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Abstract We perform a principal component analysis (PCA) on a set of six solar vari-
ables (i.e. width/size (s) and velocity (u) of a coronal mass ejection, logarithm of the solar
flare (SF) magnitude (log SXRs), SF longitude (lon), duration (DT), and rise time (RT)). We
classify the solar energetic particle (SEP) event radiation impact (in terms of the National
Oceanic and Atmospheric Administration scales) with respect to the characteristics of their
parent solar events. We further attempt to infer the possible prediction of SEP events. In our
analysis, we use 126 SEP events with complete solar information, from 1997 to 2013. Each
SEP event is a vector in six dimensions (corresponding to the six solar variables used in
this work). The PCA transforms the input vectors into a set of orthogonal components. By
mapping the characteristics of the parent solar events, a new base defined by these compo-
nents led to the classification of the SEP events. We furthermore applied logistic regression
analysis with single, as well as multiple explanatory variables, in order to develop a new
index (I ) for the nowcasting (short-term forecasting) of SEP events. We tested several dif-
ferent schemes for I and validated our findings with the implementation of categorical scores
(probability of detection (POD) and false-alarm rate (FAR)). We present and interpret the
obtained scores, and discuss the strengths and weaknesses of the different implementations.
We show that I holds prognosis potential for SEP events. The maximum POD achieved is
77.78% and the relative FAR is 40.96%.
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1. Introduction

Solar energetic particle (SEP) events are marked as sudden excesses over a background
level in the time profiles of several different energies, ranging from ≈10 keV to ≈10 a few
GeV. They last from hours to a few days and include electrons, protons, alpha particles,
and heavier ions up to Fe (Reames, 2017). SEP events are categorized into “impulsive” and
“gradual” based on their parent solar events (Reames, 1999). In particular, the impulsive
SEP events are considered to be associated with solar flares (SFs) and type III radio bursts.
These events have an Fe/O ≈1 and a narrow injection cone. On the other hand, gradual SEP
events are presumably associated with coronal mass ejections (CMEs) and type II radio
bursts, while they have an Fe/O ratio ≈0.1 and a wide injection cone (Reames, 2013).
The underlying argumentation for this dichotomy is based on the fact that SEP events are
produced either in the solar atmosphere by particle acceleration processes in association with
flares of class higher than C (Anastasiadis, 2002) or by a CME-driven shock in interplanetary
(IP) space (Cane and Lario, 2006). However, as the observational evidence at hand shows,
this dichotomy has been regularly violated (Kocharov and Torsti, 2002; Cane, Richardson,
and Von Rosenvinge, 2010; Papaioannou et al., 2016). At this point, it is worth noting that
recent identifications of wide-spread SEP events (e.g. Rouillard et al., 2012; Dresing et al.,
2012; Kouloumvakos et al., 2016) has challenged and extended our current understanding
(Dröge et al., 2010; Wiedenbeck et al., 2012; Gómez-Herrero et al., 2015; Lario et al., 2016,
2017).

SEP events cause failures to spacecraft by damaging their electronic components (Iucci
et al., 2005; Mikaelian, 2009) and at the same time, they pose a radiation threat for astronauts
(Turner, 2006; Chancellor, Scott, and Sutton, 2014) and airplane crews (Lim, 2002; Mishev,
2014; Tobiska et al., 2015). As a result, different concepts and techniques focused on the
short-term forecasting (nowcasting) of SEP events have been developed and set to operation
by the scientific community. As a rule, these concepts are based on data-driven approaches.
The basic inputs are the magnitude and position of the parent SF on the solar disk (Smart
and Shea, 1989), the time-integrated soft X-ray flux of the flare, and the occurrence (or
non-occurrence) of metric radio type II and type IV bursts (Balch, 1999, 2008), evidence of
particle escape (i.e. type III bursts) (Laurenza et al., 2009; Alberti et al., 2017), near-Earth
differential and integral proton fluxes (Núñez, 2011), and type II and type III radio bursts
(Winter and Ledbetter, 2015). In addition, the scatter-free propagation of the near-relativistic
electron measurements or of the sub-relativistic protons (E ≥ 433 MeV) have been used
either to infer the corresponding intensity of ions in IP space (Posner, 2007) or to develop
a concept for the prompt identification of ongoing high-energy SEP events (Souvatzoglou
et al., 2014). Today, the need for integrated SEP event nowcasting systems has led to the
implementation of ensemble solutions, among which are the Forecasting of Solar Particle
Events and Flares (FORSPEF) tool (Papaioannou et al., 2015; Anastasiadis et al., 2017) and
the Space Radiation Intelligence System (SPRINTS) framework (Engell et al., 2017).

