total distribution,
which is the sum of all the local distributions, tends to become a
broad smooth function (panels f–k). In the case of electrons, the
asymptotic decay of this function for large energies is well fitted by
an exponential law, while in the case of protons it is reasonably well
fitted both by an exponential or power law.

The most relevant result coming out of these simulations is that
the kinetic energy distribution of the particles tends to converge to
a final form after a relatively small number of interactions (of the
order of 10). For example, Fig. 6(l) shows the superposition of the
kinetic energy distributions corresponding to the three last steps of
the simulation for electrons (panels i, j, k of the same figure). Clearly,
there is no significant variation of the distribution in the last three
steps. This also implies that there is an upper kinetic energy limit
for electrons which is reached at the tail of the final distribution at
an energy of the order of E � 100 keV.

We may model the above acceleration process as a discrete
stochastic process describing the generation of local distribu-
tions around multiple peaks during the consecutive particle–RCS
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Figure 5. Separation of the initial conditions in velocity space for accelerated or non-accelerated protons, when ξ‖ = 1, ξ⊥ = 10−3, ε = 0.018 and y0 = 0.9.
Accelerated protons have initial velocities (a) vz > −vx and (b) vy > −0.5. Non-accelerated protons have velocities satisfying either (c) vz > −vx and (d) vy <

−0.5, or (e) vz < −vx and (f) vy > −0.5.

interactions. Let

nN (E) =
MN∑
j=1

A√
2πσ

exp

{
−

[
E − E (N )

j

]2

2σ 2

}
(5)

represent the kinetic energy distribution after N consecutive
particle–RCS interactions, N = 0, 1, 2, . . . , that is, the total distri-
bution is given as a sum of MN local distributions with dispersion
σ around the peaks E(N )

j , j = 1, 2, . . . , MN . We set M0 = 1, that is,

initially there is only one peak at the mean thermal energy E(0)
1 =

〈Eth〉. Each of the peaks E(N )
j produces new peaks according to the

formula

E (N+1)
k = Cf

(
E (N )

j + Emax(E (N )
j , 0, −0.9, 1; ξ (N+1)

‖ , ξ
(N+1)
⊥ , ε(N+1)

)
(6)

and

E (N+1)
k′ = Cf

(
E (N )

j + Emax(E (N )
j , 0, 0.9, 1; ξ (N+1)

‖ , ξ
(N+1)
⊥ , ε(N+1)

)
,

(7)

where Emax is given by equation (4). The two peaks correspond to
the particles entering the sheet from either the lower or upper edge
(y0 = ±0.9).

If the field parameters ξ
(N+1)
‖ , ξ (N+1)

⊥ , ε(N+1) are selected from a
random sequence, then equations (6) and (7) define a stochastic
process. In the actual calculation we use the same random sequence
as in the successive snapshots of Fig. 6 so that a comparison of the
resulting distributions is possible. There are two free parameters in
the model, namely the dispersion σ of each local distribution around
its peak and a coefficient Cf satisfying 0 � Cf � 1. The meaning
of Cf is that the particles belonging to a particular local distribution
are assumed to acquire, on average, an energy equal to the constant
factor Cf times their maximum possible energy after the interaction
with an RCS with parameters (ξ (N+1)

‖ , ξ (N+1)
⊥ , ε(N+1)).

Fig. 8 shows the resulting energy distributions for electrons for
N = 8, 9, 10 and a choice of parameters σ = 2 × 10−3 [in di-
mensionless units (corresponding to ∼12 keV)], and Cf = 0.5. It is
immediately observed that the final distribution obtained with this
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Figure 6. (a) The initial (thermal) energy distribution of electrons. (b–k) The form of the same distribution after consecutive interactions of the electron
population with a number of current sheets. The RCS field parameters (ξ‖, ξ⊥, ε) of each event are written within the corresponding panel. (l) Superposition
of the plots (i), (j) and (k).

simple stochastic model fits well the distribution obtained by the ac-
tual particles’ simulation except in the region of very low energies
(∼1 keV). This is expected because we assumed a uniform value of
σ throughout the entire range of energies, while, in reality, σ is an
increasing function of the energy. At any rate, the fact that the three
theoretical distributions for N = 8, 9, 10 are very similar indicates
that a simple modelling of the acceleration as a discrete stochastic
process allows one to recover the tendency of the energy distribution
to reach a constant asymptotic limit as N → ∞.

