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[1] The complex system of the Earth’s magnetosphere corresponds to an open spatially
extended nonequilibrium (input-output) dynamical system. The nonextensive Tsallis
entropy has been recently introduced as an appropriate information measure to investigate
dynamical complexity in the magnetosphere. The method has been employed for
analyzing Dst time series and gave promising results, detecting the complexity
dissimilarity among different physiological and pathological magnetospheric states
(i.e., prestorm activity and intense magnetic storms, respectively). This paper explores the
applicability and effectiveness of a variety of computable entropy measures (e.g., block
entropy, Kolmogorov entropy, T complexity, and approximate entropy) to the investigation
of dynamical complexity in the magnetosphere. We show that as the magnetic storm
approaches there is clear evidence of significant lower complexity in the magnetosphere.
The observed higher degree of organization of the system agrees with that inferred
previously, from an independent linear fractal spectral analysis based on wavelet
transforms. This convergence between nonlinear and linear analyses provides a more
reliable detection of the transition from the quiet time to the storm time magnetosphere,
thus showing evidence that the occurrence of an intense magnetic storm is imminent.
More precisely, we claim that our results suggest an important principle: significant
complexity decrease and accession of persistency in Dst time series can be confirmed
as the magnetic storm approaches, which can be used as diagnostic tools for the
magnetospheric injury (global instability). Overall, approximate entropy and Tsallis
entropy yield superior results for detecting dynamical complexity changes in the
magnetosphere in comparison to the other entropy measures presented herein. Ultimately,
the analysis tools developed in the course of this study for the treatment of Dst index can
provide convenience for space weather applications.
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1. Introduction

[2] Nonlinearly evolving dynamical systems, such as
space plasmas, generate complex fluctuations in their output
signals that reflect the underlying dynamics. Accurate
detection of the dissimilarity of complexity between normal
and abnormal magnetospheric states (e.g., prestorm activity
and magnetic storms) can vastly improve space weather
diagnosis and, consequently, the mitigation of space weather
hazards.
[3] Various complexity measures have been developed

during the last 20 years for real-world time series in order to
estimate the complexity of the corresponding dynamical

system. The main types of complexity measures are entro-
pies, fractal dimensions, and Lyapunov exponents. Fractal
dimensions and Lyapunov exponents are both working well,
but they generally require long data sets for statistically
significant results, resulting in inconvenience in many
studies and applications. On the other hand, entropies have
the advantages of simplicity, extremely fast calculation, and
antinoise ability. Entropy techniques provide convenience
for detecting and capturing useful information of time
series. Some entropy measures based on symbolic dynamics
adopt a range partition to generate a partition in the
symbolization transform, but their results may be compro-
mised by the nonstationarity of the time series. The data sets
obtained from most space physics studies are usually
nonstationary, rather short, and noisy. One of our objectives
is to find an effective complexity measure that requires short
data sets for statistically significant results, provides the
ability to make fast and robust calculations, and can be used
to analyze nonstationary and noisy data, which is conve-
nient for the analysis of magnetospheric time series.
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[4] The hourly disturbance storm time (Dst) geomagnetic
activity index is computed from an average over 4 midlati-
tude magnetic observatories (http://swdcwww.kugi.kyoto-u.
ac.jp/), and hence serves as a proxy for the magnetospheric
ring current, and thus magnetic storm occurrence. Magnetic
storms are the most prominent global phenomenon of geo-
space dynamics, interlinking the solar wind, magnetosphere,
ionosphere, atmosphere and occasionally the Earth’s surface
[Daglis and Kozyra, 2002; Daglis et al., 2003, 2008].
Magnetic storms occur when the accumulated input power
from the solar wind exceeds a certain threshold.
[5] Recently Balasis et al. [2008] analyzed Dst time series

by introducing the nonextensive Tsallis entropy as an
effective complexity measure. The Tsallis entropy fluctua-
tions sensitively showed the complexity dissimilarity
among different ‘‘physiological’’ (quiet time) and ‘‘patho-
logical’’ states (intense magnetic storms) of the magneto-
sphere. The Tsallis entropy fluctuations also implied the
emergence of two distinct patterns: (1) a pattern associated
with intense magnetic storms, which is characterized by a
higher degree of organization, and (2) a pattern associated
with normal periods, which is characterized by a lower
degree of organization. Balasis et al. [2006] analyzed time
series of the Dst index in terms of Hurst exponent, H, based
on the use of wavelet transforms. The fractal spectral
analysis gave evidence for the existence of two different
patterns: (1) a pattern associated with intense magnetic
storms, which is characterized by a fractional Brownian
persistent behavior, and (2) a pattern associated with normal
periods, which is characterized by a fractional Brownian
antipersistent behavior.
[6] In this paper, we study in terms of nonlinear and

linear techniques whether certain characteristic signatures
emerged in Dst time series indicating the transition from
prestorm activity to magnetic storms. We consider one year
of Dst data (2001) including two intense magnetic storms,
which occurred on 31 March 2001 and 6 November 2001
with minimum Dst values �387 nT and �292 nT respec-
tively, as well as a number of weaker events (e.g., May and
August 2001 with Dst � �100 nT in both cases). More
precisely, first the temporal evolution of nonlinear charac-
teristics is studied by applying a variety of recently pro-
posed entropy techniques: the original Dst time series is
projected to a symbolic sequence and then analyses in terms
of dynamical (Shannon-like) block entropy, T complexity
and approximate entropy follow. These analyses suggest
that as the magnetic storm approaches, there is a clear
transition from higher to lower complexity. We further
verify our results in terms of the nonextensive Tsallis
entropy, which is based on a statistical approach different
than the classical Boltzmann-Gibbs theory.
[7] Although these methods have been studied both

within pure mathematics and in a number of science
applications, the present study is, to our knowledge, their
first application to the magnetospheric physics case. It
would be highly desirable to confirm the above mentioned
conclusion based on an independent linear fractal spectral
analysis. By monitoring the temporal evolution of the fractal
spectral characteristics of Dst time series using wavelet
techniques we show that significant alterations in associated
scaling parameters occur (e.g., transition from antipersistent
to persistent behavior) as an intense magnetic storm

approaches. The observed convergence between nonlinear
and linear analyses warns that the onset of an intense
magnetic storm is imminent.