A wealth of statistical studies has indicated the dependence of the probability of occur-
rence of SEP events on the magnitude and the longitude of the SF (Kurt et al., 2004; Belov
et al., 2005; Belov, 2009), and the relation between the peak proton flux and the velocity
of the CME (Kahler, 2001), as well as the magnitude of the SF (Cane, Richardson, and
Von Rosenvinge, 2010). It has also been shown that SEP events are related to both type II
and type III radio bursts (Miteva, Samwel, and Krupar, 2017). However, most studies are
limited to two-dimensional (2D) correlations. In addition, similar coefficients are identified
for the pair-wise correlation of the SEP peak intensity (at E > 10 MeV) to both the SF mag-
nitude and the CME speed (Dierckxsens et al., 2015; Papaioannou et al., 2016; Paassilta
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et al., 2017; Belov, 2017), while the situation is further complicated by the fact that the so-
lar parameters are not independent. To this end, Trottet et al. (2014) performed an analysis
with partial correlation coefficients in order to separate the effects of correlations between
the solar parameters themselves. The next step was to investigate possible 3D relationships
among three numeric variables projected in two dimensions. With such a study it was veri-
fied that the combination of strong SFs and fast CMEs results in enhanced radiation storms.
Furthermore, it was shown that strong SFs result in enhanced radiation effects even when
associated with moderate CMEs. In addition, these strong SFs can lead to major radiation
storms even when they are not situated on the west part of the visible solar disk (Papaioannou
et al., 2016). Therefore, aiming at higher dimensional order correlations seems to be the way
forward. Given the complexity of the parent solar events of SEPs (e.g. SFs, CMEs) and the
different variables (e.g. Geostationary Operational Environmental Satellites (GOES) peak
photon flux, longitude of the SF, velocity and width of the CME) that give rise to their peak
proton flux, possible new methods for the nowcasting of SEP events have to be associated
with more accurate mathematical methods of statistical analysis.

To this end, one method that can be used is the principal component analysis (PCA),
a multivariate statistical technique that is used to examine the interrelations among a set of
variables (e.g. a dataset) aiming to identify the underlying structure of those variables (Jol-
liffe, 2002). In particular, it extracts the essential information hidden in the dataset, repre-
sents it as a set of new orthogonal variables, called principal components (PCs), and displays
the pattern of similarity of the observations and of the variables as points in maps (Abdi and
Williams, 2010). The PCA has often been used in several diverse scientific fields, since it
is a straightforward, non-parametric method of extracting relevant information from multi-
variable datasets (Shlens, 2014). Recently, this method was applied to radio data (i.e. type II
and type III burst identifications) and was proven to lead to promising results (Winter and
Ledbetter, 2015). Accordingly, the goal of this article is to use the PCA in order to classify,
derive, and test a possible index (I ) for the nowcasting of the SEP events.

2. Data and Methods

2.1. A Database of SF, CME, and SEP Events

Recently, we presented a new catalog of SF, CME, and SEP events, spanning over almost
three solar cycles from 1984 to 2013 (Papaioannou et al., 2016). This database includes a
total of 20498 SF, 3680 CME, and 314 SEP events.1 The relevant solar information incorpo-
rated in the catalog (for both SEP and non-SEP events) comprises a) peak soft X-ray (SXR)
flux, b) longitude, c) latitude, d) SXR fluence, e) rise time, and f) duration of the parent SF,
as well as g) the velocity and h) the width of the associated CME. For the SEP events, the
peak proton flux and the fluence were determined for four integral energy channels (E > 10,
>30, >60 and >100 MeV) for all SEP events with a peak proton flux, at E > 10 MeV,
of >1 pfu (pfu = particle flux unit = particle cm−2 sr−1 s−1). In order to apply the PCA,
we have identified a complete parametric grid of six solar variables (i.e. CME width/size
(s) and velocity (u), logarithm of the SF magnitude (log SXRs), SF longitude (lon), duration

1The associated CMEs span from 1997 to 2013, with the availability of the continuous SOHO/LASCO mea-
surements.
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(DT),2 and rise time (RT)) from the aforementioned database, covering the time period from
1997 – 2013. This resulted in a total of 3663 records with complete information for all six
variables, out of which 126 were SEP events and 3537 were non-SEP events.

2.2. Principal Component Analysis

The PCA is a multivariate technique that allows the analysis of a data table in which ob-
servations are described by several inter-correlated quantitative dependent variables (Abdi
and Williams, 2010). The goal of the traditional PCA is to a) reduce the number of variables
and b) detect structures in the relationships between variables, that is, to classify variables.
As concerns a), the PCA reduces the number of variables to a smaller number of uncorre-
lated variables called principal components that account for as much variance in the data as
possible. By definition, the first principal component (PC1) is the one that maximizes the
variance when data are projected onto a line, and the second one (PC2) is orthogonal to PC1,
but still maximizes the remaining variance.

Mathematically speaking, the PCA is defined as an orthogonal linear transformation that
transforms the set of initial variables into a new coordinate system such that the greatest
variance by some projection of the data lies on the first coordinate, which is called the first
principal component (PC1), the second greatest variance on the second principal component
(PC2), and so on (e.g. PC3, PC4, etc.) (Shlens, 2014).

