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ABSTRACT

The assumption that transport in a Hamiltonian system can be described as a normal diffusion process leads
naturally to a power law dependence of the exit time, Tg, on the Lyapunov time, T, =1/A, where by A we
denote the maximal Lyapunov characteristic number, LCN. Since transport in perturbed integrable
Hamiltonian systems can be modeled as normal diffusion only in regions where most of the KAM tori are
destroyed, the power law dependence appears when the perturbation is strong. In this way the dependence
T~ T, found numerically by Murison et al. (1994) for the motion of asteroids in the outer belt, can be
naturally interpreted, since in this region it is well known that resonances are closely spaced and, therefore,
it is expected that KAM tori are mostly destroyed. However there is no theoretical reason why the exponent,
¢, should have a universal value. © 1996 American Astronomical Society.

1. INTRODUCTION

In a recent paper Murison et al. (1994), continuing earlier
work of their research team (Soper et al. 1990, Lecar er al.
1992a, Lecar et al. 1992b, Franklin er al. 1993), presented
pumerical evidence for the existence of a power law con-
cerning the motion of astercids in the outer asteroidal belt,
This law relates the value of the Lyapunov time, T;=1/A
(where by A we denote the maximal Lyapunov Characteristic
Number, LCN, of the asteroid’s trajectory) to the time inter-
val (“event time”, T) needed for this asieroid to become a
planet crosser.

In this paper we show that the “power law’™ behavior can
be naturally recovered through a diffusion-equation formal-
ism of the problem. To this purpose we model the transport
of a particle in a finite connected region (ie., a “box™} of
action space as a Markovian process (i.c., essentially a ran-
dom walk, corresponding to standard diffusion in action
space). In the case of perturbed integrable Hamiltonian sys-
tems this is possible if the perturbation is strong. This case is
equivalent to the fact that the measure of the set of surviving
cantori (for 2-D systems) or higher dimensionality geometri-
cal objects (for n-D systems, n>>2) in phase space is small
(Shlesinger et al. 1993). In the rest of this paper we will use
the term “‘quasi-barriers” for this kind of object. In the case
of strong perturbation the process can be adequately de-
scribed by a diffusion equation of the Fokker-Planck type,
with a characteristic time-scale representing the “exit” of the
particle from a certain “*box™ in action space. This regime is
essentially the “‘resonance overlap™ regime. In applying the
above ideas to the problem of asteroidal motion we note that
the asteroid’s eccentricity may be considered as one of the
actions. We recall also that, in the case of the asteroidal belt,
the outer region is governed mainly by the interaction of
many closely spaced resonances, a fact that is not true for the
inner belt.
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In the case of the numerical experiments by Murison
et al., which lead to the formulation of the power law
log To=a+b log(T,), the model used was the Elliptic Re-
stricted Three Body Problem, ERTBP, with the mass of the
second body taken 10 times the actual mass of Jupiter. Since
in the ERTBP the “perturbation” is proportional to the mass
of Jupiter, it is easy to understand that this selection, which
corresponds to the “strong” perturbation regime discussed
above, further reduces the already small set of surviving in-
variant tori of the real dynamical system. Therefore Murison
et al. dealt essentially with a dynamical Hamiltonian prob-
lem in which the main assumption of our mode! above (i.e.,
process corresponding to normal diffusion) is inherent.

2. DIFFUSIVE APPROACH

In the case of transport in Hamiltonian systems, consid-
ered at discrete time steps, one should carefully differentiate
between Levy flights (i.e., fractal random walks, “ballistic
motion”) and normal diffusion (i.e., normal random walks,
*“Brownian motion™"} (Shlesinger et al. 1993). In both cases
the second moment ((R%(r)}) of the probability density,
p(R) (where R is the “jump’ distance at every time step),
scales with time as

(R*(2))ext, (M

where < is a constant, but in the case of normal diffusion
¥=1 while in the Levy flight y=2. Now in the case of nor-
mal diffusion we know that the evolution of the distribution
function in a region of action space is governed by a diffu-
sion equation of the form (Melrose 1980)

IN(L,t) &
Rl SV

oN(Lt)\  N(l,1)
gt 4l a1

o @
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where N(I,t) is the distribution function in action space (/),
D is the diffusion coefficient, Ty is the escape time, and the
term N(I,1)/Tg represents the escape rate from the region of
interest.

