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Abstract A novel integrated prediction system for solar flares (SFs) and solar energetic
particle (SEP) events is presented here. The tool called forecasting solar particle events and
flares (FORSPEF) provides forecasts of solar eruptive events, such as SFs with a projection
to occurrence and velocity of coronal mass ejections (CMEs), and the likelihood of occur-
rence of an SEP event. In addition, the tool provides nowcasting of SEP events based on
actual SF and CME near real-time data, as well as the SEP characteristics (e.g. peak flux,
fluence, rise time, and duration) per parent solar event. The prediction of SFs relies on the
effective connected magnetic field strength (Beff) metric, which is based on an assessment
of potentially flaring active-region (AR) magnetic configurations, and it uses a sophisticated
statistical analysis of a large number of AR magnetograms. For the prediction of SEP events,
new statistical methods have been developed for the likelihood of the SEP occurrence and
the expected SEP characteristics. The prediction window in the forecasting scheme is 24
hours with a refresh rate of 3 hours, while the respective prediction time for the nowcasting
scheme depends on the availability of the near real-time data and ranges between 15 – 20
minutes for solar flares and 6 hours for CMEs. We present the modules of the FORSPEF
system, their interconnection, and the operational setup. Finally, we demonstrate the valida-
tion of the modules of the FORSPEF tool using categorical scores constructed on archived
data, and we also discuss independent case studies.
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1. Introduction

Solar eruptive events such as solar flares (SFs) and coronal mass ejections (CMEs) have a
major space weather impact and affect the interplanetary (IP) and near-Earth environment
through their high-energy processes and particles that are accelerated to near-relativistic en-
ergies, posing a threat to spacecraft, satellites, systems, and humans in space (e.g. Srour and
McGarrity, 1988; Holmes-Siedle and Adams, 1993; Hapgood and Thomson, 2010). Solar
flares are violent and intense variations in brightness taking place in active regions (ARs)
that emit electromagnetic radiation (gamma- and X-rays) and accelerate energetic particles
(protons and electrons) into space, while CMEs are bulk ejections of ultra-hot magnetized
plasma that disrupt the solar wind, drive shock waves, and when they strike the Earth’s mag-
netosphere, cause major, but transient, disturbances to the geomagnetic field. Both phenom-
ena (solar flares and/or CMEs) accelerate particles to near-relativistic energies, resulting in
enhanced levels of energetic particle fluxes that are termed solar energetic particle (SEP)
events.

The nature of the solar flare prediction problem has resulted in research efforts applying
a diverse array of techniques. Moreover, the categorization of flare prediction methods is not
a trivial task (see Georgoulis, 2012). Flare prediction techniques can be viewed as compris-
ing i) multiscale, ii) morphological, iii) statistical and historical, and iv) machine-learning
and combinatorial methods. In particular, the multiscale behavior and the turbulence in pho-
tospheric AR magnetic fields indicate that flaring ARs display distinguishable complex-
ity. Hence, this holds flare-predictive potential (Abramenko et al., 2002, 2003; McAteer,
Gallagher, and Ireland, 2005; Georgoulis, 2005; Uritsky et al., 2007, 2013; Dimitropoulou
et al., 2009, among others). On the other hand, morphological flare-prediction methods rely
on topological characteristics of eruptive solar ARs, such as the photospheric magnetic po-
larity inversion lines (PILs), intense magnetic-flux emergence, or photospheric properties
in general (e.g. Falconer, Moore, and Gary, 2007; Schrijver, 2007; Georgoulis and Rust,
2007; Leka and Barnes, 2007; Mason and Hoeksema, 2010). Additionally, another morpho-
logical parameter is the effective connected magnetic field strength (Beff), originally pro-
posed by Georgoulis and Rust (2007). Beff is deduced using a magnetic connectivity map
in the AR under study. Statistical methods are based on archived data, under the assump-
tion that flare occurrence globally in the Sun is a time-dependent Poisson process (Moon
et al., 2001). Finally, the utilization of AR properties using machine-learning algorithms
presents an enhanced ability of prediction that is driven by either a single or a combination
of such properties. As an example in this direction, we name the automated solar activity
prediction (ASAP) tool, operating at the University of Bradford (Qahwaji and Colak, 2007).
In spite of the progress that has been achieved with respect to automated solar flare fore-
casting, the NOAA/Space Weather Prediction Center (SWPC) maintains a human-oriented,
expert-based flare-prediction system.