In the most general case, a PCA transformation is defined by a set of p-dimensional
vectors (p is the number of variables under study) of loadings w(k) (k is the number of the
component) that map each row vector of the initial variables X(i) to a new vector of principal
component scores tk(i), given by

tk(i) = X(i) · w(k), (1)

in such a way that the individual component scores t inherit the maximum possible variance
from X, with each loading vector w constrained to be a unit vector. In order to maximize the
variance, the loading vectors w(k) have to satisfy the following criterion:

w(k) = arg max
‖w‖=1

{‖Xkw‖2
} = arg max

{
wT XT

k Xkw
wT w

}
, (2)

where T stands for transpose; therefore the loading vectors are eigenvectors of XT X, where
XT X itself can be recognized as proportional to the covariance matrix of the dataset X and
in this case the full principal components decomposition of X can be given as T = XW,
where W is a p-by-p matrix whose columns are the eigenvectors of XT X (e.g. Abdi and
Williams, 2010).

3. Application of the PCA

In order to perform a PCA, a dense filled parametric space is required; hence we chose from
the initial sample of the 314 SEP events (Papaioannou et al., 2016), a total of 126 SEP events

2The start time of an X-ray event is defined as the first minute, in a sequence of four minutes, of steep
monotonic increase in the 0.1 – 0.8 nm flux. The end time is the time when the flux level decays to a point
halfway between the maximum flux and the pre-flare background level. This means that the duration time
(DT) is the time difference between the end and the start time of the flare.
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Table 1 Results of the PCA.
Component Latent Variance (%) Cumulative (%)

PC1 2.485 41.42 41.42

PC2 1.314 21.90 63.32

PC3 0.997 16.61 79.94

PC4 0.649 10.82 90.76

PC5 0.447 7.44 98.20

PC6 0.108 1.79 100

presenting complete information with respect to all SFs and CME parameters, which in turn
were treated as the variables for the PCA. This analysis transforms the input vectors (here,
each SEP event is a vector in six dimensions corresponding to the six variables extracted
from the database, shown in the Appendix, Table 4) into a set of orthogonal components.
The inputs of the analysis were a) the logarithm of the peak flare flux (log SXRs), b) the
longitude of the associated flare (lon), c) the flare rise time (RT), d) the flare duration time
(DT), e) the velocity of the CME (u), and f) the size of the CME (s).

In our analysis we used the weighted principal component analysis (Abdi and Williams,
2010; Jolliffe, 2002). First, we centered our variables so that the mean of each column of
the matrix X was equal to zero. Then, we used as weights the inverse variable variances
while performing the PCA. Although the PCA is a mathematically optimal method, it is
sensitive to outliers in the data that produce large errors, which in turn the PCA tries to avoid.
In the weighted PCA, the algorithm increases robustness by assigning different weights
to the data, based on their estimated relevancy, therefore the contribution of the outliers
is reduced. Next, we computed the principal component transformation using the singular
value decomposition (SVD) of X.

Table 1 presents the outputs of the method. Column 1 provides the number of the com-
ponent, column 2 presents the corresponding eigenvalues of the covariance matrix of the
six variables of our database (i.e. the latent), column 3 gives the variance expressed in per-
centages, and column 4 shows the cumulative variance, again in percentages. PC1 explains
41.42% of the variation, with the following three components, i.e., PC2, PC3, and PC4
that correspondingly explain 21.90%, 16.61%, and 10.82% of the variation. The first four
components (e.g. PC1 – PC4) account for the 90.76% of the variation, while the other two
components (e.g. PC5 and PC6) explain the remaining ∼10% of the variation.

Based on the findings presented in Table 1, Figure 1 displays the number of the principal
component versus its corresponding eigenvalue, ordered from the largest to the smallest.
This is the so-called scree plot, and it depicts the explained variance as a function of the
principal components.

Next the correlation between the first two principal components, which seem to be the
dominant ones in our sample, and the original variables, called component loadings, is pre-
sented in Table 2. Column 1 provides the initial variables, columns 2 – 7 present the cal-
culated loadings per principal component. Focusing on the first two principal components,
it can be seen that the highest component loading for PC1 comes from the velocity of the
CME (u), the width of the CME (w), and the logarithm of the peak flare flux (log SXRs),
while PC2 loads on the flare duration time (DT) and the flare rise time (RT).

3.1. Classification of SEP Events

As stated in Section 3, it is possible to interpret the principal components in a meaningful
manner and identify structures reflected in the obtained results. To this end, Figure 2 presents
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Table 2 Principal component loadings.

Variables PC1 PC2 PC3 PC4 PC5 PC6

Velocity of the CME (u) 0.4145 0.4478 −0.0202 0.3786 0.6955 −0.0164

Width of the CME (w) 0.4474 0.3584 −0.0701 0.3938 −0.7145 −0.0293

Flare duration (DT) 0.5012 −0.4940 −0.0137 −0.0024 0.0370 0.7094

Flare longitude (lon) 0.0504 0.0330 0.9972 0.0255 −0.0360 0.0086

Flare rise time (RT) 0.4954 −0.5032 0.0012 −0.0678 0.0492 −0.7031

Log. peak flare flux (log SXRs) 0.3591 0.4156 −0.0118 −0.8345 −0.0269 0.0341

Figure 1 Scree plot of the
percentual variability explained
by each principal component.

