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Kinetic Description of Particle Interact ion with a

Grav itational Wave
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The interact ion of charged part icles, moving in a uniform m agnet ic ® eld,

with a plane polarized grav itat ional wave is considered using the Fokker±

P lanck± Kolm ogorov (fpk) approach . By using a stochast icity criterion,

we det ermine the exact locat ions in phase space, where resonance overlap -

ping occurs. We invest igat e the diŒusion of orbits around each primary

resonance of order m by deriving general analy t ical expressions for an

eŒect ive diŒusion coe� cient . A solution of the corresponding diŒusion

equat ion (Fokker± P lanck equat ion) for the stat ic case is found. Num eri-

cal integrat ion of the full equations of m ot ion and subsequent calculat ion

of the diŒusion coe� cient veri ® es the analyt ical resu lts.

KEY WORDS : Fokker± P lanck equat ion with magnetic ® eld

1. INTRODUCTION

The many eŒorts that have been made to detect gravitational waves have

so far given no convincing evidence that they have actually been seen [1].

This is due to the fact that not only is their amplitude very small [2], but

it is highly possible that some kind of damping mechanism operates on

them as they travel through space [3± 5]. This damping may originat e in

the interaction of the gravitational wave with interstellar matter [6,7].

In a recent paper [8], hereafter is referred to as Paper I, the problem

of the interaction of a charged part icle with a gravit ational wave, in the
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presence of a uniform magnet ic ® eld, has been considered for various di-

rections of propagat ion of the wave with respect to the magnet ic ® eld. It

was found that in the oblique propagat ion case the motion of the part icle

becomes chaot ic and may be considered as a diŒusion in momentum space,

provided that its init ial momentum is su� ciently large.

In order to address in detail the interaction of charged part icles with

a gravitational wave, one should try to calculat e the diŒusion rate (in

momentum space) of the part icles which follow chaot ic trajectories. This

task involves the derivat ion of a Fokker± P lanck (fp ) type diŒusion equat ion

and the calculat ion of the corresponding diŒusion coe� cient [9].

In the present paper we invest igate the energy diŒusion of charged

part icles in the presence of a uniform magnet ic ® eld,
®
B = B 0 Ãez , due to

their non-linear interact ion with a linearly polarized gravitational wave,

propagat ing obliquely with respect to the direct ion of the magnet ic ® eld

(20± £ h £ 60±). The analysis is carried out in the framework of the weak

® eld theory, considering the gravit at ional wave as a small pertubat ion in

a ¯ at space time. We use the Fokker± P lanck± Kolmogorov (fpk) approach

and refer to the globally stochast ic regime, where overlapping of many res-

onances occurs. In a part ially stochast ic regime the fpk approach cannot

be applied, as the part icles do not undergo ª normal diŒusionº (random

walk process) but rather follow Levy statistics [10]. This statistical ap-

proach is possible only after deriving general formulas that hold for every

value of the perpendicular energy of the charged part icle and not just for

the highest values (the simpli® ed case that has been considered in Paper

I).

The motion of a charged part icle in curved spacet ime is given, in

Hamiltonian formalism [11], by the diŒerential equat ions

dxm

dl
=

¶ H

¶ pm
,

dpm

dl
= ±

¶ H

¶ xm
, (1)

where pm are the generalized momenta (corresponding to the coordinat es

xm ) and the super-Hamiltonian H is given by the relat ion

H = 1
2 gmu (pm ± eAm ) (pu ± eAu ) º 1

2 (2)

(in a system of geometrical unit s where Åh = c = G = 1). In eq. (2)

gmu denotes the component s of the contravariant metric tensor, which are

de® ned as

gmu
= g

mu
+ h

mu
, (3)

with gmu = diag (1, ± 1, ± 1, ± 1) and j hmu j ¿ 1. Am is the vector potential,

corresponding to the tensor Fmu of the electromagnet ic ® eld in a curved
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spacet ime. The mass of the part icle is taken equal to 1. For the speci® c

form of the magnet ic ® eld we may take

A
0

= A
1

= A
3

= 0, A
2

= B 0 x
1 . (4)