2. Symbolic Dynamics

[8] The discovery that simple deterministic systems can
show a vast richness of behaviors in response to variations
of initial conditions and/or control parameters, has been at
the origin of an intense interdisciplinary research activity
since the 1950s [Khinchin, 1957; Nicolis, 1991, 1995]. One
of the outcomes of this work has been the realization that for
an appropriate description of such complex systems, one
needs to resort to a probabilistic approach [Nicolis and
Gaspard, 1994]. It is well known since the pioneering work
of Gibbs and Einstein that we can describe dynamics from
two points of view. On the one hand, we have the individual
description in terms of trajectories in classical dynamics, or
of wave functions in quantum theory. On the other hand, we
have the description in terms of ensembles described by a
probability distribution (called the density matrix in quan-
tum theory) [Prigogine and Driebe, 1997]. Now, once one
leaves the description in terms of trajectories, a basic
question that must be dealt with concerns the amount of
information one may have access to on the temporal
evolution of the system in the course of time.
[9] One of the approaches developed in this context is

‘‘coarse graining,’’ whereby a complex system is viewed as
an ‘‘information generator’’ producing messages consisting
of a discrete set of symbols defined by partitioning the full
continuous phase space into a finite number of cells. We
refer to such a description as ‘‘symbolic dynamics’’ [Nicolis
et al., 1989; Nicolis, 1991, 1995; Nicolis and Gaspard,
1994]. One of its merits is to provide a link between
dynamical systems and information theory [Nicolis, 1991;
Ebeling and Nicolis, 1992].
[10] From the initial dynamical system we can generate a

sequence of symbols, where the dynamics of the original
(under analysis) system has been projected. This symbolic
sequence can be analyzed by terms of information theory
such as entropy estimations, information loss, automaticity
and other prominent properties.
[11] There exist some canonical ways for generating

symbolic dynamics out of a given dynamical system [Nicolis
et al., 1988, 1989; Nicolis, 1991, 1995; Ebeling and Nicolis,
1992]. To produce symbolic dynamics out of the evolution of
a given system, we set up a coarse-grained description
incorporating from the very beginning the idea that a phys-
ically accessible state corresponds to a finite region rather
than to a single point of phase space. Let Ci (i = 1,2,. . .K) be
the set of cells in phase space constituted by these regions,
assumed to be connected and nonoverlapping. As time goes
on, the phase space trajectory performs transitions between
cells thereby generating sequences of K symbols, which may
be regarded as the letters of an alphabet.We shall require that,
in the course of these transitions, each element of the partition
is mapped by the law of evolution on a union of elements.
[12] In this paper, we restrict ourselves to the simplest

possible coarse graining of the magnetospheric signal. This
is given by choosing a threshold C and assigning the
symbols ‘‘1’’ and ‘‘0’’ to the signal, depending on whether
it is above or below the threshold (binary partition). The
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threshold is usually the mean value of the data considered.
In this way, each time window of the original Dst time series
for a given threshold is transformed into symbolic sequences,
which contains ‘‘linguistic’’ or ‘‘symbolic dynamics’’ char-
acteristics. The selection of a two-symbol alphabet satisfies
terms of simplicity and computational convenience.

3. Concepts of Block Entropy, T Complexity, and
Approximate Entropy

[13] The term ‘‘entropy’’ is used in both physics and
information theory to describe the amount of uncertainty or
information inherent in an object or system. Clausius
introduced the notion of entropy into thermodynamics in
order to explain the irreversibility of certain physical
processes in thermodynamics. In statistical thermodynamics
the most general formula for the thermodynamic entropy S of
a thermodynamic system is the Boltzmann-Gibbs entropy,

SB�G ¼ �k
X

pi ln pi

where k is the Boltzmann constant and pi are the probabilities
associated with the microscopic configurations.
[14] The Boltzmann-Gibbs entropy translates over almost

unchanged into the world of quantum physics to give the
von Neumann entropy,

S ¼ �k Tr r ln rð Þ

where r is the density matrix of the quantum mechanical
system.
[15] Shannon recognized that a similar approach to

Boltzmann-Gibbs entropy could be applied to information
theory. In his famous 1948 paper [Shannon, 1948], he
introduced a probabilistic entropy measure HS:

HS Xð Þ ¼ �
Xn
i¼1

p xið Þ logb p xið Þ;

where b is the base of the logarithm used and p denotes the
probability mass function of a discrete random variable X
with possible values {x1,. . ., xn}.

3.1. Dynamical (Shannon-Like) Block Entropy

[16] Block entropies, depending on the word-frequency
distribution, are of special interest, extending Shannon’s
classical definition of the entropy of a single state to the
entropy of a succession of states [Nicolis and Gaspard,
1994; Karamanos and Nicolis, 1999]. Each entropy takes a
large (small) value if there are many (few) kinds of patterns,
therefore, it decreases while the organization of patterns is
increasing. In this way, the block entropy can measure the
complexity of a signal.
[17] In particular, we estimate the block entropies by

lumping. Lumping is the reading of the symbolic sequence
by ‘‘taking portions,’’ as opposed to gliding where one has
essentially a ‘‘moving frame.’’ In general, the basic novelty
of the entropy analysis by lumping is that, unlike the Fourier
transform or the conventional entropy by gliding, it gives
results that can be related to algorithmic aspects of the
sequences.

