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Kinetic Description of Particle Interaction with a
Gravitational Wave
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The interaction of charged particles, moving in a uniform magnetic field,
with a plane polarized gravitational wave is considered using the Fokker—
Planck-Kolmogorov (FPK) approach. By using a stochasticity criterion,
we determine the exact locations in phase space, where resonance overlap-
ping occurs. We investigate the diffusion of orbits around each primary
resonance of order m by deriving general analytical expressions for an
effective diffusion coefficient. A solution of the corresponding diffusion
equation (Fokker—Planck equation) for the static case is found. Numeri-
cal integration of the full equations of motion and subsequent calculation
of the diffusion coefficient verifies the analytical results.
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1. INTRODUCTION

The many efforts that have been made to detect gravitational waves have
so far given no convincing evidence that they have actually been seen [1].
This is due to the fact that not only is their amplitude very small [2], but
it is highly possible that some kind of damping mechanism operates on
them as they travel through space [3-5]. This damping may originate in
the interaction of the gravitational wave with interstellar matter [6,7].

In a recent paper [8], hereafter is referred to as Paper I, the problem
of the interaction of a charged particle with a gravitational wave, in the
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presence of a uniform magnetic field, has been considered for various di-
rections of propagation of the wave with respect to the magnetic field. It
was found that in the oblique propagation case the motion of the particle
becomes chaotic and may be considered as a diffusion in momentum space,
provided that its initial momentum is sufficiently large.

In order to address in detail the interaction of charged particles with
a gravitational wave, one should try to calculate the diffusion rate (in
momentum space) of the particles which follow chaotic trajectories. This
task involves the derivation of a Fokker—Planck (Fp) type diffusion equation
and the calculation of the corresponding diffusion coefficient [9].

In the present paper we investigate the energy diffusion of charged
particles in the presence of a uniform magnetic field, B = Bgé,, due to
their non-linear interaction with a linearly polarized gravitational wave,
propagating obliquely with respect to the direction of the magnetic field
(20° < < 60°). The analysis is carried out in the framework of the weak
field theory, considering the gravitational wave as a small pertubation in
a flat space time. We use the Fokker—Planck—Kolmogorov (Frk) approach
and refer to the globally stochastic regime, where overlapping of many res-
onances occurs. In a partially stochastic regime the FPk approach cannot
be applied, as the particles do not undergo “normal diffusion” (random
walk process) but rather follow Levy statistics [10]. This statistical ap-
proach is possible only after deriving general formulas that hold for every
value of the perpendicular energy of the charged particle and not just for
the highest values (the simplified case that has been considered in Paper
D).

The motion of a charged particle in curved spacetime is given, in
Hamiltonian formalism [11], by the differential equations

dx* _ OH dmy _  OH )
dv  om’ dv  oxr’

where 7, are the generalized momenta (corresponding to the coordinates
x*) and the super-Hamiltonian H is given by the relation

H = -;—gtU(ﬂu_ eA“)(nU_ CAU) = _;_ (2)

(in a system of geometrical units where 7 = ¢ = G = 1). In eq. (2)
d'’ denotes the components of the contravariant metric tensor, which are
defined as

gw — nuu + huu) (3)

with ' = diag(1,—1,—1,—1) and |h*"| < 1. A, is the vector potential,
corresponding to the tensor Fy, of the electromagnetic field in a curved
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spacetime. The mass of the particle is taken equal to 1. For the specific
form of the magnetic field we may take

A= 4" =43 =, A* = Box'. (4)
2. THE STOCHASTICITY CRITERION

We consider the case of a charged particle moving in the curved space-
time background of a linearly polarized gravitational wave, which propa-
gates obliquely with respect to the direction of a uniform and static, in
time, magnetic field, B = Bpé,. The non-zero components of the metric
tensor are presented in Paper I (see references therein) and we normalize
lengths and time to ¢/Q, where Q is the Larmor angular frequency. Fur-
thermore we eliminate one degree of freedom from our dynamical system
through the canonical transformation

0 3
X — cosOx’, w3 = — cos 013,

83

0 0
S = x, mo = I3+ 1o .