The above equation can be readily solved if one makes
the conjecture that the diffusion coefficient is actually con-
stant (not depending on the actions). This is not a bad as-
sumption, since the use of the Lyapunov exponents as char-
acterizing a whole phase space region already surmises a
kind of an “appropriate averaging™ all over the phase space
region available to the particle’s trajectory. In this way one is
lead to the natural question: in this limit, is there any relation
between the value of the diffusion constant in a phase space
region and the value of the maximal Lyapunov exponent in
that region? It seems that the answer is affirmative. As shown
by Konishi (1989}, numerical experiments strongly suggest
that there is a relation of the form

log(Dy=a+b log{Hg_s), (3)

where Hy _¢ is the Kolmogorov—Sinai entropy. The value of
b may depend on the specific dynamical system considered.
Since Hyp_¢=2A =X, the diffusion coefficient is related to
the maximal Lyapunov characteristic number through the re-
lation

D=an®. 4)
Following a standard practice in problems of this form,
we seek a solution of Eq. (2) of the form N(I,0)=F($)S(D).
In the Appendix we show that, in our case, this method leads

to a result equivalent to the one obtained through the general
solution. Then one finds that

1 dF(n 1 1 d’s(1)

DR dt D1, s dir ¢ )

We are interested only for the time evolution of the dis-
tribution function N(1,r), that is only for the evolution of the
function F(¢}. Then one has to solve the equation

1 dF{5) 1 ¢

DF() dt DT, ¢ (©)

with ¢ >0 constant. The solution is of the form

F(t)=F, exp EO\IHI t (7}
Ty

with Fy=F(r=0) constant. If we assume that there are no
sinks or sources, where particles are created or removed, we
have that F(t)=F, for any time ¢, in which case for t#0 the
relation ¢ D — 1/T ;=0 must be satisfied. Substituting the dif-
fusien coefficient from Eq. {4) to the above relation, one
finds

log Tp=—log ac+blog T, . (8)

This result shows that a relation of the form found nu-
merically by Murison et al. is a natural consequence of the
simplc assumption that transport in a specific region of ac-
tion space of a Hamiltonian system is normal diffusion de-
scribed by a Fokker-Planck type equation. This assumption is
actually acknowledged in the paper by Lecar ef al. (1992b),
where it is stated that they work “in the spirit of random

walk calculations.” It should be noted that there is no theo-
retical reason why the numerical parameters a, &, and ¢
entering the above relation should take specific values, so
that it is possible to find different values in different dynami-
cal systems or, even, in different regions of the same system,
depending on the “local” siructure of phase space (i.e., is-
lands, cantori, quasi-barriers, etc.). It is interesting to note
that the dimensions of the action space do not enter in our
solution, as long as the diffusion coetficient is considered a
constant, so that in this case the result is valid for any num-
ber of degrees of freedom. In the case of asteroidal motion,
for example, one may select as actions the eccentricity and/or
the semi-major axis, etc.

3. DISCUSSION AND CONCLUSIONS

We should comment on the relation of the above results to
the “real” problem of asteroidal motion, i.e., the case where
the mass of the second body in the ERTBP is taken equal to
the one of Jupiter. In this case the measure of the invariant
tori depends on the region of phase space considered. In the
outer belt the approximation that transport can be thought of
as normal diffusion is not bad, since this region presents
closely spaced resonances, which result in transport ap-
proaching normal diffusion (the “‘resonance overlap” re-
gime). In other regions, however, this may not be true. Typi-
cal example is the 2:1 resonance region, where surviving
quasi-barriers strongly confine astercidal motion in phase
space regions with low eccentricities for very long times
(e.g., see Ferraz-Melio 1995). Therefore application of any
power law connecting LCN’s with exit times in this region
(e.g., sce Franklin 1994) may lead to erroneous results, since
transport there corresponds more to Levy flights than to nor-
mal diffusion. In this case one should use the “fractal”
Fokker-Planck-Kolmogorov  equation, as derived by
Zaslavsky (1992, 1994), and an appropriate generalization of
the idea of diffusion coefficient. This is a highly non-trivial
task, even in the case of simple dynamical systems (c.g., see
Shlesinger e al. 1993) and is therefore outside the scope of
the present work.