[18] It is useful to transform the initial raw data of the
magnetospheric signal into symbolic sequences taking values
in the alphabet {0,1}, according to the rules Ai = 1 if A(ti) >
E[A(ti)] and Ai = 0 if A(ti) < E[A(ti)], where A(ti) are the values
of the measured field at time ti and E[A(ti)] = hA(ti)i is the
mean value in the particular time windows, as it is nicely
stated by Schwarz et al. [1993].
[19] Consider a subsequence of length N selected out of a

very long (theoretically infinite) symbolic sequence. We
stipulate that this subsequence is to be read in terms of
distinct ‘‘blocks’’ of length n,

. . .A1 . . .An|fflfflfflfflffl{zfflfflfflfflffl}
B1

Anþ1 . . .A2n|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
B2

. . .Ajnþ1 . . .A jþ1ð Þn|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Bjþ1

. . . ð1Þ

We call this reading procedure ‘‘lumping.’’
[20] The following quantities characterize the information

content of the sequence [Khinchin, 1957; Ebeling and
Nicolis, 1992]
[21] 1. The dynamical (Shannon-like) block entropy for

blocks of length n

H nð Þ ¼ �
X

A1;...;Anð Þ
p nð Þ A1; . . . ;Anð Þ 	 ln p nð Þ A1; . . . ;Anð Þ ð2Þ

where the probability of occurrence of a block A1. . .An,
denoted p(n)(A1,. . .,An), is defined by the fraction (when it
exists) in the statistical limit as

No: of blocks; A1 . . .An; encountered when lumping

total No: of blocks
ð3Þ

starting from the beginning of the sequence, and the
associate entropy per letter

h nð Þ ¼ H nð Þ
n

: ð4Þ

[22] 2. The conditional entropy or entropy excess associ-
ated with the addition of a symbol to the right of an n block

h nð Þ ¼ H nþ 1ð Þ � H nð Þ: ð5Þ

[23] 3. The entropy of the source (a topological invariant),
defined as the limit (if it exists)

h ¼ lim
n!1

h nð Þ ¼ lim
n!1

h nð Þ ð6Þ

which is the discrete analog of metric or Kolmogorov
entropy.
[24] We now turn to the selection problem that is to the

possibility of emergence of some preferred configurations
(blocks) out of the complete set of different possibilities.
The number of all possible symbolic sequences of length n
(complexions in the sense of Boltzmann) in a K letter
alphabet is [Karamanos and Nicolis, 1999]

NK ¼ Kn: ð7Þ

Yet not all of these configurations are necessarily realized
by the dynamics, nor they are equiprobable. A remarkable
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theorem due to McMillan [Khinchin, 1957; Nicolis and
Gaspard, 1994], gives a partial answer to the selection
problem asserting that for a block (A1,. . .,An) the following
holds

pn A1; . . . ;Anð Þ � e�H nð Þ ð8Þ

for almost all blocks (A1,. . .,An). In order to determine the
abundance of long blocks one is thus led to examine the
scaling properties of H(n) as a function of n.
[25] As we have already mentioned, the Fourier spectrum

or the standard convention of the entropy analysis by
gliding, do not help us to distinguish between symbolic
sequences with completely different levels of complexity and
spectra [Karamanos, 2001]. Unlike the previous methods,
the novelty of the entropy analysis by lumping gives results,
which can be connected with algorithmic aspects of the
sequences, in particular with the property of the sequence
to be generated by deterministic or stochastic automata [see
Karamanos, 2001]. Also, the entropy analysis by lumping of
some weakly chaotic systems, gives a rather characteristic
entropy spectrum, as explained by Karamanos [2001]. This
shows that the entropy analysis by lumping is much more
sensitive in algorithmic and ergodic properties of (weakly)
chaotic systems than the classical conventional entropy
analysis by gliding, or the correlation functions.

3.2. T Complexity

[26] In this section we introduce the grammar-based com-
plexity measure referred here as the T complexity or T
entropy. T entropy is a different grammar-based complexity/
information measure defined for infinite, as well as finite
strings of symbols [Titchener, 1998, 2000; Ebeling et al.,
2001; Steuer et al., 2001]. It is a weighted count of the
number of production steps required to construct the string
from its alphabet. Briefly, it is based on the intellectual
economy one makes when rewriting a string according to
some rules. The basic fact for the T complexity is that it puts
the problem of the algorithmic compressibility in a well
understandable basis (and also in a firm mathematical basis).
[27] Let us note again that the method of T entropy is

based on the rewriting of a word according to some basic
rules. This way of rewriting is unique and therefore leads to
a unique characterization by the corresponding T complex-
ity measure. Before analyzing in some depth the results
coming from the application of the notion of T complexity
in real-world problems, we would like to describe how the T
complexity is computed, at least for finite strings.
[28] The T complexity of a string is defined by the use of

one recursive hierarchical pattern copying (RHPC) algo-
rithm [Titchener, 2000]. It computes the effective number of
T augmentation steps required to generate the string.
[29] The T complexity may be thus computed effectively

from any string and the resultant value is unique.
[30] We shall denote by N the set of natural numbers, and

let N+ = N \ {0}. Let the set A = {a1,. . .,al}, l > 1, be a finite
alphabet. The elements of A are called symbols or charac-
ters and the cardinality of A is denoted by #A, i.e., #A = l.
A* denotes the free monoid generated by A under concat-
enation. The elements of the set A* are called strings; l
denotes the empty string. We further denote the set A* \ {l}
by A+.

[31] The string x(n) is parsed to derive constituent pat-
terns pi 2 A+ and associated copy exponents ki 2 N+, i = 1,
2,. . .,q, where q 2 N+ satisfying:

x ¼ pkqq p
kq�1

q�1 . . . p
ki
i . . . pk11 a0; a0 2 A: ð9Þ

[32] Each pattern pi is further constrained to satisfy:

pi ¼ p
mi;i�1

i�1 p
mi;i�2

i�2 . . . p
mi;j

j . . . p
mi;1

1 ai;

ai 2 A and 0  mi;j  kj:
ð10Þ

[33] The T complexity CT(x(n)) is defined in terms of the
copy exponents ki:

CT x nð Þð Þ ¼
Xq
i

ln ki þ 1ð Þ: ð11Þ

[34] One may verify that CT(x(n)) is minimal for a string
comprising a single repeating character. From equation (11)
we have:

ln n  CT x nð Þð Þ: ð12Þ

The upper bound is more difficult to derive. However, for
n > n0 [Ebeling et al., 2001]