the score3 plots of the SEP sample for different groups of the initial parameters and vari-
ables (from the top panel on the left, labeled a, to the bottom panel on the left, labeled g),
as well as the loading plot (bottom panel on the right, labeled h). The first four panels of
Figure 2 focus on the variables that stem from solar flares, while the following two panels,
i.e., e and f, display the obtained score plots on the basis of the CME characteristics. Panel a
is color-coded on the basis of the position of the parent solar flare, i.e. green stands for west-
ern longitudes (W20 – W120), blue for central longitudes (E20 – W20), and red for eastern
(E90 – E20) longitudes of the SEP associated solar flares. Next, panel b is color-coded on
the basis of the GOES peak photon flux, with blue presenting C-class, red M-class, and
green X-class solar flares. Panel c is color-coded on the basis of the solar flare rise time,
with blue denoting gradual flares (i.e. rise time ≥13 min; Park et al., 2010) and red stand-
ing for impulsive solar flares (i.e. rise time <13 min). Furthermore, panel d is color-coded
with respect to the duration of the solar flare. Blue stands for long-duration solar flares (i.e.
those lasting ≥60 min), while red represents short-duration solar flares (i.e. those lasting
<60 min). These four variables represent the timing, the position, and the magnitude of the
solar flares associated with SEPs. The next two panels in Figure 2 are color-coded on the
basis of the CME characteristics. Panel e presents halo (Earth directed, 360◦ width) CMEs
in blue and all other non-halo CMEs in red. Panel f depicts fast CMEs (≥1000 km s−1) in
blue and slow CMEs (<1000 km s−1) in red.

3In the weighted PCA, scores are calculated as follows: X − mean(X)/variance(X).
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Figure 2 Results of the PCA. From top to bottom we show seven score plots, color-coded on the basis of
different groupings of the variables (see text for details), while the bottom panel on the right depicts a 2D
biplot.
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In addition, since the peak proton flux of each of the 126 SEP events was precalculated
in our database, we distributed the events with respect to their achieved solar storm level.4

Panel g presents the score plot of all 126 events color-coded as a function of their solar ra-
diation scale, e.g. S1 in red, S2 in green, S3 in purple, S4 in gray, and minor events (with
<10 pfu at E > 10 MeV) in blue. This is directly comparable to panels a – f and demon-
strates the effect of the different groupings (classification) on the derived peak proton flux
of the SEP events in our sample.

Finally, panel h depicts all six variables of our database, represented by a vector (e.g. load
vector); the direction and length of the vector indicates how each variable contributes to the
two principal components, i.e. the loading of each variable to the first two principal com-
ponents are also presented in Table 2. In this 2D biplot (which is overlaid on the score and
the loading plot) we also include a point for each of the 3663 observations, with coordinates
indicating the score of each observation for the two principal components in the plot. These
points are scaled with respect to the maximum score value and the maximum coefficient
length, thus only their relative locations can be determined from the biplot. Red stands for
non-SEP entries in the database, while blue represents SEP related entries. The ends of the
vectors represent the correlations of each variable with each component, and the direction of
the vectors shows that the values of the variable increase in that direction. The first principal
component (PC1), on the horizontal axis, has positive coefficients for all six variables, while
the CME variables w and u, as well as the log SXRs seem to load high in PC1. At the same
time, the PC2 on the vertical axis has negative coefficients for the variables DT and RT and
positive coefficients for the remaining four variables. Inspection of Table 2 shows that PC2
significantly loads on DT and RT . The variable lon has the lowest contribution to the first
two principal components. Panel h of Figure 2 shows that the velocity of the CME (u), the
size of the CME (s), and the logarithm of the peak flare flux (log SXRs) load high in PC2,
while the duration of the solar flare (DT) and the flare rise time (RT) load high in PC1. As a
result, two groups can be distinguished.

A comparison of the score plots a – f to the score plot in panel g identifies which SEP
events will result in enhanced peak proton fluxes (at E > 10 MeV). In particular, SEP events
related to fast and halo CMEs (panels e and f), as well as solar flares of significant impor-
tance (>M class, panel b) lead to significant peak proton fluxes, categorized as S4, S3, and
S2 solar radiation storms (panel g). On the other hand, slow and non-halo CMEs associated
with small, in magnitude, solar flares (C class) result in minor or S1 solar radiation storms.
Furthermore, impulsive and short-duration solar flares (panels c and d) are mostly situated
on the western part of the visible solar disk (panel a), are associated with strong solar flares
(M and X class) and result in enhanced radiation storms (panel g). Finally, gradual and long-
duration solar flares are attributed mostly to M-class flares, with minor or S1 solar radiation
storms being prevalent.

4. SEP Short-Term Forecasting (Nowcasting) Based on the PCA

As a next step, an attempt was made to identify whether the results from the multi-variable
PCA can be used to quantify the occurrence (or lack of occurrence) of an SEP event. This
is because, as denoted above (see Section 3), the parametric space of the two principal
components may lead to a dichotomous separation between SEP events and non-SEP events.
To this end, we further investigated the nowcasting capabilities of the PCA parametric space

4http://www.swpc.noaa.gov/noaa-scales-explanation.

http://www.swpc.noaa.gov/noaa-scales-explanation
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by applying the logistic regression method (Garcia, 2004; Laurenza et al., 2009; Winter and
Ledbetter, 2015). Our results are summarized below.