(5)

Accordingly, the problem of the motion of a charged particle in a gravita-
tional wave is reduced to a two-degrees of freedom dynamical system [8],
and the super-Hamiltonian (2), in this case, is written in the form

1 , 11+ asin’osin(v@® ,
H==I1}-~ . e
277 2 1+ asin(v@®
1 (xH? 11+ acos’0sin(v@® ,
- = - - = - cos” 613
21— asin(v® 2 1+ asin(v@ )
1 oasin 26 cos 6 sin
b1l 0sin(0® (6)
2 1 + asin(v®
where we have set
= sinox' — . (7

In eq. (6) ais the normalized, dimensionless amplitude of the gravitational
wave and v = ®/Q denotes the dimensionless frequency.

The dynamical system under consideration possesses chaotic regions
in phase space when o # 0[7,8,12]. In order to examine the transition from
regular to stochastic motion we use Chirikov’s overlap criterion [13,14] to
obtain the lowest amplitude of the gravitational wave, onr, above which
the dynamical system shows prominent chaotic behaviour.
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We first write the Hamiltonian (6) in action-angle variables through
the canonical transformation

= @m?sind, m = (211)"? cos D, (8)

and, since a < 1, we make the approximation

1
——————< =~ | F asi . 9
1 + asin(v@® asin(v® ©)
The resulting Hamiltonian is of the form

H = Ho + aH; sin(v®). (10)

We expand the trigonometric term of the perturbation in a Fourier series
[7]. After further manipulation, the Hamiltonian (10) is written in the
form

1
H = — sin” 0I37 — I,
5 .
o 00
+2|-n sin® 6 z :J/(ur)sin(/SI —v®)
/m- o
00
+ I1(1 + cos’ 0) z:[zJ;(ur) + JAvr) ] sin(A — v®)
/m- o

00
+ cos” 0sin” 013 E JAvr) sin(AD — vd)
)
</
+ I3 sin26cos 6 E = JAvr) sin(A — v®) (11)
’s- o v

where JA&) is the Bessel function of order Z r = (21;)"?sin6 is the
linear momentum along the x-axis and a prime denotes differentiation with
respect to & = vr. The perturbation term of the Hamiltonian function H;
depends on an infinite series of linear combinations of the angles &' and &,
a fact that leads to resonances. In this case, Chirikov’s criterion states that
chaos appears when the width of a resonance, 8/;, becomes larger than or
equal to the distance between two consecutive first order resonances, A 1.

By a near identity transformation we remove all trigonometric terms
from H;, except from the one of order /= m, which generates the princi-
pal resonance and corresponds to the family of islands whose width enters
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in the stochasticity criterion [7]. The resulting Hamiltonian contains only
the integrable part Hy and the dominant term and it is therefore called
the resonant Hamiltonian, Hr [15,16]. Performing the canonical transfor-

mation o
-, I, =1,
m
. . (12)
=9, L=n+2n,
m

the resonant Hamiltonian is finally written in the form

1 .2 * L :
Hr = 7“sm 0| I, — — 1) — I
m

81* — 81—

2
g -2 2 "
~-5 [11 sin” 0J,, (&) — [1(1 + cos™ 0)[2J,, (&) + T (&) ]

. * L
— cos? 0sin” 0(1; — — 11)* T (&)
m

+ z( I; — 511) cos’ em: J,,,(g)] sin(md'7). (13)

Since & is a cyclic coordinate, the corresponding generalized momentum
I; will be a constant of the motion, so that the dynamical system has one
degree of freedom. Hamiltonian (13) describes the motion of a particle
around each first order resonance. Using the resonant condition

dd! de
m =V
da da
1

and the fact that Ho = 7, we find the order m of the dominant resonance,

(14)

m = v(1+ 21)"?sine. (15)

In this case, m # vr and not m =~ vr, which was the case considered in
Paper I, for 71 > 1. This is because in the present paper we are interested
in a general formula for the stochasticity threshold, valid for every 7;. The
distance A I} between two consecutive first order resonances is calculated
by eq. (13) and the fact that Am = 1,