CT x nð Þð Þ  li ln 2 ln #Anð Þð Þ; ð13Þ

where li(z) =
R 0
z

du/ln u is the logarithmic integral
function. For a binary alphabet n0 ’ 15, i.e., small enough
to be of no consequence as we are typically concerned
with strings in the range of n = 102–104 bits. In practice
we parse the string repeatedly from left to right but select
the patterns from right to left.
[35] The T information IT (x(n)) of the string x(n) is

defined as the inverse logarithmic integral of the T complex-
ity divided by a scaling constant ln2 [Ebeling et al., 2001]:

IT x nð Þð Þ ¼ li�1 CT x nð Þð Þ
ln 2

� 	
: ð14Þ

[36] In the limit n ! 1 we have that IT (x(n))  ln(#An).
The form of the right-hand side may be recognizable as the
maximum possible n block entropy of Shannon’s definition
(see section 3.1). The neperian logarithm implicitly gives to
the T information the units of nats (nat is a logarithmic unit
of information or entropy, based on natural logarithms and
powers of e, rather than the powers of 2 and base 2
logarithms which define the bit; the nat is the natural unit
for information measures). IT (x(n)) is the total T informa-
tion for x(n). The average T information rate per symbol,
referred to here as the average T entropy of x(n) and denoted
by hT (x(n)), is defined along similar lines,

hT x nð Þð Þ ¼ IT x nð Þð Þ
n

nats=symbolð Þ: ð15Þ

[37] Clearly we note that in the limit of n!1, hT (x(n))
ln(#A) = K. The correspondence between the T information
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and T entropy on the one hand and Shannon’s entropy
definitions on the other hand, is reinforced in subsequent
investigations [Titchener, 1998, 2000; Ebeling et al., 2001].
An example of an actual calculation of the T complexity for a
finite string is given by Titchener [1998, 2000] and Ebeling
et al. [2001].

3.3. Approximate Entropy

[38] Related to time series analysis, approximate entropy
(ApEn) provides a measure of the degree of irregularity or
randomness within a series of data (of length N). ApEn was
pioneered by Pincus as a measure of system complexity
[Pincus, 1991]. It is closely related to Kolmogorov entropy,
which is a measure of the rate of generation of new
information. This family of statistics is rooted in the work
of Grassberger and Procaccia [1983] and has been widely
applied in biological systems [Pincus and Goldberger,
1994; Pincus and Singer, 1996; and references therein].
[39] The approximate entropy examines time series for

similar epochs: more similar and more frequent epochs lead
to lower values of ApEn. In a more qualitative point of view,
given N points, the ApEn-like statistics is approximately
equal to the negative logarithm of the conditional probabil-
ity that two sequences that are similar for m points remain
similar, that is, within a tolerance r, at the next point.
Smaller ApEn values indicate a greater chance that a set
of data will be followed by similar data (regularity), thus,
smaller values indicate greater regularity. Conversely, a
greater value for ApEn signifies a lesser chance of similar
data being repeated (irregularity), hence, greater values
convey more disorder, randomness and system complexity.
Thus a low/high value of ApEn reflects a high/low degree of
regularity. The following is a description of the calculation
of ApEn. Given any sequence of data points u(i) from i = 1
to N, it is possible to define vector sequences x(i), which
consist of length m and are made up of consecutive u(i),
specifically defined by the following:

x ið Þ ¼ u i½ �; u iþ 1½ �; . . . ; u iþ m� 1½ �ð Þ: ð16Þ

[40] In order to estimate the frequency that vectors x(i)
repeat themselves throughout the data set within a tolerance
r, the distance d(x[i], x[j]) is defined as the maximum
difference between the scalar components x(i) and x(j).
Explicitly, two vectors x(i) and x(j) are ‘‘similar’’ within
the tolerance or filter r, namely d(x[i], x[j])  r, if the
difference between any two values for u(i) and u(j) within
runs of length m are less than r (i.e., ju(i + k) � u(j + k)j  r
for 0  k  m). Subsequently, Ci

m(r) is defined as the
frequency of occurrence of similar runs m within the
tolerance r:

Cm
i rð Þ ¼ number of j such that d x i½ �; x j½ �ð Þ  r½ �

N � m� 1ð Þ ;

where j  (N � m � 1).
[41] Taking the natural logarithm of Ci

m(r), Fm(r) is
defined as the average of ln(Ci

m(r)):

Fm rð Þ ¼
X
i

lnCm
i rð Þ= N � m� 1ð Þ ð17Þ

where
P

i is a sum from i = 1 to (N � m � 1). Fm(r) is a
measure of the prevalence of repetitive patterns of length m
within the filter r.
[42] Finally, approximate entropy, or ApEn(m, r, N), is

defined as the natural logarithm of the relative prevalence of
repetitive patterns of length m as compared with those of
length m + 1:

ApEn m; r;Nð Þ ¼ Fm rð Þ � Fmþ1 rð Þ: ð18Þ

[43] Thus, ApEn(m, r, N) measures the logarithmic
frequency that similar runs (within the filter r) of length
m also remain similar when the length of the run is
increased by 1. Thus, small values of ApEn indicate
regularity, given that i increasing run length m by 1 does
not decrease the value of Fm(r) significantly (i.e., regular-
ity connotes that Fm[r] � Fm+1[r]). ApEn(m, r, N) is
expressed as a difference, but in essence it represents a
ratio; note that Fm[r] is a logarithm of the averaged Ci

m(r),
and the ratio of logarithms is equivalent to their difference.
A more comprehensive description of ApEn is given by
Pincus [1991], Pincus and Goldberger [1994], and Pincus
and Singer [1996].
[44] In summary, ApEn is a ‘‘regularity statistics’’ that

quantifies the unpredictability of fluctuations in a time
series. Intuitively, one may reason that the presence of
repetitive patterns of fluctuation in a time series renders it
more predictable than a time series in which such patterns
are absent. ApEn reflects the likelihood that ‘‘similar’’
patterns of observations will not be followed by additional
‘‘similar’’ observations. A time series containing many
repetitive patterns has a relatively small ApEn; a less
predictable (i.e., more complex) process has a higher
ApEn.