Similar phenomena are observed in the simulations for protons
(Fig. 7). In this case, the initial splitting of the energy distribution
is in a ‘thermal’ and an ‘accelerated’ component (panel b). As the
protons interact with successive current sheets, the particles of both
components gain kinetic energy. The merging of the various com-
ponents results to a considerable broadening of the final distribution

(103 keV), which is five orders of magnitude larger than the broad-
ening of the initial thermal distribution (∼10−2 keV). Still, the main
phenomenon is the convergence of the whole process towards a final
distribution (panels i–l in Fig. 7). The convergence takes place when
the protons reach energies of the order of 10 ∼ 100 MeV.

In order to understand the tendency of the energy distribution to
reach an asymptotic limit, the key point is to note, through equa-
tion (4), that the efficiency of a single RCS as accelerator depends
not only on the field parameters (ξ⊥, ξ ‖, ε), but also on the initial
energy E0 of the particles being accelerated. It turns out that, as E0

increases, the volume of the domain of parameter values (ξ⊥, ξ ‖,
ε) for which an RCS can still be an efficient accelerator decreases.
This can be quantified with the help of Figs 9(a) and (b). Let w

be the amplification factor of the maximum particle energy gain at
one encounter event with respect to the initial energy E0, namely
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Figure 7. Same as in Fig. 6 but for protons. The thick line in (l) is a power-law fitting of the final distribution.

Emax = w E0. The ordinate in Fig. 9(a) (electrons) or (b) (protons) is
the probability that a current sheet with parameters belonging to the
range 0 � ξ ‖ � 1, 10−3 � ξ⊥ � 10−2, 5 × 10−6 � ε � 3 × 10−5 for
electrons and 3.7 × 10−3 � ξ � 5.5 × 10−2 for protons is an effi-
cient accelerator, that is, Emax given by equation (4) satisfies Emax �
E0, as a function of the initial energy E0 shown in the abscissa. The
probability is calculated by dividing the above cubic volume of the
parameter space in a 10 × 10 × 10 cubic grid and calculating Emax,
for given E0, at all points of the grid. The five curves in each panel
correspond to different values of w, namely, w = 1, 0.5, 0.1, 0.01
and 0 from left- to right-hand side. Thus w = 1 means that a particle
doubles its initial energy while w = 0 means that the particle does
not gain any energy at all.

When the particles’ initial kinetic energy E0 is small (say of the
order of 1 keV or smaller), the probability for all five curves of each
panel tends to the unity. This implies that an RCS with almost any
combination of values (ξ⊥, ξ ‖, ε) is an efficient particle accelerator.

However, as E0 increases, say by the consecutive encounters of the
particles with RCSs, the probability that one RCS is efficient ac-
celerator decreases and it tends to zero as the energy E0 tends to a
limiting value. In the case of electrons, this value is about E0,lim =
210 keV when w = 1, while it tends to a value E0,lim → 425 keV
as w → 0 (dashed line in Fig. 9a). This value represents the max-
imum kinetic energy that can be reached by an electron after any
arbitrarily large number of consecutive interactions with RCSs in
the above specified range of field parameters. In the case of protons,
the corresponding limit is E0,lim = 40 MeV (Fig. 9b). In fact, the
tendency of the final distribution to converge to an constant asymp-
totic form is manifested when the energy distribution reaches values
which are below the uppermost limit E0,lim, although they are of the
same order of magnitude. For example, the limiting distribution for
electrons (Fig. 6l) corresponds to energies ∼100 keV. As shown in
Fig. 9(a), the probability that the particles meet an efficient RCS
accelerator at this level of energy is only a few per cent, even when
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Figure 8. The electron kinetic energy distribution of Fig. 6(l) (dots) com-
pared to three theoretical distributions derived by a simple stochastic model
(equations 6 and 7) after N = 8, 9 or 10 particle–RCS interactions.