Solar energetic particle events are observed as flux increases above a background level
at different energies, ranging from ≈ 10 keV to ≈ 10 GeV/nuclei, which can last from a
few hours to several days. SEPs consist of electrons, protons, alpha particles, and heavier
ions up to Fe, and their propagation time to Earth spans from hours to a few days (Cane
and Lario, 2006). They are produced either in the solar atmosphere by particle acceleration
processes in association with powerful M- and X-class flares (Anastasiadis, 2002) and even
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C-class flares (Krucker, White, and Lin, 2007; James, Subramanian, and Kontar, 2017) or
in interplanetary (IP) shock waves created by the interaction of CMEs with the solar wind.
The former are thought to produce short-lived (≤ one day) impulsive events, while the latter
produce much longer (gradual) events. Accelerated particles then propagate through the
IP medium, spiraling along the IP magnetic field (IMF) lines. Since SEPs are the source
of the most severe disturbances that can affect spacecraft, several techniques have been
developed to predict the main characteristic parameters of an SEP event, such as onset time,
peak flux, fluence, and duration (Smart and Shea, 1989; Balch, 1999, 2008; Laurenza et al.,
2009; Núñez, 2011, among others). However, owing to their sporadic nature (≈ 100 per
solar cycle), forecasting SEP events is not a trivial task, and the prediction schemes usually
rely on a statistical data-driven approach with the corresponding relations built upon known
features of solar eruptive events.

The activity that led to forecasting solar particle events and flares (FORSPEF) was sup-
ported through the European Space Agency (ESA), and its main focus was the implemen-
tation of forecasting tools for SEPs, solar flares, and CMEs. The current capabilities of the
FORSPEF tool incorporate a novel integrated solution that provides forecasting of solar
eruptive events, such as solar flares with a projection to CMEs (occurrence and velocity)
and the probability of the occurrence of an SEP event. In addition, the tool provides short-
term forecasting (nowcasting) of SEP events and their corresponding characteristics (peak
flux, fluence, rise time, and duration), using as input actual SF and CME near real-time
identifications. In Section 2 we present the modules and the operational set up; in Section 3
we provide the validation based on categorical scores, and finally, in Section 4 we present a
discussion and the concluding remarks of this effort.

2. The FORSPEF Tool

The FORSPEF tool consists of three modules that aim to forecast i) the likelihood of upcom-
ing solar flare eruptions, ii) the occurrence of SEPs by making a prediction of the time before
onset, and iii) the SEP characteristics for an upcoming event, respectively. Additionally, it
incorporates two operational modes, the forecasting and the nowcasting mode. The former
is understood as the pre-event mode, since no actual solar event (i.e. solar flare or CME) has
yet taken place. The only available information is the identification of an AR on the Sun and
its calculated Beff metric (see Section 2.1). The latter corresponds to the post-event mode, in
which a solar event has actually taken place and its characteristics (for solar flares the lon-
gitude and the magnitude, and for CMEs the width and the velocity) are already available.
FORSPEF offers a 24-hour forecast of SEP events, up to 70◦ E/W covering practically the
entire course of the AR toward the limb (up to ≈ 85◦), under the assumption that the AR
does not change significantly over this course.

The FORSPEF tool is available online at http://tromos.space.noa.gr/forspef/ and provides
continuous forecasts and nowcasts of SFs and SEP events. All outputs can be freely accessed
and used by the scientific community.

2.1. Forecasting Solar Flares

The FORSPEF tool incorporates a solar flare forecasting module that delivers conditional
flare probabilities complemented by information on CME probabilities and expected CME
speeds. Flare probabilities rely on the “effective connected magnetic field strength” (Beff)

http://tromos.space.noa.gr/forspef/
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Figure 1 Daily SOHO/MDI
magnetogram numbers of the
solar flare module magnetogram
sample. Practically the entire
Solar Cycle 23 is included, with
daily numbers of available
magnetograms increasing notably
during the maximum of the cycle.

prediction metric and stem from the previously collected statistics on the Solar and He-
liospheric Observatory (SOHO)/Michelson Doppler Imager (MDI) Beff-calculations. CME
probabilities and projected speeds rely on the peer-reviewed published flare-to-CME asso-
ciation rates (Yashiro et al., 2005) and on the statistical correlation between Beff-values and
recorded near-Sun CME velocities (Georgoulis, 2008), respectively. The statistics of flare
prediction have been inferred from our collected SOHO/MDI database that spanned over
the entire Solar Cycle 23. This SOHO/MDI database covers 2736 data-filled calendar days
with 55691 magnetograms and 1416 different ARs (see Figure 1).