4. Principles of Nonextensive Tsallis Entropy

[45] The uncertainty of an open system state can be
quantified by the Boltzmann-Gibbs entropy, which is the
widest known uncertainty measure in statistical mechanics.
Boltzmann-Gibbs entropy cannot, however, describe non-
equilibrium physical systems with large variability and
multifractal structure such as the solar wind [Burlaga et
al., 2007]. Inspired by multifractal concepts, Tsallis [1988,
1998] has proposed a generalization of the Boltzmann-Gibbs
statistics, which is briefly described here.
[46] The aim of statistical mechanics is to establish a

direct link between the mechanical laws and classical
thermodynamics. One of the crucial properties of the
Boltzmann-Gibbs entropy in the context of classical ther-
modynamics is extensivity, namely proportionality with the
number of elements of the system. The Boltzmann-Gibbs
entropy satisfies this prescription if the subsystems are
statistically (quasi-) independent, or typically if the corre-
lations within the system are essentially local. In such cases
the system is called extensive.
[47] In general, however, the situation is not of this type

and correlations may be far from negligible at all scales. In
such cases the Boltzmann-Gibbs entropy is nonextensive.
Tsallis [1988, 1998] introduced an entropic expression
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characterized by an index q which leads to a nonextensive
statistics,

Sq ¼ k
1

q� 1
1�

XW
i¼1

p
q
i

 !
; ð19Þ

where pi are the probabilities associated with the micro-
scopic configurations, W is their total number, q is a real
number, and k is Boltzmann’s constant. The value of q is a
measure of the nonextensivity of the system: q ! 1
corresponds to the standard extensive Boltzmann-Gibbs
statistics.
[48] This is the basis of the so called nonextensive

statistical mechanics, which generalizes the Boltzmann-
Gibbs theory. The entropic index q characterizes the degree
of nonadditivity reflected in the following pseudoadditivity
rule:

Sq Aþ Bð Þ ¼ Sq Að Þ þ Sq Bð Þ þ 1� qð ÞSq Að ÞSq Bð Þ: ð20Þ

[49] The cases q > 1 and q < 1, correspond to subaddi-
tivity, or superadditivity, respectively. For subsystems that
have special probability correlations, extensivity is not valid
for Boltzmann-Gibbs entropy, but may occur for Sq with a
particular value of the index q. Such systems are sometimes
referred to as nonextensive [Boon and Tsallis, 2005]. The
parameter q itself is not a measure of the complexity of
the system but measures the degree of nonextensivity of
the system. It is the time variations of the Tsallis entropy
for a given q (Sq) that quantify the dynamic changes of the
complexity of the system. Lower Sq values characterize the
portions of the signal with lower complexity.
[50] Herein, we estimate Sq on the basis of the concept of

symbolic dynamics and by using the technique of lumping
(for details the reader is referred to Balasis et al. [2008]).
To be more precise, the simplest possible coarse graining
of the Dst index is given by choosing a threshold C
(usually the mean value of the data considered) and
assigning the symbols ‘‘1’’ and ‘‘0’’ to the signal, depending
on whether it is above or below the threshold (binary
partition). Thus, we generate a symbolic time series from a
two-letter (l = 2) alphabet (0,1), e.g., 0110100110010110. . .
(see also sections 2 and 3.1).
[51] Reading the sequence by lumping of length L = 2

one obtains 01/10/10/01/10/01/01/10/. . .. The number of
all possible kinds of blocks is lL = 22 = 4, namely 00, 01,
10, 11. Thus, the required probabilities for the estimation
of the Tsallis entropy p00, p01, p10, p11 are the fractions of
the blocks 00, 01, 10, 11 in the symbolic time series.
[52] The Sq for the word length L is

Sq Lð Þ ¼ k
1

q� 1
1�

X
A1 ;A2;...;ALð Þ

p Lð ÞA1;A2 ;...;AL

h iq0
@

1
A: ð21Þ

[53] Broad symbol-sequence frequency distributions pro-
duce high entropy values, indicating a low degree of
organization. Conversely, when certain sequences exhibit

high frequencies, lower entropy values are produced, indi-
cating a high degree of organization.

5. Results

[54] A way to examine transient phenomena is to divide
the measurements into time windows and analyze these
windows. If this analysis yields different results for time
intervals associated to an intense magnetic storm, for
instance, in comparison to time windows associated to the
normal state of the magnetosphere, then a transient behavior
can be extracted.
[55] In Figure 1 the Dst time series is presented. The one

year Dst data (2001) are divided into five shorter time series
(see triangles denoting five distinct time windows in
Figure 1). The second and fourth time windows include the
Dst variations associated to the two intense magnetic storms
of 31/3/2001 and 6/11/2001, respectively. Within each of the
five time windows, the Shannon, block, T, ApEn and Tsallis
entropy are calculated. Block and Tsallis entropies are
computed using the technique of lumping for binary parti-
tion (with the mean value as threshold) and block (word)
length n = 2. The value of the Tsallis q index utilized here
for the calculation of nonextensive Tsallis entropy Sq(q) is
selected to be 1.8, as indicated by recent analysis [Balasis
et al., 2008]. T complexity and ApEn are calculated using
n = 2 and m = 1, respectively. In the framework of
symbolic dynamics theory, various numeric tests have
been performed with different candidate lengths of blocks
(words) for block and Tsallis entropy as well as with
different n and m values for T complexity and ApEn in
order to obtain the optimum parametrization choice for the
analysis of the Dst time series. In Table 1 the values of all
the information measures considered in this paper are
given at the five distinct time windows, as well as the
time intervals that these windows span.
[56] In Figure 2 we depict the block entropy by lumping

per letter as a function of the word length (H(n)/n vs n) for
the time windows presented in Figure 1. We first focus on
the time windows W1, W3 and W5 that represent the quiet
time magnetosphere. The associated group of curves of the
block entropy per letter lies in the region of high block
entropy values (Figure 2). The high block entropy values
indicate an underlying strong complexity. We note that a
complete absence of structure in the magnetospheric sig-
nal, would lead to an horizontal line in the block entropy
diagram. This is not the present case. We then focus on the
time windows W2 and W4 that include the intense
magnetic storms. The estimated entropies drop to signifi-
cantly lower values for these time windows. This behavior
witnesses a significant reduction of complexity of the
underlying magnetospheric mechanism: the reduction is
more impressive for window W4 that includes the
November 2001 magnetic storm.
[57] Figure 3 shows the various entropy measures for the