2. THE STOCHASTICITY CRITERION

We consider the case of a charged part icle moving in the curved space-

time background of a linearly polarized gravitational wave, which propa-

gates obliquely with respect to the direct ion of a uniform and stat ic, in

time, magnet ic ® eld,
®
B = B 0 Ãez . The non-zero component s of the metric

tensor are presented in Paper I (see references therein) and we normalize

lengths and time to c/ V , where V is the Larmor angular frequency. Fur-

thermore we eliminate one degree of freedom from our dynamical system

through the canonical transformat ion

q 3
= x

0 ± cos h x
3
, p3 = ± cos h I3 ,

q 0
= x

0
, p0 = I3 + I0 .

(5)

Accordingly, the problem of the motion of a charged part icle in a gravita-

tional wave is reduced to a two-degrees of freedom dynamical system [8],

and the super-Hamiltonian (2), in this case, is written in the form

H =
1

2
I

2
3 ±

1

2

1 + a sin
2

h sin(u Q )

1 + a sin(u Q )
p

2
1

±
1

2

(x1 )2

1 ± a sin(u Q )
±

1

2

1 + a cos2 h sin(u Q )

1 + a sin(u Q )
cos

2
hI

2
3

+
1

2

a sin 2h cos h sin(u Q )

1 + a sin(u Q )
p1 I3 , (6)

where we have set

Q = sin h x
1 ± q 3 . (7)

In eq. (6) a is the normalized, dimensionles s amplit ude of the gravit ational

wave and u = x / V denotes the dimensionle ss frequency.

The dynamical system under considerat ion possesses chaot ic regions

in phase space when a /= 0 [7,8,12]. In order to examine the transit ion from

regular to stochast ic motion we use Chirikov’ s overlap criterion [13,14] to

obtain the lowest amplit ude of the gravit ational wave, at hr , above which

the dynamical system shows prominent chaot ic behaviour.
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We ® rst write the Hamiltonian (6) in action -angle variables through

the canonical transformation

x
1

= (2I1 )
1 / 2

sin q 1
, p1 = (2I1 )

1 / 2
cos q 1

, (8)

and, since a ¿ 1, we make the approximat ion

1

1 ± a sin(u Q )
¼ 1 ¨ a sin(u Q ). (9)

The result ing Hamiltonian is of the form

H = H0 + aH1 sin(u Q ). (10)

We expand the trigonometric term of the perturbat ion in a Fourier series

[7]. After further manipulat ion, the Hamiltonian (10) is written in the

form

H =
1

2
sin

2
hI

2
3 ± I1

+
a

2 [ ± I1 sin
2

h

¥

S
F = - ¥

J F (ur ) sin( F q 1 ± u q 3
)

+ I1 (1 + cos
2

h)

¥

S
F = - ¥

[2J 9 9F (ur ) + J F (ur ) ] sin( F q 1 ± u q 3
)

+ cos
2

h sin
2

hI
2
3

¥

S
F = - ¥

J F (ur ) sin( F q 1 ± u q 3
)

+ I3 sin 2h cos h

¥

S
F = - ¥

F
u

J F (ur ) sin( F q 1 ± u q 3
) ] (11)

where J F (j) is the Bessel funct ion of order F , r = (2I1 )1 / 2 sin h is the

linear momentum along the x-axis and a prime denotes diŒerent iat ion with

respect to j = ur . The perturbat ion term of the Hamiltonian function H1

depends on an in® nite series of linear combinat ions of the angles q 1 and q 3 ,

a fact that leads to resonances. In this case, Chirikov’ s criterion states that

chaos appears when the width of a resonance, d I1 , becomes larger than or

equal to the distance between two consecut ive ® rst order resonances, D I1 .