4.1. Application of the Logistic Regression

At this point, we applied the logistic regression analysis, a statistical method in which there
are one or more independent variables (the PCA components in our case) that determine
an outcome that is the dependent variable (Hosmer, Lemeshow, and Sturdivant, 2013). The
outcome is a binary or dichotomous variable, i.e. there are only two possible outcomes,
1 (SEP events in our case, TRUE or success) or 0 (non-SEP events in our case, FALSE or
failure).

The main purpose of the logistic regression analysis is to find the best-fitting model in
order to describe the relationship between the dichotomous characteristic of interest (de-
pendent variable, response, or outcome) and a set of independent (predictor or explanatory
variable) variables, which can be discrete and/or continuous (Hosmer, Lemeshow, and Stur-
divant, 2013). Rather than choosing parameters that minimize the sum of squared errors
(like in the ordinary regression), the logistic regression analysis estimates the parameters
that maximize the likelihood of observing the sample values. The application of this method
generates the coefficients of a sigmoidal function to predict a logit transformation (i.e. the
inverse of the sigmoidal “logistic” function) of the probability (Harrell, 2001).

In detail, we considered a generalized logistic function to model the SEP occurrence
probability as a function of the explanatory variables, which in our analysis will be the PCA
components. The logistic function is defined as

hθ

(
g(x)

) = 1

1 + e−θT g(x)
, (3)

and is parameterized by the θ values, which are the coefficients of the function, and g(x),
which is a function of the explanatory variables xi . In connection to the principal com-
ponents, the explanatory variables xi can be defined either as vector matrix or as an n-
dimensional matrix of any linear or nonlinear relation between the principal components
(PC1, PC2, etc.). In particular, in the one-parametric linear logistic regression case, xi is
a vector matrix, 1i is the unity matrix, and g(x) = (1i , xi) = (1,PC1i ) or (1,PC2i ) or
(1,PC1i + PC2i ), and the product θT g(x) = θ0 + θ1xi , where x1, x2, . . . , xi are the ex-
planatory variables defined above. In the multivariate case (e.g. multiple logistic regres-
sion), xi is a matrix and g(x) = (1i , x

j

i ) = (1i , x
1
i , x

2
i , . . .), where each column-vector xj

can be defined in any linear or nonlinear relation between the PCs. Therefore, in the mul-
tiple logistic regression the product θT x

j

i = θ0 + θ1x
1
i + θ2x

2
i + · · · . Moreover, the inde-

pendent (explanatory) variables can be even the power terms or some other nonlinear trans-
formations of the original independent variables (interaction terms), for example, the sim-
plest case of multiple nonlinear logistic regression with two explanatory variables will have
θT g(x) = θ0 + θ1x

1
i + θ2x

2
i + θ3x

1
i x

2
i . In our analysis we applied different logistic regression

probabilistic models based on the selection of the function g(x) to estimate their accuracy
and their categorical scoring in every case.

To estimate the coefficients θ of the logistic function, we used the principle of maxi-
mum likelihood, therefore we need to minimize the negative log likelihood function (i.e. the
cost function), given the current training set (Shevade and Keerthi, 2003). For the logistic
regression, the cost function is defined as

J (θ) = − 1

m

m∑

n=1

y(i) log
(
hθ

(
x(i)

)) + (
1 − y(i)

)
log

(
1 − hθ

(
x(i)

))
, (4)
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Figure 3 Box plots of the principal component score values for the non-SEP and the SEP events separately.
The red line inside the box indicates the median of the distributions, the bottom and top edges of the box
indicate the first and third quartiles, respectively (i.e. 25th and 75th percentile), and the outermost lines
indicate the maximum and minimum values of the distribution without the outliers, which are depicted with
red crosses (panel on the left-hand side). The resulting fitting from the logistic regression is shown in the
panel on the right-hand side. See text for details.

where y denotes the actual values and h the values that result from the logistic function;
this is a convex cost function that can be derived from statistics using the principle of maxi-
mum likelihood estimation (Govan, 2006). To minimize the logistic regression cost function,
we use an advanced cost minimization algorithm that is based on the Broyden–Fletcher–
Goldfarb–Shanno (BFGS) quasi-Newton method (Head and Zerner, 1985; Schraudolph, Yu,
and Günter, 2007).