five different windows. We study the temporal evolution of
the entropies as the global instability is approaching. The
blue time windows are referred to the normal state of
magnetosphere, whereas the red windows include the in-
tense magnetic storms of March and November 2001,
respectively. The entropies in the red windows (with the
exception of Shannon entropy for the fourth time window)
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drop to rather significantly lower values suggesting the
appearance of a new distinct state in the magnetosphere,
which is characterized by a lower complexity in comparison
to that of the blue (normal) epoch of the magnetosphere. We
remind that Shannon entropy requires longer time series
than the other entropy measures used here, in order to work
properly. Furthermore, some entropy measures (e.g., block,
Tsallis and in particular ApEn) give better (larger) value
differences from windows (W1, W3 and W5) to (W2 and
W4), thus providing a clearer picture of the transition from
prestorm activity to magnetic storms.
[58] Figure 3 also depicts the Kolmogorov entropy for the

five different windows. The formula for Kolmogorov en-
tropy is given from equation (6) by virtue of equation (4):
h = limn!1

H nð Þ
n
. Kolmogorov entropies are practically

computed by taking the slope of the block entropies H(n)
in the diagrams H(n) vs n for each of the five time windows
and for n = 1, 2, 3 and 4 (see Figure 2). We note that
Kolmogorov entropy follows the behavior of the rest
entropy measures (i.e., having lower values in the second
and fourth time windows).

6. Fractal Spectral Analysis

[59] During magnetic storms the complex system of the
Earth’s magnetosphere manifests itself in linkages between
space and time, producing characteristic fractal structures
[Consolini and De Michelis, 2002]. In the work of Balasis
et al. [2006], the fractal spectral properties of the Dst data
are examined using wavelet analysis methods. The results

Table 1. Values of the Various Information Measuresa

Window
Time

(Days in 2001)
Shannon
Entropy

Block
Entropy T Complexity

Approximate
Entropy

Tsallis
Entropy

Kolmogorov
Entropy

Hurst
Exponent

1 0–63.25 0.786817 0.96326 0.21595 1.417287 0.73865 0.2723585 0.4183
2 63.25–112 0.607611 0.822929 0.141 0.895673 0.630496 0.1718937 0.6148
3 112–284 0.653712 0.876862 0.1421 1.116397 0.679 0.2137876 0.4219
4 284–330.5 0.690738 0.67392 0.07628 0.936279 0.524507 0.0942634 0.6122
5 330.5–365 0.793177 0.978621 0.19772 1.312829 0.748244 0.2668134 0.4857

aValues are calculated at the five different time windows indicated in Figure 1. Bold values correspond to the time intervals that include the intense
magnetic storms of March and November 2001, respectively. Bold entropy values are in general lower than the entropies of the other windows. Similarly,
bold Hurst exponent values are higher than the exponents of the other windows.

Figure 1. From top to bottom are shown Dst time series, spectral exponents bDst
, linear correlation

coefficients rDst
, and the wavelet power spectrum for 2001. The 31 March and 6 November 2001

magnetic storms are marked with red. The red dashed line in the bDst
plot marks the transition between

antipersistent and persistent behavior. The triangles denote the time intervals corresponding to the five
time windows discussed in the text.
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show that distinct changes in associated scaling parameters
emerge as large magnetospheric disturbances approach.
[60] If a time series is a temporal fractal then a power law

of the form S( f ) / f �b is obeyed, with S( f ) the power
spectral density and f the frequency. The spectral scaling
exponent b is a measure of the strength of time correlations.
The goodness of the fit of a time series to the power law is
represented by the linear correlation coefficient, r, of this
representation. The wavelet transform with the Morlet wave-
let as the basis function [Balasis et al., 2005; Mandea and
Balasis, 2006; Balasis and Mandea, 2007] (see report at
http://www.sciencemag.org/content/vol314/issue5798/
twil.dtl) was applied to 1-year-longDst time series from 2001.
[61] The nonstationary character of the Dst index requires

methods that can appropriately treat such nonstationarities.
In practice, the condition of stationarity for nonstationary
signals can be satisfied by dividing the signal into blocks of
short, pseudostationary segments [Akay, 1997]. On the other
hand, recent studies show that the wavelet transform can
remove effects due to nonstationarities present in the time
series [Amaral et al., 1998].
[62] In Figure 1 the Dst time series and its wavelet power

spectrum are plotted. Power spectral densities (PSDs) were
estimated in the frequency range from 2 to 128 h using a
256-h moving window and an overlap of 255 samples. For
each PSD parameters r and bwere derived. In Figure 1 theDst

spectral parameters rDst
and bDst

are shown: rDst
is always

above 0.9 and bDst
takes values between 1 and 3. (Regarding

the error estimates for the fractal spectral analysis, these are
either low or negligible for the spectral parameters of the Dst

data from 2001, as shown in Figure 3 ofBalasis et al. [2006].)

[63] The temporal evolution of rDst
indicates that the fit to

the power law is excellent. This means that the fractal
character of the underlying processes and structures is
compact: the activity could be ascribed to a multi-time-
scale cooperative activity of numerous activated units, in
which an individual unit behavior is dominated by its
neighbors, so that, all units simultaneously alter their
behavior to a common large-scale fractal pattern. In the
case of the two intense magnetic storms, we observe a
further increase of rDst

as the main phase approaches: a
region with rDst

> 0.99 is observed during the last stage of
precursory activity. The gradual increase of rDst

indicates
that the clustering of activated events in more compact
fractal structures is strengthened with time. Such elementary
activated events could, in the case of magnetic storms, be
successive stages of acceleration and earthward transport of
ions, for example, due to substorm-induced impulsive elec-
tric fields [Daglis et al., 2004]. Substorms as well as regular
convection result in multiple ring currents with a distribution
of growth/decay times [Liemohn and Kozyra, 2003].
[64] The temporal evolution of bDst

means that the time
profile of the Dst time series is qualitatively analogous to
fractional Brownian motion (fBm) [Heneghan andMcDarby,
2000], possessing long-range temporal correlations. More
precisely, the observed fractal law (S( f )/ f �b) indicates the
existence of long-term memory. This means that the current
value of the geomagnetic signal is correlated not only with its
most recent values but also with its long-term history in a
scale-invariant, fractal manner. The distribution of the bDst

exponent is also shifted to higher values as the intense
magnetic storms approach. This shift reveals several features