(1 + 21

AL = . , (16)
vsin 6

while the corresponding resonant width 81 is given by [15,16]

8am? .
8N = | = =1 (m* = v’sin® 0) (1 + cos’ 0)J,,
v'sin 6

1/2

+ (4m? — v’ sin’ 0) cos® 0, | (17)
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Then Chirikov’s criterion, 811 > A I, reads
1 . .
— < 8| (m* = v*sin” 0) (1 + cos” 0)J, + (4m> — v’ sin” 0) cos” 0J,, | . (18)
a

The above relation is the most general form of the stochasticity criterion
and holds for any value of 7;, v and 6. We see that for I; > 1 it reduces
to

1
8uvr?l4cos® 0J,, + (1 + cos® 0)J, | > - (19)
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Figure 1. The stochasticity threshold a:n: versus the order of resonance m for different
values of the wave propagation angle 6 and v = 1.8

which is the corresponding result of Paper I. In this approximation, we
may obtain an asymptotic form of the stochasticity threshold, by taking
r —o0 [8]. We obtain

1
(vr)®/3 cos? 6

a>0.07 (20)

We see that the stochasticity threshold is a rapidly decreasing function of
v and r. Therefore chaotic behaviour will appear, no matter how small
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the amplitude of the gravitational wave might be, provided that the initial
momentum of the particles is sufficiently large. It is clear that in this case
the high order principal resonances will overlap. On the other hand, if I
is small the chaotic behaviour will appear only if the wave amplitude is
quite large and the relative frequency small, leading to the overlapping of
the low order resonances.

Following the above argument, in Figure 1 we give the stochasticity
threshold, ounr, as a function of the low order resonance m, for different
values of the wave propagation angle 6 and v = 1.8. Notice that ahr < 0.2
and decreases rapidly as the order of resonance m increases.

3. THE FPK APPROACH

3.1. Analytic results

Following the Fpk approach [9], a diffusion equation for the energy
distribution function of particles averaged over the phases, F([i, t), can
be written for the system described by the Hamiltonian (13),

oF _ %i(z)(h)a—f). 1)

To lowest order in a, eq. (21) describes a diffusion process in the variable
I\ = p2/2 at constant I3. The actual expression for the diffusion coefficient
D(I1) depends on the assumptions for the phase dynamics [9,17]. In the
random phase approximation, it reduces to the quasilinear result [18,19]

1*
D(I)) = nd 212le 8( d(i ) (22)

which in our case reads

D)= na® Im’H  8m*— o*sin® o[l + 201]). (23)

m

Around each principal resonance of order m we may associate an effective
diffusion coefficient, D, , by averaging D(I) over the region between two
successive first order resonances:

m+1
Dm =(D(I))) = EI D(I)dm. (24)
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To calculate D,, we use the facts that Am = 1 and

O(m — mo)

lf'(mo)l

where m is a simple zero of f (m) which, in this case, is given by eq. (15)
[20]. Accordingly, we obtain

3(f(m)) = (25)

1
Dy =(D(Iim)) = Enazmlem , (26)
where I1,, is the value of I at each principal resonance of order m, which
is found from eq. (15) to be of the form

1 m?
Iim =7 77— -1 27
"2 ( v? sin” 0 ) 27)
and Hi, corresponds to the perturbation term of the Hamiltonian (13)
for I = I1,,. Equation (26), in terms of I, , reads

D, = ‘;‘nazvsin o(l + 211,,,)1/2><

X [Lim (1 + cos® 0)J, + (3 + 411,,) cos® 0, . (28)

We use the above relation in order to determine the analytical values of the
diffusion coefficient, as it holds for any value of the parameters. It is clear
that the diffusion coefficient scales with the wave amplitude o and, through
the value of I, , with the order of resonance m. The diffusion coefficient
reaches high values at low order resonances (small 71, ) when the wave
amplitude is large. In the opposite case (small o) the diffusion becomes
effective in the range of high order resonances and, thus, in large 7;. In
both cases for a given « the diffusion increases as the action increases.