By a near ident ity transformat ion we remove all trigonometric terms

from H1 , except from the one of order F = m , which generat es the princi-

pal resonance and corresponds to the family of islands whose width enters
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in the stochast icity criterion [7]. The result ing Hamiltonian contains only

the integrable part H0 and the dominant term and it is therefore called

the resonan t Hamilton ian , HR [15,16]. Performing the canonical transfor-

mation

q 1*
= q 1 ±

u

m
q 3

, I
*
1 = I1 ,

q 3*
= q 3

, I
*
3 = I3 +

u

m
I1 ,

(12)

the resonant Hamiltonian is ® nally written in the form

HR =
1

2
sin

2
h( I

*
3 ±

u

m
I1) 2

± I1

±
a

2 [I1 sin
2

hJm (j) ± I1 (1 + cos
2

h) [2J 9 9
m (j) + Jm (j) ]

± cos
2

h sin
2

h(I
*
3 ±

u

m
I1 )

2
Jm (j)

+ 2( I
*
3 ±

u

m
I1) cos

2
h

m

u
Jm (j) ] sin(m q 1*

). (13)

Since q 3 is a cyclic coordinat e, the corresponding generalized momentum

I *
3 will be a constant of the motion, so that the dynamical system has one

degree of freedom. Hamiltonian (13) describes the motion of a part icle

around each ® rst order resonance. Using the resonant condit ion

m
d q 1

dl
= u

d q 3

dl
(14)

and the fact that H0 ¼ 1
2 , we ® nd the order m of the dominant resonance,

m = u(1 + 2I1 )
1 / 2

sin h. (15)

In this case, m /= ur and not m ’ ur , which was the case considered in

Paper I, for I1 À 1. This is because in the present paper we are interested

in a general formula for the stochast icity threshold, valid for every I1 . The

distance D I1 between two consecut ive ® rst order resonances is calculat ed

by eq. (13) and the fact that D m = 1,

D I1 =
(1 + 2I1 )1 / 2

u sin h
, (16)

while the corresponding resonant width d I1 is given by [15,16]

d I1 = [ 8am 2

u4 sin
4

h
j (m

2 ± u
2

sin
2

h) (1 + cos
2

h)J 9 9
m

+ (4m
2 ± u

2
sin

2
h) cos

2
hJm j ]

1 / 2

(17)
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Then Chirikov’ s criterion, d I1 ³ D I1 , reads

1

a
£ 8 j (m

2 ± u
2

sin
2

h) (1 + cos
2

h)J 9 9
m + (4m

2 ± u
2

sin
2

h) cos
2

hJm j . (18)

The above relat ion is the most general form of the stochast icity criterion

and holds for any value of I1 , u and h . We see that for I1 À 1 it reduces

to

8u
2
r

2 j 4 cos
2

hJm + (1 + cos
2

h)J 9 9
m j ³ 1

a
, (19)

Fig u r e 1 . The stochast icity threshold at h r versus the order of resonance m for diŒerent

values of the wave propagat ion angle h and u = 1.8

which is the corresponding result of Paper I. In this approxim ation, we

may obtain an asymptotic form of the stochast icity threshold, by taking

r ® ¥ [8]. We obtain

a ³ 0.07
1

(ur )5 / 3

1

cos2 h
. (20)

We see that the stochast icity threshold is a rapidly decreasing funct ion of

u and r . Therefore chaot ic behaviour will appear, no matter how small



K in e t ic D e sc r ip t ion of P a r t ic le In t e ra c t ion w i t h a G W 5 0 5

the amplitude of the gravitational wave might be, provided that the init ial

momentum of the part icles is su� ciently large. It is clear that in this case

the high order principal resonances will overlap. On the other hand, if I1

is small the chaot ic behaviour will appear only if the wave amplitude is

quite large and the relat ive frequency small, leading to the overlapping of

the low order resonances.

Following the above argument, in Figure 1 we give the stochast icity

threshold, at h r , as a funct ion of the low order resonance m , for diŒerent

values of the wave propagat ion angle h and u = 1.8. Notice that at hr < 0.2
and decreases rapidly as the order of resonance m increases.