Figure 2. Block entropy per letter (equation (4)), as a function of the word length n (n = 1, 2, 3, and 4)
for the five time windows shown in Figure 1. We observe a significant reduction of the block entropy per
letter in windows W2 and W4. These windows correspond to the time intervals that include the intense
magnetic storms of March and November 2001, respectively.
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of the underlying mechanism. As bDst
increases, the spatial

correlation in the time series also increases. This behavior
indicates a gradual increase of thememory, and thus a gradual
reduction of complexity in the underlying dynamics. This
suggests that the onset of an intense magnetic storm may
represent a gradual transition from a less orderly state to a
more orderly state [see also Sitnov et al., 2001].
[65] The b exponent is related to the Hurst exponent, H,

by the formula [Turcotte, 1997]

b ¼ 2H þ 1 ð22Þ

with 0 < H < 1 (1 < b < 3) for the fBm random field model
[Heneghan and McDarby, 2000]. The exponent H char-
acterizes the persistent/antipersistent properties of the signal
[Balasis et al., 2006].
[66] The range 0 < H < 0.5 (1 < b < 2) indicates

antipersistency, which means that if the fluctuations increase
in a period, it is likely to decrease in the interval immedi-
ately following and vice versa. Physically, this implies that
fluctuations tend to induce stability within the system
(negative feedback mechanism). If 0.5 < H < 1 (2 < b < 3)
then the signal exhibits persistent properties, which means

Figure 3. A comparison of practical information measures for the Dst time series. From top to bottom
are shown Shannon entropy, block entropy, T complexity, approximate entropy, Tsallis entropy,
Kolmogorov entropy, and Hurst exponent. The values of all the measures were calculated at the five time
windows that derived after the initial Dst time series was divided into five shorter time intervals as shown
in Figure 1. The red dashed line in the Hurst plot marks the transition between antipersistent and
persistent behavior.
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that if the amplitude of fluctuations increases in a time
interval it is likely to continue increasing in the immediately
next interval. In other words, the underlying dynamics is
governed by a positive feedback mechanism. The value
H = 0.5 (b = 2) suggests no correlation between the repeated
increments. Consequently, this particular value takes on a
special physical meaning: it marks the transition between
antipersistent and persistent behavior in the time series.
[67] The bDst

values during the quiet period (i.e., well
before and after March 31 and November 6 2001 magnetic
storms) are between 1 and 2 indicating antipersistency
[Balasis et al., 2006], while the observed systematic increase
of the spectral exponent during this stage (after day 30 and
270, respectively) indicates that the fluctuations become
more correlated with time. We draw attention to the fact
that bDst

exceeds 2 and therefore Dst exhibits persistent
properties [Balasis et al., 2006] around March 31 and
November 6 2001 magnetic storms (see the parts of the bDst

plot marked with red in Figure 1), coupled with a significant
acceleration of the energy release (see its wavelet plot in
Figure 1).
[68] In Figure 3 we also show the average values of the

Hurst exponents H calculated at the same five time windows
as the entropy measures. We stress that the antipersistent

epochs (0 < H < 0.5) correspond to the epochs of higher
entropy values (first, third and fifth time windows given in
blue in Figure 3), while, the persistent epochs (0.5 < H < 1)
corresponds to the epochs of lower entropies (second and
fourth time windows given in red in Figure 3). This finding
further supports the existence of two different epochs
referring to two distinct states of the magnetic storm
evolution. Antipersistent behavior and higher entropy meas-
ures correspond to a regular undisturbed magnetosphere
while persistent behavior and lower entropy measures
correspond to a disturbed storm time magnetosphere.

7. Conclusions and Discussion

[69] Magnetic storms are undoubtedly among the most
important phenomena in space physics and also a central
subject of space weather. They have severe impacts on both
spaceborne and ground-based technological systems, as well
as, possibly, on weather and climate [Daglis et al., 2001].
[70] The results of the present work establish an interesting

link between dynamics and information. They show that Dst

fluctuations are the natural carriers of information of the
impending magnetic storm. More precisely, we have seen
that a combination of nonlinear with linear statistical

Figure 4. From top to bottom are shown Dst time series along with time variations of Hurst exponents H
and approximate entropies ApEn and T complexities. The 31 March and 6 November 2001 magnetic
storms are marked with red. The red dashed line in the H plot marks the transition between antipersistent
and persistent behavior. The red dashed line in ApEn plot marks the boundary value suggested in this
paper for the transition to the lower complexity characterizing the different state of the magnetosphere.
The triangles denote the time intervals corresponding to the five time windows discussed in the text.
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approaches allows one to extract rich information hidden in
the Dst time series.
[71] In this paper, we analyze Dst time series by intro-

ducing a fairly large variety of information measures in the
search of appropriate and effective entropic quantities to
study the complex character of magnetospheric dynamics.
This is a challenging task and requires a great amount of
computational efforts and numerical trials in order to
achieve it. We would like to point out that it is the first
time, at least to our knowledge, that a significant number of
modern entropy measures are applied to the problem of
dynamical complexity in the Earth’s magnetosphere.
[72] Block entropy, T complexity, approximate entropy,

nonextensive Tsallis entropy and Kolmogorov entropy sen-
sitively show the complexity dissimilarity among different
‘‘physiological’’ (quiet time) and ‘‘pathological’’ states
(intense magnetic storms). They imply the emergence of
two distinct patterns: (1) a pattern associated with the
intense magnetic storms, which is characterized by a higher
degree of organization, and (2) a pattern associated with
normal periods, which is characterized by a lower degree of
organization.
[73] The present study confirms the conclusions of a

previous work based on an independent linear fractal
spectral analysis (Hurst exponent) using wavelet transforms.