3.2. Numerical results

For the sake of numerical simplicity and in order to speed up numerical
integration we investigate the case of low order resonances using o = 0.2
and v = 1.8 throughout the whole of our numerical calculations. Since the
results scale with the amplitude of the wave, a, the diffusion coefficient
calculated is also expected to describe, at least qualitatively, the diffusive
acceleration at more realistic values of a.

In order to verify that diffusion of particles due to their interaction
with the gravitational wave does occur, we follow the orbits of a particle
distribution on a surface of section, defined as the surface vx® = 2nz. In
Figure 2 the m versus x' plot and the time variation of the action /1 of
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Figure 2. Surface of section plots for the case « = 0.2, v = 1.8, 6 = 20°. N = 1000
orbits with initial /1 = 106.5 are presented: (a). The m1 versus x' plot. (b). The time
variation of the action I, of the distribution of orbits.
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the distribution of orbits (N = 1000 with initial 7; = 106.5) are presented
for the case 6 = 20°.

Notice the distortion of the principal resonance (of order m = 9) due
to the overlapping of the secondary resonances. This is due to the fact that,
for the parameters used, the wave amplitude is large. Thus the overlapping
occurs in a small time-scale. The diffusion in energy, in this case, is verified
from the considerable spread around the initial action value 7I; = 106.5.

The numerical estimation of the diffusion coefficient is based on the
integration of the Hamilton’s equations of motion for a number of particles
(N = 1000), having the same initial action /1 and uniform angle distribu-
tion. The local diffusion coefficient is related to the average variations of
the action I; through the expression [18,19]

17 m=6
€ §
o
o
€ ]
[
0
o -
c
Re]
]
3
E
=1
Q107 =
LA AR R A A NN RS R AR ARA AN RIRIRRRARRRY
0.0 1.0 2.0 3.0 4.0 5.0 6.0
time
Figure 3. The numerical estimated local diffusion coefficients for 71 = 3.0 and 7.0,
corresponding to m = 4 and 6 respectively, for 6 = 60° and v = 1.8.

2 2

where

N
(AL = Z—IL]_VI]& (30)

Jj=1
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and

O ()
((A11)2)=21(t) Nll()] _ (31)

j=1

We have performed a number of computational runs, varying the ini-
tial value of I (2 < I < 128) and the propagation angles (20° < 6 < 60°).
In Figure 3 the numerical estimated local diffusion coefficients for 71 = 3.0
and 7.0, corresponding to m = 4 and 6 respectively, and for 6 = 60° are
presented. Notice that the integration time is short, as for longer times
diffusion over a large number of harmonics dominates, causing strong vari-
ations to the estimation of D. The plateau value of D is chosen as the
diffusion coefficient for the above actions.

In Figure 4 the analytical and the numerical effective diffusion co-
efficient, as a function of the action 7;, for different angles 6 is shown.
Notice that the diffusion coefficient depends strongly on the propagation
angle. There exists a good agreement between the numerically and analyt-
ically estimated values, indicating a power law dependence of the diffusion
coefficient upon the action, of the general form

D(I1) = dy IF, (32)

where the values (analytically and numerically estimated) of the constant
do and the index k, with respect to the propagation angle 6 are given
in Table 1. The relative error between the analytically and numerically
estimated values of the index k varies from 7% to 24%.

Table 1. The analytically and numerically estimated values of dyp and
the index k with respect to the propagation angle 6.

0 do k

analytical [numerical |analytical |numerical

20° 0.095 0.037 2.254 2.455
35° 0.076 0.091 2.223 2.153
45° 0.052 0.025 2.160 2.407
60° 0.017 0.020 2.037 1.980

4. SOLUTION TO THE DIFFUSION EQUATION

We can easily solve the diffusion equation for the static case, i.c.
O0:F = 0. Then eq. (21) becomes

2
ppy L 42U dF

0. 33
dr} drn,  dn (33
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Figure 4. The diffusion coefficient D (1), as a function of the perpendicular energy of
the charged particle, I for different angles of propagation, with « = 0.2 and v = 1.8.
The [J are analytical values and the A are numerical ones: (a). For 6 = 20° and 35°.
(b). For 6 = 45° and 60°.
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We substitute the diffusion coefficient from eq. (32) to find the solution
in a power law form
(k- 1)