3. THE FPK APPROACH

3.1. Analyt ic results

Following the fpk approach [9], a diŒusion equat ion for the energy

distribut ion function of part icles averaged over the phases, F (I1 , t), can

be written for the system described by the Hamiltonian (13) ,

¶ F
¶ t

=
1

2

¶
¶ I1 ( D (I1 )

¶ F
¶ I1 ) . (21)

To lowest order in a, eq. (21) describes a diŒusion process in the variable

I1 = p2
x / 2 at constant I3 . The actual expression for the diŒusion coe� cient

D (I1 ) depends on the assumpt ions for the phase dynamics [9,17]. In the

random phase approxim at ion, it reduces to the quasilinear result [18,19]

D (I1 ) = pa2 S
m

m
2
H

2
1 d ( d q 1*

dl ) (22)

which in our case reads

D (I1 ) = pa2 S
m

m
2
H

2
1 d (m

2 ± u
2

sin
2

h [1 + 2I1 ] ). (23)

Around each principal resonance of order m we may associat e an eŒective

diŒusion coe� cient , D m , by averaging D (I1 ) over the region between two

successive ® rst order resonances:

Dm º h D (I1 ) i =
1

D m s m + 1

m

D (I1 )dm . (24)
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To calculat e Dm we use the facts that D m = 1 and

d (f (m ) ) =
d (m ± m 0 )

j f 9 (m 0 ) j
, (25)

where m 0 is a simple zero of f (m ) which, in this case, is given by eq. (15)

[20]. Accordingly, we obtain

Dm º h D (I1m ) i =
1

2
pa2

m H
2
1m , (26)

where I1m is the value of I1 at each principal resonance of order m , which

is found from eq. (15) to be of the form

I1m =
1

2 ( m 2

u2 sin
2

h
± 1) (27)

and H1m corresponds to the perturbat ion term of the Hamiltonian (13)

for I1 = I1m . Equat ion (26) , in terms of I1m , reads

D m = 1
2 pa2u sin h(1 + 2I1m )1 / 2 £

£ [I1m (1 + cos
2

h)J 9 9m + ( 3
2 + 4I1m ) cos2 hJm ]2 . (28)

We use the above relat ion in order to determine the analyt ical values of the

diŒusion coe� cient, as it holds for any value of the parameters. It is clear

that the diŒusion coe� cient scales with the wave amplit ude a and, through

the value of I1m , with the order of resonance m . The diŒusion coe� cient

reaches high values at low order resonances (small I1m ) when the wave

amplit ude is large. In the opposite case (small a) the diŒusion becomes

eŒective in the range of high order resonances and, thus, in large I1 . In

both cases for a given a the diŒusion increases as the act ion increases.

3.2. Numerical results

For the sake of numerical simplicity and in order to speed up numerical

int egrat ion we invest igate the case of low order resonances using a = 0.2
and u = 1.8 throughout the whole of our numerical calculat ions. Since the

results scale with the amplitude of the wave, a, the diŒusion coe� cient

calculat ed is also expected to describe, at least qualit atively, the diŒusive

accelerat ion at more realist ic values of a.

In order to verify that diŒusion of part icles due to their interaction

with the gravitational wave does occur, we follow the orbit s of a part icle

distribut ion on a surface of section, de® ned as the surface ux0 = 2n p . In

Figure 2 the p1 versus x1 plot and the time variat ion of the action I1 of
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F ig u r e 2 a .

F ig u r e 2 b .

F ig u re 2 . Surface of sect ion plots for the case a = 0.2, u = 1.8, h = 20 o . N = 1000

orbits with init ial I 1 = 106 .5 are present ed: ( a ) . The p1 versus x 1 plot. ( b ) . T he t ime

variat ion of the act ion I 1 of the distribut ion of orbits.
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the distribut ion of orbit s (N = 1000 with init ial I1 = 106.5) are presented

for the case h = 20±.

Notice the distortion of the principal resonance (of order m = 9) due

to the overlapping of the secondary resonances. This is due to the fact that ,

for the parameters used, the wave amplitude is large. Thus the overlapping

occurs in a small time-scale. The diŒusion in energy, in this case, is veri® ed

from the considerable spread around the init ial act ion value I1 = 106.5.