The Hurst exponent analysis also shows the existence of
two different patterns: (1) a pattern associated with the
intense magnetic storms, which is characterized by a frac-
tional Brownian persistent behavior, and (2) a pattern
associated with normal periods, which is characterized by
a fractional Brownian antipersistent behavior.
[74] We stress that the antipersistent time windows cor-

respond to the time windows of higher entropies, while the
persistent time windows correspond to the time windows of
lower entropies. Importantly, a recent analysis presented by
Carbone and Stanley [2007] shows that anticorrelated time
series, with Hurst exponent 0.5 < H < 1, are characterized
by entropies greater than correlated time series having
0.5 < H < 1. This suggestion is in agreement with our results.
[75] An important remark is the agreement of the results

between the linear analysis in terms of the Hurst exponent
and nonlinear entropy analyses. A combination of linear and
nonlinear analysis techniques can offer a firm warning that
the onset of an intense magnetic storm is imminent.
[76] Figure 4 gives the temporal evolution of Dst along

with corresponding time variations of the Hurst exponent,
the ApEn and, the T complexity for the whole year of 2001.
Figure 5 presents the same temporal evolution of the
magnetospheric signal but with corresponding time varia-
tions of the block, Tsallis and Kolmogorov entropy. All the

Figure 5. From top to bottom are shown Dst time series along with time variations of block entropies,
Tsallis entropies Sq, and Kolmogorov entropies. The 31 March and 6 November 2001 magnetic storms
are marked with red. The red dashed line in the Sq plot marks the boundary value suggested in this paper
for the transition to the lower complexity characterizing the different state of the magnetosphere. The
triangles denote the time intervals corresponding to the five time windows discussed in the text.

A00D06 BALASIS ET AL.: COMPLEXITY IN MAGNETOSPHERE DYNAMICS

11 of 13

A00D06



relative entropy measures were calculated using a moving
time window of 256 h. We see how nicely the entropy
measures identify the different complexity regimes in the
Dst time series (see the red part of the corresponding plots).
Figures 4 and 5 further demonstrate that the ApEn and
Tsallis entropy along with Hurst exponent yield superior
results in comparison to the other entropy measures regard-
ing the detection of dynamical complexity in the Earth’s
magnetosphere (i.e., offer a clearer picture of the transition).
A possible explanation for this is that Tsallis is an entropy
obeying a nonextensive statistical theory, which is different
from the usual Boltzmann-Gibbs statistical mechanics.
Therefore, it is expected to better describe the dynamics
of the magnetosphere, which is a nonequilibrium physical
system with large variability. On the other hand, ApEn is
more stable when dealing with nonstationary signals of
dynamical systems (such the magnetospheric signal) than
the other entropy measures presented here.
[77] Figures 4 and 5 could also serve for placing bound-

ary values or thresholds for ApEn and Tsallis entropy in
order to distinguish the different magnetospheric states.
Along these lines we are driven to potentially suggest the
limits of 1.25 and 0.7 for the ApEn and Tsallis entropy,
respectively.
[78] Johnson and Wing [2005] explored the nonlinear

behavior of the magnetosphere as characterized by the
planetary 3-h-range index, Kp, which is designed to
measure solar particle radiation by its magnetic effects
(http://www-app3.gfz-potsdam.de/kp_index/index.html).
They have demonstrated that strong nonlinear magnetospher-
ic dependencies are statistically significant up to 1 week, in
accordance with the frequency range (2–128 h) used in the
fractal spectral analysis to estimate significant long-range
temporal correlations, but also to the frequency range indi-
cated by the 256 h time interval utilized to derive all the
entropy measures.
[79] Recently, Consolini et al. [2008] attempted a verifi-

cation of the magnetospheric nonequilibrium dynamics by
investigating the long-term evolution of the Earth’s magne-
tosphere, as monitored by Dst. They were able to provide a
proof of the existence of a steady state far from equilibrium
for the Earth’s magnetosphere.
[80] Other studies also indicate the existence of two

different regimes in the dynamics of magnetosphere. Sitnov
et al. [2001] suggest that the substorm dynamics resembles
second-order phase transitions, while magnetic storms, are
shown to reveal the features of first-order nonequilibrium
transitions. The antipersistency/persistency well meet the
second-order/first-order phase transition correspondingly.
Metastability and topological complexity of magnetic field,
emerging from Chang’s [1999] model also justify the
evidence for transition from prestorm activity to magnetic
storms found in our study. Furthermore, Chang et al. [2003,
2004] and Vörös et al. [2005] described intermittent turbu-
lence in space plasmas which is consistent with the ideas
derived here. Recently Vörös et al. [2008] examined the
statistical properties of magnetic fluctuations in the Venu-
sian magnetosheath and wake regions. They found multi-
scale turbulence at the magnetosheath boundary layer and
near the quasi-parallel bow shock.
[81] Additionally, similar behavior to our observations

(i.e., reduction of multiscale complexity) was observed in

high-latitude geomagnetic activity prior to strong substorms
using a different methodology. Uritsky and Pudovkin [1998]
and Uritsky et al. [2001] presented cellular automata models
which allowed interpretation of the observed effects in terms
of transitions between critical, supercritical and subcritical
states. Uritsky et al. [2006] provided evidence for similar
behavior in the spatial scaling of the auroral brightness.
Wanliss et al. [2005] applied symbolic dynamics analysis
to Dst time series for modeling magnetic storms. They
presented evidence for intermittency and non-Gaussianity,
which are reflective of large magnetic storms. It was also
suggested that the ring current is always out of equilibrium
and may undergo state changes via multiplicative cascades.
[82] Finally, it is known that the semiannual variation in

the Dst index is excessively large compared to all other
indices of geomagnetic activity [Mursula and Karinen,
2005]. This has been interpreted in terms of a separate
nonstorm component which is not related to storms or the
ring current. Therefore it would be useful at some point in
the future to perform similar information dynamics analysis
with a corrected Dst index for seasonal effects. Ultimately,
the methodology applied in this paper for the analysis of the
Dst index with respect to intense magnetic storms can serve
as a starting point for future space weather applications
regarding forecasting of major geospace events (e.g., mag-
netic storms).
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