2.1.1. Data Provision and Eligible AR Identification

We download the latest SDO/Helioseismic and Magnetic Imager (HMI) full-disk mag-
netograms from the Joint Science Operation Center (JSOC) based at Stanford University,
USA, the HMI Principal Investigator (PI) institution. Downloading was achieved via stan-
dard JSOC SolarSoft routines. Our active region identification algorithm (ARIA) was then
used to automatically identify and crop eligible ARs. By “eligible” we mean ARs with a
maximum tolerated magnetic flux imbalance1 of 60% and a flux-weighted centroid location
that is within 70◦ E/W on the solar disk. While this longitudinal zone serves to avoid the
extreme near-limb areas where calculations with magnetic field are untenable, a maximum
tolerated flux imbalance aims to select regions that show some significant bipolarity. Some
sunspot regions are comprised of (unipolar) isolated sunspots connecting at relatively large
distances, hence without major magnetic polarity inversion lines: we dismissed these re-
gions because we do not expect significant eruptive activity to stem from them. We view the
60% flux-imbalance threshold as liberal enough to allow even strongly imbalanced ARs, at
the same time dismissing mainly unipolar ones. A slightly different threshold will not incur
a significant impact on the number of ARIA-identified regions. To proceed to the identi-
fication, ARIA i) smooths the full-disk line-of-sight (LOS) magnetogram using a window
of ≈1 supergranular diameter (40′′ or ≈ 30 Mm on the solar surface), ii) identifies flux ac-
cumulations in the original magnetogram that coincide with intensity-enhancements in the
smoothed image, discarding accumulations with a magnetic flux imbalance higher than the
above-prescribed maximum, iii) defines an intensity-weighted centroid for pinpointing each
eligible intensity enhancement, iv) outlines each intensity enhancement and crops the eligi-
ble AR region, and v) assigns a National Oceanic and Atmospheric Administration (NOAA)

1Magnetic flux imbalance is defined as the ratio
∑

i Bzi∑
i |Bzi | . The summation refers to the entire AR area as

identified by the ARIA.
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Figure 2 Sample pictorial
ARIA output. Two solar ARs
have been identified, labeled, and
cropped. The two thick dashed
curves in the E and W solar
hemispheres indicate the 50◦ and
70◦ E and W solar meridians,
respectively.

AR number to each identified AR by matching its centroid location with NOAA’s, which is
available online from the Space Weather Prediction Center (SWPC). To avoid extreme pro-
jection effects present in the observed LOS field component, ARIA considers only ARs with
centroids within the above-mentioned meridional zone of ±70◦. Figure 2 provides a typical
output of ARIA with two major solar ARs identified, namely NOAA ARs 12241 and 12242.

2.1.2. Derivation of the Beff Flare Prediction Metric

First, we pre-processed each HMI AR magnetogram to bring it as close as possible to what
the MDI magnetograph would observe had it been in operation. In this respect, a rebin-
ning to MDI resolution, instrumental features, and geometry were taken into account and a
calibration in terms of absolute field strength was performed.

The “MDI-like” deprojected heliographic normal magnetic field component for each AR
cutout was then used to calculate the Beff value for the cutout. To achieve this, we im-
plemented a magnetic flux-partitioning scheme that identifies the locations, outlines, and
flux-weighted centroids of all non-overlapping positive- and negative-polarity flux accu-
mulations. This is essentially a discretization of a continuous flux distribution into a dis-
crete collection of N+ and N−, positive- and negative-polarity partitions, respectively, with
known flux contents and topological properties, such as outlines and the location of the
centroid. This is needed in order to derive the [N+,N−] magnetic connectivity matrix Φmn