The numerical estimation of the diŒusion coe� cient is based on the

int egrat ion of the Hamilton’ s equat ions of motion for a number of part icles

(N = 1000) , having the same init ial action I1 and uniform angle distribu-

tion. The local diŒusion coe� cient is related to the average variat ions of

the action I1 through the expression [18,19]

Fig u r e 3 . T he numerical est imated local diŒusion coe� cients for I 1 = 3.0 and 7.0,

corresp onding to m = 4 and 6 respect ively, for h = 60± and u = 1.8.

D (I1 ) ’
h (D I1 )2 i ± 2( h D I1 i )2

t
, (29)

where

h D I1 i =

N

S
j = 1

I1 j (t) ± I1 j (0)

N
(30)
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and

h (D I1 )
2 i =

N

S
j = 1

[I1 j (t) ± I1 j (0)]2

N
. (31)

We have performed a number of computational runs, varying the ini-

tial value of I1 (2 £ I1 £ 128) and the propagat ion angles (20± £ h £ 60±).

In Figure 3 the numerical estimated local diŒusion coe� cients for I1 = 3.0
and 7.0, corresponding to m = 4 and 6 respectively, and for h = 60± are

presented. Notice that the integrat ion time is short , as for longer times

diŒusion over a large number of harmonics dominat es, causing strong vari-

ations to the estimation of D . The plateau value of D is chosen as the

diŒusion coe� cient for the above actions.

In Figure 4 the analyt ical and the numerical eŒective diŒusion co-

e� cient , as a funct ion of the action I1 , for diŒerent angles h is shown.

Notice that the diŒusion coe� cient depends strongly on the propagat ion

angle. There exists a good agreement between the numerically and analyt -

ically est imated values, indicat ing a power law dependence of the diŒusion

coe� cient upon the action, of the general form

D (I1 ) ’ d0 I
k
1 , (32)

where the values (analyt ically and numerically estimated) of the constant

d0 and the index k, with respect to the propagat ion angle h are given

in Table 1. The relat ive error between the analyt ically and numerically

estimated values of the index k varies from 7% to 24%.

Table I. The analyt ically and numerically estimated values of d0 and
the index k with respect to the propagat ion angle h .

h d0 k

analyt ical numerical analyt ical numerical

20± 0.095 0.037 2.254 2.455

35± 0.076 0.091 2.223 2.153

45± 0.052 0.025 2.160 2.407

60± 0.017 0.020 2.037 1.980

4. SOLUTION TO THE DIFFUSION EQUATION

We can easily solve the diŒusion equat ion for the stat ic case, i.e.

¶ t F = 0. Then eq. (21) becomes

D (I1 )
d2 F
dI 2

1

+
dD (I1 )

dI1

dF
dI1

= 0 . (33)
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F ig u r e 4 a .

F ig u r e 4 b .

F ig u re 4 . T he diŒusion coe� cient D ( I 1 ) , as a funct ion of the perpendicular energy of

the charged part icle, I 1 for diŒerent angles of propagat ion, with a = 0.2 and u = 1.8.

The are analyt ical values and the ] are numerical ones: ( a) . For h = 20 o and 35± .

( b ) . For h = 45± and 60± .
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We subst itute the diŒusion coe� cient from eq. (32) to ® nd the solut ion

in a power law form

F (I1 ) =
Fo

1 ± k
I

- ( k - 1)

1 (34)

with Fo constant. We must emphasize that the above solut ion is valid for

relat ively small values of I1 . In the case of very large energies (I1 À 1) an

analyt ic solut ion of the diŒusion equat ion can be found, by considering the

asymptotic form of the eŒective diŒusion coe� cient in the large energies

approxim ation. For I1 À 1, we have r ® ¥ and therefore m ¼ j = ur .