Finally we should comment bricfly on the phenomenon of
“stable chaos” reported recently by Milani & Nobili (1992).
These authors have found that the asteroid 522 Helga has a
very sort Lyapunov time, T, , of the order of a few thousand
years (6.9X10%). Subsequently several other asteroids with
Lyapunov times of thc same order of magnitude were found
by Levison & Duncan (1993) as well as by Milani and co-
workers (1995). Murison et al. (1994) interpreted the obser-
vation of “‘stable chaotic” asteroids as the *“tail”” of an initial
distribution, most of the members of which have already
escaped. How does this interpretation relate to the results of
the present work? The answer is simple: the Lyapunov time
is, by definition, a kind of “correlation” or “mixing” time,
after which a trajectory “loses” memory of its initial condi-
tions. In the framework of purc Levy flights (ie., =2 in Eq.
(1)), this time scale is not related to kinetic behavior (trans-
port) in phase space. The latter is described by the self-
similar distribution of jumps, which, in turn, is govemed by
the topology and the structure of surviving quasi-barriers. A
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large set of quasi-barriers enclosing a phase space region
may “‘penalize” long jumps, producing a long time confine-
ment of a trajectory in that region. The Lyapunov time may
be thought of as an escape time scale from that region only
in the limit of a “‘random walk”™ approximation [i.e., y=1 in
Eq. (1)), in which case one is lead back to the Murison ef al.
result and the diffusion formalism presented in the present
work.

In conclusion we may summarize our results as follows.
The value of the Lyapunov number A depends on local prop-
erties of phase space, while that of T on both local and
global properties (i.e., the diffusion coefficient plus the to-
pology and the physical dimensions of the dynamical sys-
tem). The value of the diffusion coefficient depends on the
LCN only in the case when most of the quasi-batriers of a
perturbed integrable dynamical system have been destroyed.
In the opposite limit the phenomenon of transport is not a
normal diffusion, so that it cannot be considered as a random
walk process and cannot be described by an ordinary Fokker-
Planck equation. Therefore the functional dependence found
by Murison et al. (1994} exists only in the limit of large
perturbations |non-ballistic motion, y=1 in Eq. (1)]. More-
over the values of the coefficients in the relation found by
Murison et al. are probably model-dependent. Finally the
“stable chaotic’ behavior of asteroids, found by Milani and
Nobili, originates, most probably, from the presence of con-
secutive layers of quasi-barriers in certain regions of phase
space, where transport is governed by Levy flights rather
than random walks {Shlesinger et al. 1993), so that the
Lyapunov time and the exit time are not strongly correlated.

APPENDIX

We observe that Eq. (2) is a linear, irreducible partial
differential equation with constant coefficients. It is easy to
find that it has particular solutions of the form

1
N{IL1)=C; exp(k;l)exp hc»wnml rl. (9
E
The general solution is a linear superposition of the above
particular solutions

;

1
N(I,t}=2, C; exp(kI}exp Hc»wxﬂ, t]. (10)
7 E
If we assume that there are no sinks or sources, where par-
ticles are created or removed, the solution has to obey the
constraint

%sZQ,S&H %82:_9&5 (11)
0 0

From this constraint we find that the relation

Te=(kD)™'=(k*D)™! (12)
must be satisfied. Substituting the diffusion coefficient from
Eq. (4) to the above relation, one finds

log Tp=—log ak®+b log Ty, {(13)
which is the same as Eq. (8) with c=ki=0.
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