Fy=—"—1 (34)

k
with F, constant. We must emphasize that the above solution is valid for
relatively small values of /1. In the case of very large energies (/1 > 1) an
analytic solution of the diffusion equation can be found, by considering the
asymptotic form of the effective diffusion coefficient in the large energies
approximation. For I; > 1, we have r —>00 and therefore m = & = vr.
Then the perturbation term of the Hamiltonian (13) reads

Hyi = — L [(1+ cos® 0)J, (m) + 4cos® 0J,, (m)]. (35)

In this case, the Bessel equation becomes

" Jy:
Iy m) = —Zedi), (36)
m
and the asymptotic expansions
Im(m) ~ 0.45m "3, J) (m) ~041m™ %3, (37)

hold [21]. Therefore, in the large energies approximation, the effective
diffusion coefficient reads

5/6 9/6 13/6

Dm(I])_AII —BII +C11 y (38)
where
A4 =221 usin 04>,
= 22 16P vsin 0ab, (39)
C =22 usin ob°,
and
041 1 1+ cos’o 1.8 1 cos’e
= Ss/6 s5/3 . 5/3 , 7 b= 16 5 s, (40)
2 v’/° sin”° 6 2 v’/ sin’° 6

Accordingly, the diffusion equation, in the static case, reads

F J‘ dl (41)
=c
A115/6 3119/6+ C1113/6
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where ¢ is an integration constant. Evaluation of the integral on the r.h.s
of eq. (41) is possible only when I} # (a/b)*/?, for which the energy dis-
tribution function appears a simple pole of order 2 [22]. In this case, we
obtain

1/6 1/6 1/6
6c I d I, +d I
F==p —'7+ 3—( ln—'1/6—+ 2tan” —I—) . (42)
C (Cl—bll ) 4a 11 —d

where d = (a/b)"/*. This result is simplified considerably in the perpen-
dicular propagation case, i.e. 6 = x/2, for which eq. (41) gives

6¢c 1/6
F=al (3

5. DISCUSSION AND CONCLUSIONS

We have studied the interaction of a charged particle, with a plane
polarized gravitational wave propagating obliquely (20° < ¢ < 60°) with
respect to the direction of the ambient uniform magnetic field.

On the basis of Hamiltonian pertubation theory, previous work on
this problem shows that the motion of the particles becomes chaotic [8].
Following this, we have derived analytical expressions for the stochasticity
criterion, thus determining where, in phase space, resonance overlapping
occurs, without any assumption regarding the values of the action and the
propagation angle of the wave.

We have verified that diffusion of the particles in action 71 occurs and
we have applied the Fpk approach, in order to derive analytical general
expressions for the effective diffusion coefficient. Numerical integration
of the exact equations of motion for particle distributions with the same
initial action I; was also performed for the numerical estimation of the
diffusion coefficient.

Both methods (analytical and numerical) revealed a power law depen-
dence of the diffusion coefficient upon the action /1 giving similar results,
with small variations, on the power law index. Based on these results a
steady state solution of the Fokker—Planck diffusion equation was found.

The diffusion coefficient scales with the wave amplitude a and the
order of resonance m (and/ or through the resonance condition with the
action /). For small o the diffusion is effective in high order resonances
and thus in sufficient large actions. Diffusion of particles is present in low
order resonances (small values of the action) only when the wave ampli-
tude is large. In both cases the diffusion is increasing when the action is
increasing.
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There is also a strong relation between the diffusion coefficient and
the propagation angle. As the angle decreases, the diffusion coefficient
increases. This is due to the fact that the lower the angle, the greater is
the amplitude of the wave for which stochastic motion occurs, leading to
the fact that more resonances can overlap.

In conclusion, we believe that the Fpk approach may describe to a good
approximation the interaction of charged particles with a gravitational
wave in the framework of the weak field theory, where the gravitational
wave is just a small pertubation in a flat spacetime. It is clear that more
work has to be done in the realistic case of a curved spacetime and in the
full non-linear theory.
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