5. Possible Index for the Prognosis of SEP Events

5.1. Logistic Regression with One Predictor or Explanatory Variable

In this scheme we produced an index (I ) from the estimated principal components of the
flare and CME parameters of Section 3. Our purpose was to determine if such an index
could be used for the forecasting of the occurrence of SEPs. In order to effectively use the
new index for SEP forecasting, there should be an apparent separation between the two cat-
egories, i.e. the non-SEP events and the SEP ones, based on the distribution characteristics
(mean value, variance) of each case. With the use of box plots, we show in Figure 3 the
distributions of the first three principal components (e.g. PC1, PC2, and PC3) for the two
separate categories (responses). For PC1 and PC2, the SEP events are clearly separated from
the non-SEP ones, while for the third component, there is no apparent separation. From the
results of Figure 3 (panel on the left), it is clear that one may attempt to make use of the first
two principal components as a new forecasting index. We started our analysis with PC1 of
the PCA, and we defined the index (I ) as follows:

I = PC1 = A1 · log SXRs + A2 · lon + A3 · RT + A4 · DT + A5 · u + A6 · w. (5)

The coefficients A1, . . . ,A6 are the loadings of PC1 that have been estimated from the PCA
(see column 2 of Table 2), so that most of the variance (i.e. 41.42%) of the initial obser-
vations, i.e. the SF and CME parameters (see Table 1 and Figure 1), is taken into account.
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Next, we applied the logistic regression method with one predictor (explanatory) variable in
order to identify the probability of SEP occurrence as a function of the new index I . From
the logistic regression we estimated the parameter θ that best fits the response variable, i.e.
the two categories SEP events or non-SEP events (see Equations 3 and 4). The resulting
fitting from the logistic regression is depicted in Figure 3 (panel on the right). In particular,
this panel presents the logistic regression curve that depicts the probability of having an SEP
(or non-SEP) event as a function of I , which for this example was selected to be PC1. The
θ parameter controls the characteristics of the logistic regression curve, and the blue and
red points represent the actual observations (SEPs or non-SEPs) that have to be fitted in the
probabilistic sense with the logistic function.

From this analysis we found that the cost function reaches a minimum for θ =
[−4.553,0.865] and for a probability threshold of 50%, which is expressed as an index
value of I = 5.264, 27.0% of the SEP events lie above and 99.2% of the non-SEP ones lie
below this index value. These measures can be better realized by constructing a confusion
matrix (a special type of contingency table; Anastasiadis et al., 2017; Davis and Goadrich,
2006) for a probability threshold of 50%, therefore, we have 34 true positive (TP, a) pre-
dictions, 27 false positive (FP, b) predictions, 3510 true negative (TN, d) predictions, and
92 false negative (FN, c) predictions. From the above values we calculated the probability
of detection (POD, a/a + c) and the probability of a false alarm (PFA) or false-alarm rate
(FAR, b/a + b) (Balch, 2008; Anastasiadis et al., 2017). We found that with the use of the
first principal component as a predictor variable, we have a relatively high false-alarm rate,
FAR = 44.3% (27/61) and the probability of detection was low, POD = 27.0% (34/126).

We additionally used as an index PC2 and a linear combination of PC1 and PC2 (i.e.
PC1 + PC2), and we again applied the logistic regression method with one predictor (ex-
planatory) variable, in order to investigate if the predictions change qualitatively. From the
logistic regression we found that using I = PC2, the overall accuracy of the scheme dropped
significantly, resulting in a POD = 15.1%. It seems that the use of the second component as
an index cannot effectively separate our sample into the two categories. As a next step, using
I = PC1 + PC2, we found results improved to those obtained for I = PC1. The POD was
43.7% (55/126) and the FAR was 31.25% (25/80). The probability of detection improved
significantly and, at the same time, we gained a relatively lower FAR.

5.2. Multivariate Logistic Regression

As a next step, we applied a multivariate logistic regression (Tabachnick and Fidell, 2007) to
examine the SEP occurrence probability as a function of an index with multiple explanatory
variables. In this case, the index was treated as a multidimensional array comprising the
principal components of the PCA. We started with the simplest case, which is the 2D logistic
regression of the first two principal components. In this case, the index is defined as I (2) =
[PC1,PC2], where PC1 and PC2 are arrays of the first and second principal component score
values, respectively, and their dimension is 1 × N , where N is the length of our dataset (i.e.
126 SEPs + 3537 non-SEPs = 3663 records), therefore, I is a 2 × N dimensional array.
The application of the multivariate logistic regression is based on the method presented in
Section 4.1.

In the left-hand side of Figure 4 we show a scatter plot of the two principal compo-
nents. Red circles depict the non-SEP events and blue crosses the SEP events. From the
characteristics of this figure, it is clear that the use of the two principal components in a
multivariate regression can effectively separate the events into the two categories of non-
SEPs and SEPs. Although there is significant scatter from the perfect dichotomous predic-
tion case, SEP events tend to be grouped in a region that can be visually separated from
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Figure 4 Scatter plot of the SEP (blue crosses) and non-SEP (red circles) events as they map on the projected
space of PC1 and PC2. The decision boundary for a pth = 50% of the I (2) scheme is depicted in the left-hand

panel, while three decision boundaries for pth = 25%, 50% and 75% of the I (2+O2) scheme are depicted in
the right-hand panel. See text for details.

the region where non-SEPs appear. We performed the multivariate logistic regression in the
first two principal components, and we found that the cost function reaches a minimum for
θ = [−5.555,1.042,0.719]. In Figure 4 we show with a straight line the resulting decision
boundary for a probability threshold of 50%.

From the results of the multivariate logistic regression we constructed the confusion ma-
trix, and we found 69 TP, 57 FN, 3507 TN, and 30 FP predictions. From the confusion
matrix we also calculated the POD and the FAR of this scheme for a probability threshold
of 50%. We found that the POD of this scheme was 54.8% (69/126) and the FAR was 30.3%
(30/99), which are both significantly better than the POD and FAR that we estimated with
the logistic regression of the 1D index in the previous section.