Figure 9. Probability for an electron (a) or a proton (b), with given initial
kinetic energy E0 to acquire an energy equal to (1 + w)E0, where w takes the
values 1, 0.5, 0.1, 0.01 and 0 (from left- to right-hand curve in each panel).

w is as high as w = 1, while this probability is below 1 per cent
when a particle reaches energy ∼200 keV. Similar probabilities are
found for the protons (Fig. 9b) when the energy reaches values of
the order of 2 MeV, that is, as in the final distributions of Fig. 7(l).

5 T H E O R E T I C A L X - R AY S P E C T R A

A question of particular interest regards the expected form of the
spectra of X-rays that are emitted when highly energetic particles,
such as those resulting from the simulations of the previous sections,
interact with a dense medium and radiate. Thick target radiation
(Brown 1971; Vilmer, Trottet & Kane 1982; Anastasiadis et al. 2004)
provides a basic model for such an interaction. In the thick target
approach, the electrons, after escaping from the reconnection region,

have impacts with the chromosphere resulting in a loss of kinetic
energy at very small times with no modification due to transport.
The X-ray emission is produced by bremsstrahlung radiation. In the
computation of the X-ray spectrum one starts with the number of
photons of energy hν emitted by an electron of initial energy E0:

µ(hν, E) =
∫ hν

E0

σ (hν, E)npv(E)
dE

dt
dt, (8)

where σ (hν, E) is the cross-section coefficient of the bremsstrahlung
emission, np the density of the ambient plasma, v(E) the electron’s
velocity and dE/dt the energy loss due to collisions. Then, the pho-
ton spectrum emitted by an electron distribution F(E0) in the range
E0, E0 + dE is given by the integral

I (hν) =
∫ +∞

hν

F(E0)µ(hν, E0) dE0. (9)

We implemented the above formulae in order to compute a the-
oretically expected X-ray spectrum for each of the electron kinetic
energy distributions shown in the previous sections. The computa-
tions are meaningful only when a kinetic energy distribution has a
significant contribution at energies above a threshold value 1.6 keV.
On the other hand, when the maximal kinetic energy of a distribu-
tion is in the range of �3 keV (Figs 1d and e) the X-ray computation
is not accurate.

Typical computed X-ray spectra corresponding to the kinetic en-
ergy distribution of the particles after the interaction with a single
RCS, are shown in Figs 10(a)–(c). We find that the maximum pho-
ton energy corresponding to a particular kinetic energy distribution
is lower but close to the maximal kinetic energy of this distribution.
However, the main difference between the X-ray spectra and the
distributions is that the X-ray spectra are broad and smooth func-
tions of the energy, in contrast to the particles distributions which
are sharply peaked. The smoothing is due to the fact that the X-ray
spectrum involves an integral (equation 9) over the kinetic energy
distribution that smooths out the sharp peaks of the latter. A typi-
cal X-ray spectrum shows a monotonic decrease with rising photon
energy, up to a maximal cut-off value of the photon energy. The
spectra can be partly represented by power laws ∝ E−p up to the
cut of energy. In the case of single RCS encounter the spectra are
steep functions when the longitudinal field ξ ‖ is small, while they
become more shallow (p � 2) as the longitudinal field tends to the
value of the mean reconnecting component (ξ‖ → 1). On the other
hand, acceleration processes modelled by multiple particle–RCS in-
teractions lead also to power-law spectra with (p � 2) followed by a
rather smooth decrease near the maximal photon energy (Fig. 10d).
The spectra of Figs 10(c) and (d), have maximal photon energies
of �100 keV. This makes them good candidates to compare with
observations of non-thermal X-rays.