Then the perturbat ion term of the Hamiltonian (13) reads

HR1 = ± I1 [ (1 + cos
2

h)J 9 9
m (m ) + 4 cos

2
hJm (m ) ]. (35)

In this case, the Bessel equat ion becomes

J 9 9m (m ) ’ ±
J 9m (m )

m
, (36)

and the asymptotic expansions

Jm (m ) ~ 0.45m
- 1 / 3

, J 9m (m ) ~ 0.41m
- 2 / 3

, (37)

hold [21]. Therefore, in the large energies approxim at ion, the eŒective

diŒusion coe� cient reads

D m (I1 ) = AI
5 / 6

1 ± B I
9 / 6

1 + CI
13 / 6

1 , (38)

where

A = 2
1 / 2

pa2
u sin ha

2
,

B = 2
3 / 2

pa2
u sin hab,

C = 2
1 / 2 a2

u sin hb
2
,

(39)

and

a =
0.41

25 / 6

1

u5 / 3

1 + cos2 h

sin
5 / 3

h
, b =

1.8
21 / 6

1

u1 / 3

cos2 h

sin
1 / 3

h
. (40)

Accordingly, the diŒusion equat ion, in the static case, reads

F = c s dI1

AI
5 / 6

1 ± B I
9 / 6

1 + CI
13 / 6

1

, (41)
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where c is an integrat ion constant . Evaluat ion of the integral on the r.h.s

of eq. (41) is possible only when I1 /= (a/ b)3 / 2 , for which the energy dis-

tribut ion funct ion appears a simple pole of order 2 [22]. In this case, we

obtain

F =
6c

C
b

2[ I
1 / 6

1

(a ± bI
2 / 3
1 )

+ 3
d

4a ( ln
I

1 / 6

1 + d

I
1 / 6
1 ± d

+ 2 tan
- 1 I

1 / 6

1

d ) ], (42)

where d = (a/ b)1 / 4 . This result is simpli® ed considerably in the perpen-

dicular propagat ion case, i.e. h = p / 2, for which eq. (41) gives

F =
6c

A
I

1 / 6

1 . (43)

5. DISCUSSION AND CONCLUSIONS

We have studied the interaction of a charged part icle, with a plane

polarized gravitational wave propagat ing obliquely (20± £ h £ 60±) with

respect to the direct ion of the ambient uniform magnet ic ® eld.

On the basis of Hamiltonian pertubat ion theory, previous work on

this problem shows that the motion of the part icles becomes chaot ic [8].

Following this, we have derived analyt ical expressions for the stochast icity

criterion, thus determining where, in phase space, resonance overlapping

occurs, without any assumption regarding the values of the action and the

propagat ion angle of the wave.

We have veri® ed that diŒusion of the part icles in action I1 occurs and

we have applied the fpk approach, in order to derive analyt ical general

expressions for the eŒective diŒusion coe� cient. Numerical integrat ion

of the exact equat ions of motion for part icle distribut ions with the same

init ial action I1 was also performed for the numerical estimation of the

diŒusion coe� cient.

Both methods (analyt ical and numerical) revealed a power law depen-

dence of the diŒusion coe� cient upon the action I1 giving similar results,

with small variat ions, on the power law index. Based on these results a

steady state solut ion of the Fokker± P lanck diŒusion equat ion was found.

The diŒusion coe� cient scales with the wave amplitude a and the

order of resonance m (and/ or through the resonance condit ion with the

action I1 ). For small a the diŒusion is eŒective in high order resonances

and thus in su� cient large actions. DiŒusion of part icles is present in low

order resonances (small values of the action) only when the wave ampli-

tude is large. In both cases the diŒusion is increasing when the action is

increasing.
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There is also a strong relat ion between the diŒusion coe� cient and

the propagat ion angle. As the angle decreases, the diŒusion coe� cient

increases. This is due to the fact that the lower the angle, the greater is

the amplitude of the wave for which stochast ic motion occurs, leading to

the fact that more resonances can overlap.

In conclusion, we believe that the fpk approach may describe to a good

approxim ation the int eract ion of charged part icles with a gravit ational

wave in the framework of the weak ® eld theory, where the gravit ational

wave is just a small pertubat ion in a ¯ at spacet ime. It is clear that more

work has to be done in the realist ic case of a curved spacet ime and in the

full non-linear theory.
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