Furthermore, we extended our analysis using different combinations of the princi-
pal components to construct the index as a matrix. We started by adding to the matrix
I (2) = [PC1,PC2] one component at the time until we included all six components (e.g.
I (6) = [PC1,PC2,PC3,PC4,PC5,PC6]). In every case, we performed a multivariate logis-
tic regression, and we calculated the POD and FAR for every new index to examine its
performance. The results for the derived POD and FAR are presented in Table 3. From this
analysis it seems that the resulting POD and FAR do not change significantly with the ad-
dition of more components to the index matrix. The best POD is obtained for I (2), while
the best FAR is obtained for I (3). The optimal score for each index can be traced using the
Heidke skill score (HSS), which is a measure of skill in forecasts and quantifies the ability
of achieving correct predictions with respect to chance. For a probability threshold of 50%,
we found that the best optimal HSS is obtained for I (3), while we have the next best score
for I (2) (see Table 3).

5.3. Multivariate Logistic Regression with Interaction Terms

In this part of our analysis, we performed a logistic regression with the inclusion of in-
teraction terms in the index matrix. The interaction terms are usually either square (or
higher order) values of the initial explanatory variables (i.e. [PC12,PC22, . . .]) or products
of the explanatory variables (i.e. [PC1 ·PC2,PC2 ·PC3, . . .]). With this method, the decision
boundary is a nonlinear function, and its parametric form will depend on the selection of the
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Table 3 Summary of categorical scores per scheme.

Index Form (scheme) POD (%) FAR (%) HSS

I (1) [PC1] 26.98 44.26 0.3490

I (2) [PC1, PC2] 54.76 30.30 0.6013

I (3) [PC1, PC2, PC3] 55.56 28.57 0.6134

I (4) [PC1, PC2, PC3, PC4] 53.97 29.17 0.6007

I (5) [PC1, . . ., PC5] 53.17 29.47 0.5943

I (6) [PC1, . . ., PC6] 53.17 28.72 0.5973

I (2+O2) [PC1,PC2,PC12,PC22,PC1 · PC2] 56.35 31.07 0.6080

I (3+O2) [PC1,PC2,PC3,PC12,PC22,PC32,PC1 · PC2] 58.73 24.49 0.6502

interaction terms. For example, in Figure 4 (panel on the left), where no interaction terms
are included in the model, the decision boundary is a straight line (PC2 = a + b PC1) that
separates SEPs from non-SEPs. Higher-order terms would lead to complex boundaries with
higher-order parametric forms.

In addition, we examined if the inclusion of the interaction terms into the logistic re-
gression analysis scheme leads to an improvement of the prediction accuracy of our model.
We started from the simplest case of I (2) = [PC1,PC2], and we added interaction terms
in the form of I (O2) = [PC12,PC22,PC1 · PC2]. The new index matrix becomes I (2+O2) =
[PC1,PC2,PC12,PC22,PC1 · PC2]. We found that the cost function becomes minimum
for θ = [−6.043,1.379,1.188,−0.041,−0.058,−0.105]. Additionally, we found 71 TP,
55 FN, 3505 TN, and 32 FP predictions that yield a POD of 56.35% (71/126) and an FAR
of 31.07% (32/103) (for a threshold set at 50%). The HSS was found to be 0.608, therefore
the performance of this scheme seems to be better (see Table 3). Figure 4 (panel on the
right) illustrates the resulting decision boundaries for three different probability thresholds
(i.e. pth = 25%, 50%, and 75%) for this scheme. It seems that the inclusion of the nonlinear
terms in the index matrix, which also results in a nonlinear decision boundary, improves the
overall performance of our method.

We further extended this method by considering more principal components in the in-
dex matrix and by adding the corresponding interaction terms. Since the complexity of the
method increases significantly with the addition of new components, we limited our analysis
up to the fourth principal component. From this analysis, we found that after the inclusion
of the fourth component and its interaction terms in the model, the performance remained
almost constant.

6. Categorical Scores

The schemes with the best skill score were I (3) and I (3+O2) (see Table 3). As a result, we
calculated their categorical measures as a function of the probability threshold. That is, we
treated pth as an independent parameter (not set to 50%, as was the case in Section 5) ranging
between 0.0 to 1.0 with a step of 0.1. For both schemes we then constructed the performance
categorical quality measures POD, FAR, and HSS, which are considered as functions of pth

(Laurenza et al., 2009; Anastasiadis et al., 2017).
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Figure 5 Categorical scores (POD, FAR, HSS; see text for details) for I (3) and I (3+O2) .