6 C O N C L U S I O N S A N D D I S C U S S I O N

In the present paper we studied the particle acceleration process and
the resulting energy distributions of charged particles interacting
with a single Harris-type RCS, and then with a complex magnetic
topology consisting of multiple RCSs. The initial particle distribu-
tion is thermal, corresponding to a solar coronal temperature.

Our main conclusions are the following.

(i) A Harris-type RCS with field values relevant to solar flares
typically accelerates the entire ingoing thermal ensemble of elec-
trons, while it accelerates only part of a thermal ensemble of protons
(about 60–70 per cent).
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Figure 10. X-ray spectra (upper curves) compared to the electron kinetic energy distributions which produce them (lower curves) after a single particles–RCS
interaction with ξ⊥ = 10−3, ε = 10−5 and (a) ξ‖ = 0, (b) ξ‖ = 0.1 and (c) ξ‖ = 1. (d) Same as (a)–(c) in the simulation of multiple particle–RCS interactions
for electrons.

(ii) The time spent by the particles within the RCS can be as
large as 0.1 ms for electrons and a few ms for protons. This is still
under the limit of the temporal resolution of present instruments.
Furthermore, the kinetic energy gain decreases, on average, when
the time of stay in the current sheet increases (see Fig. 3).

(iii) The pitch angle distributions of accelerated particles are typ-
ically sharply peaked at values corresponding to orientations almost
parallel to the reconnecting magnetic field component. In the case of
electrons the peak becomes narrower as the longitudinal magnetic
field ξ ‖ increases. The opposite is observed in the case of protons.

(iv) In single RCS encounter events, the final kinetic energy dis-
tribution is typically narrow and multipeaked. However, if multiple
events take place, the final distribution broadens and the peaks dis-
appear. The dispersion of the final distribution is typically larger
by more than two orders of magnitude than in the initial thermal
distribution. The acceleration process can be modelled as a discrete
stochastic process incorporating the basic laws of particle accel-
eration found in our previous works (Efthymiopoulos et al. 2005;
Gontikakis et al. 2006).

(v) The kinetic energy distributions of both electrons and protons
tend to acquire a limiting final form after a relatively small number
of particle–RCS interactions (of the order of 10). This tendency can
be explained theoretically in terms of the probability of an RCS to be
efficient accelerator, as function of the input energy of the particles
E0, when the field parameter of the RCSs take values restricted in
a given volume of the parameter space. This probability decreases
as E0 increases. This means also that there is an upper limit in the
ultimate energy that can be gained by the particles in a multiple RCS
encounter scenario. In solar flare conditions, this is of the order of
102 ∼ 103 keV for electrons, or 10 ∼ 100 MeV for protons.

(vi) The X-ray spectra computed from the energy distributions
of accelerated electrons, via a thick target modelling, have maxi-
mal photon energies around 100 keV and they compare well with
observations. In the case of a single particle–RCS interaction, the
X-ray spectra have logarithmic slopes of the order of p = −2 with a
tendency of the slope to decrease as the longitudinal field increases.

In the case of multiple encounter events the average slope is also
around −2. The X-ray spectra exhibit cut-offs at energies ∼100 keV.
This is in agreement with observations of flat X-ray spectra in the
literature indicating similar energy cut-offs (e.g. Nitta, Dennis &
Kiplinger 1990).

A number of works in the literature have addressed the questions
of particle acceleration and of the energy distributions produced
by ensembles of test particles accelerated within various types of
reconnection topologies (Bulanov 1980; Tajima et al. 1987; Martens
1988; Burkhart, Drake & Chen 1990; Martens & Young 1990; Deeg,
Borovsky & Duric 1991; Bruhwiler & Zweibel 1992; Moses, Finn &
Ling 1993; Kliem 1994; Litvinenko 1996; Fletcher & Petkaki 1997;
Petkaki & MacKinnon 1997; Vekstein & Browning 1997; Mori,
Sakai & Zhao 1998; Browning & Vekstein 2001; Craig & Litvinenko
2002; Heerikhuisen, Litvinenko & Craig 2002; Hamilton et al. 2003;
Zharkova & Gordovskyy 2004; Dalla & Browning 2005; Hamilton
et al. 2005; Wood & Neukirch 2005; Zharkova & Gordovskyy 2005;
Hannah & Fletcher 2006). Thus some general conclusions can be
drawn as regards how do our results compare with previous results
from the literature and what is to be learned from the simulations
described in the present study.

It has shown that the tails of the final energy distributions are well
fitted either by exponential laws (e.g. Bulanov 1980; Deeg et al.
1991; Bruhwiler & Zweibel 1992), or power laws (e.g. Vekstein &
Browning 1997; Mori et al. 1998; Browning & Vekstein 2001; Dalla
& Browning 2005; Hannah & Fletcher 2006), almost independently
of the details of the initial conditions of the particles’ distribution,
as long as the magnetic field topology is hyperbolic. On the other
hand, the final distributions of particles accelerated in Harris-type
RCSs are almost monoenergetic (Zharkova & Gordovskyy 2004;
Wood & Neukirch 2005, and Section 3 above). However, as exem-
plified in Section 4, the exponential of power laws arise, even in
that case, when one considers a stochastic process involving many
Harris-type RCSs. This fact suggests that a suitable basis for a the-
oretical modelling of the particle acceleration process in complex
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reconnection topologies is that of a stochastic process leading to a
constant asymptotic limit, that is, a constant final energy distribution
after a number of iterations of the process. This point of view is also
supported by the evidence that far from the adiabatic limit, that is,
close to X-points, islands or other critical topologies, the typical par-
ticles’ orbits are chaotic (e.g. Büchner & Zelenyi 1991; Litvinenko
& Somov 1993; Zhu & Parks 1993; Kliem 1994; Hannah, Fletcher
& Hendry 2002; Dalla & Browning 2005; Efthymiopoulos et al.
2005; Gontikakis et al. 2006; Hannah & Fletcher 2006). Namely,
our numerical evidence suggests that, as long as an ensemble of
particles wanders within a site of reconnection by moving along
chaotic orbits, the behaviour of these particles as regards the gain
or loss of kinetic energy mimics a stochastic process. This seems
also to be a natural framework for the discussion of the acceleration
process in multiple loop coalescence models for flares (e.g. Tajima
et al. 1987; Kliem, Karlicky & Benz 2000), in which the final spec-
tra from test particle distributions (e.g. fig. 15 of Tajima et al. 1987)
are qualitatively similar to the spectra shown in Section 4 above.

The particle dynamics in the adiabatic region of X-points (away
from the X-lines) has similarities with the RCS case that are worth
mentioning. The growth of the velocity component parallel to the
magnetic field results in the appearance, in both cases, of phenom-
ena like separatrix jets, small exit pitch angles and, if a longitu-
dinal magnetic field component is present, charge separation (Zhu
& Parks 1993; Vekstein & Browning 1997; Browning & Vekstein
2001; Zharkova & Gordovskyy 2004, 2005, and the present study).

The maximum energy gain of the particles in X-points depends
on whether the particles enter and for how long in the non-adiabatic
region. The energy gain of the particles entering in the region deter-
mines the upper cut-off limit of the final energy distribution. Con-
trary to the RCS case (see Fig. 1 for electrons), this limit is not
affected by a non-zero longitudinal magnetic field (Browning &
Vekstein 2001; Hannah & Fletcher 2006). The latter can only shift
the shape of the particles’ kinetic energy distribution towards higher
energies (Mori et al. 1998; Browning & Vekstein 2001; Hannah &
Fletcher 2006) by influencing the dynamics of the particles not ap-
proaching the non-adiabatic region in a way similar to the dynamics
of particles within an RCS.

Finally, we stress that, as exemplified in Section 5 above, a de-
tailed comparison of what a model gives with observational data is
possible only after the particles’ energy distributions are convolved
with a kernel incorporating a model of radiation of the energetic par-
ticles, such as the thick target model. In our case, this convolution
greatly distorts the final spectra. It is reasonable to anticipate that
such distortions should be present in almost any model combining
the particle acceleration and radiation processes.
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