Figure 5 depicts the categorical quality measures for I (3) (panel on the left) and I (3+O2)

(panel on the right) versus the pth level. POD (blue line), FAR (red line), and HSS (orange
line) are presented in each of the two panels. Both POD and FAR are significantly high and
tend to decrease when pth increases. The optimal skill score for pth is a settlement in order to
achieve maximum POD, minimum FAR, and optimized HSS. For both schemes, the optimal
skill score is achieved at a range of pth from 25% to 40%. The optimal HSS is observed at
pth = 0.33 (HSS = 0.6411) for I (3) and at pth = 0.25 (HSS = 0.6579) for I (3+O2). In turn,
this results in a POD = 65.87% and an FAR = 35.16% as well as a POD = 77.78% and an
FAR = 40.96%, respectively.

7. Discussion and Conclusions

We analyzed 126 SEP events and 3537 non-SEP events with complete solar associations
expressed in six variables, i.e. a) the logarithm of the peak flare flux (log SXRs), b) the
longitude of the associated flare (lon), c) the flare rise time (RT), d) the flare duration (DT),
e) the velocity of the CME (u), and f) the size of the CME (s), occurring in 1997 – 2013.

Next, we applied a PCA to the SEP events of our sample and showed that significant
radiation storms, categorized as S4, S3 and S2, are related to fast and halo CMEs, as well as
SFs of class higher than M. The PCA also showed that impulsive and short-duration, strong
(M- and X-class) SFs mostly situated on the west part of the visible solar disk also result
in enhanced radiation storms, as illustrated in the different panels of Figure 2. These results
agree with and even summarize earlier independent studies (e.g. Belov et al., 2005; Cane,
Richardson, and Von Rosenvinge, 2010; Huang, Wang, and Li, 2012; Park and Moon, 2014;
Papaioannou et al., 2016; Belov, 2017; Paassilta et al., 2017), but contradict the results
presented by Park, Moon, and Lee (2017), who concluded that the longitudinal separation
angle is the most important parameter with respect to the SEP peak flux.

Furthermore, using the outputs of the PCA, a new index (I ) was introduced and tested
with respect to its predictive capabilities. It was demonstrated that it holds prognosis po-
tential for SEP events. Employing the logistic regression analysis, we introduced several
different schemes for the I index, starting from one predictor or explanatory variable, going
to multiple explanatory variables, treating I as a multidimensional array. We found that the
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statistical classification of SEP events versus non-SEP ones, based on the PCA and the re-
lated solar variables, for a threshold pth = 50% leads to an FAR of 24.49% while correctly
predicting 58.73% of solar events as SEP versus non-SEP events (see Section 5).

As a final step, when we treated the probabilistic threshold as an independent vari-
able ranging from 0.0 to 1.0 and calculated the categorical measures (POD, FAR, and
HSS) we showed that the optimal skill score was achieved at a range of pth from
25% to 40% for two configurations of I , i.e. I (3) = [PC1,PC2,PC3] and I (3+O2) =
[PC1,PC2,PC3,PC12,PC22,PC32,PC1 · PC2]. In particular, for I (3) this was achieved at
pth = 0.33 (HSS = 0.6411) with POD = 65.87% and an FAR = 35.16%. At the same time,
for I (3+O2), the relevant outputs were pth = 0.25 (HSS = 0.6579), with POD = 77.78% and
an FAR = 40.96%. These results show that when the PCA is applied to SEP events and their
parent solar sources, as defined by a multi-variable data grid parameterized from SF (lon-
gitude, maximum soft X-ray flux, rise time, and duration) and CME (velocity and width)
characteristics, together with the logistic regression analysis, it is possible to predict the oc-
currence (or lack of occurrence) of SEP events. Our results are comparable to the derived
POD and FAR of the Empirical Model for Solar Proton Events Real Time Alert (ESPERTA)
concept, which used a logistic regression scheme on basically two parameters: i) the SXR
fluence and ii) the radio fluence at ≈1 MHz for three different longitudinal bands (Alberti
et al., 2017). This highlights the fact that the outcome of any treatment (e.g. PCA with logis-
tic regression or logistic regression alone) depends on which solar observables (variables)
are used.

Furthermore, it is noteworthy that most of the SEP prediction concepts that rely on em-
pirical or semi-empirical relations are in need of solar observables i.e. precursor data, which
in turn are used as variables (inputs). Therefore, if no identification of an SF or a CME is
available (for example, if a behind-the-limb SF is taking place) and an SEP does occur, such
an event will be missed (not forecasted). At the same time, Posner (2007) has proven the
concept of short-term forecasting of the appearance and intensity of solar ion events using
in situ relativistic electron recordings, making use of the higher speed of these electrons
propagating from the Sun to 1 AU.

Our results should be considered as a first step toward an integrated SEP event prognosis.
Given the current wealth of observations at hand and the association of SEP events with both
SFs and CMEs, multi-variate methods may hold a key for future advances in the field. It has
been noted by Winter and Ledbetter (2015) that when applying PCA to type II bursts, it
was possible to achieve a POD = 62% and an FAR = 21% (their Table 8). Further work
is necessary in order to refine the proposed index (I ) in terms of the variables used in the
PCA. For example, the duration of the SF (DT), as well as the width of the CME (s), are
particularly uncertain parameters. Furthermore, it is desirable to go beyond the nowcasting
of the occurrence (or lack of occurrence) of SEP events and try to quantify the expected
impact in terms of the expected radiation storm level.
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