that includes fluxes committed to connections between a positive-polarity partition m and a
negative-polarity partition n with a connection length Lmn defined as the distance between
the flux-weighted centroids of the two considered partitions. As the three-dimensional coro-
nal magnetic field above the photospheric magnetogram is obviously unknown, the magnetic
connectivity matrix Φmn is inferred via an iterative simulated-annealing method that defines
connections between opposite-polarity flux partitions while globally minimizing the corre-
sponding connection lengths Lmn. We note here that this is only one of many possible meth-
ods available to infer the magnetic connectivity matrix. It is our method of choice, however,
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as the action of minimizing connection lengths emphasizes tightly seated opposite-polarity
flux partitions, and it favors known photospheric flare-prolific patterns such as strong po-
larity inversion lines (PILs). In this scheme, ARs with intense PILs will exhibit higher Beff

values, and hence attain higher flare probabilities.
After we derived the connectivity matrix Φmn, the effective connected magnetic field

strength Beff for the studied AR at the given time is given by Beff = ∑N+
i=1

∑N−
j=1

Φij

L2
ij

. As

a result, Beff collapses the two connectivity matrices, Φmn and Lmn, into a single scalar
quantity, representative of a given AR at a given time.

Even though ARIA identifies ARs up to 70◦ E/W in central meridian distance, calcula-
tion of a Beff value in the heliographic reference system is already problematic beyond 50◦
E/W because of very significant projection effects that give rise to a substantially deformed
heliographic plane. In addition, the typical angular-position cosine-correction of the LOS
field to obtain the local normal field is also known to have issues beyond 50◦. Therefore, to
infer a Beff value for an AR within the meridional zone from 50◦ to 70◦ E/W, we used a
proxy of Beff that was obtained by the unsigned (total) magnetic flux of an AR. This flux is
given by

Φtot =
∫∫

S

| Bz | dS, (1)

with S corresponding to the FOV area. Using the SOHO/MDI database, we have found that
Φtot and Beff are connected via the scaling,

Beff ≈ 10−21.96Φ1.08
tot . (2)

This proxy, of course, has much higher uncertainties because of the scatter of the Φtot versus
Beff diagram, but is considered a reasonable compromise instead of lacking a Beff-value for
ARs in the meridional zone 50 – 70◦ E/W altogether. For an average of ≈ 14◦ per day for
each AR transit, this would correspond to ≈ 3 days of the AR presence in the earthward
solar hemisphere. Detailed descriptions of ARIA can be found in LaBonte, Georgoulis, and
Rust (2007) and Georgoulis, Raouafi, and Henney (2008).

2.1.3. Cumulative Flare Probabilities, CME Likelihoods, and Speeds

The calculated Beff value for each AR was used to derive the respective cumulative flare
probabilities for a certain GOES flare class and above. Our collected SOHO/MDI database
corresponds to a sample of 55,691 AR magnetograms that belong to 1,416 ARs spanning
the entire Solar Cycle 23, within 30◦ central meridian distance on the solar disk (Figure 1).
These are associated with 4,574 flares in total, comprising 66 X-, 623 M-, and 3,885 C-class
flares. Cumulative flare probabilities for each Beff value are given by a sigmoidal fitting
curve:

Pclass(Beff(norm)
) = A2 + A1 − A2

1 + exp(
logBeff(norm)

−X0

W
)

. (3)

In Equation 3, A1, A2, and X0 are known fitting coefficients and W is the weight of the
sigmoidal function. Here Beff(norm) is the normalized (with respect to the maximum Beff value
of the sample) Beff threshold. The values of the coefficients A1, A2, X0, and W vary with
the targeted flare class (Figure 3, left-hand panel). With the conditional flare probabilities
derived, the likelihood for a CME to accompany the predicted flare, or equivalently, the
likelihood of this flare to be eruptive, was inferred from published flare-to-CME association
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Figure 3 Fitting curves for all
Beff values and solar flare classes
that are precalculated within the
solar flare forecasting module
(left panel) and the sigmoidal fit
of the solar flare magnitude to the
CME rate values, published by
Yashiro and coworkers, see text
for details (right panel).

rates (see Yashiro et al., 2005). These rates can be fitted by another sigmoidal curve, and as
a result, a cumulative flare probability p can be derived, which also has a CME associated
rate p′. This will yield a likelihood for a CME or an eruptive flare equal to pp′ (Figure 3,
right-hand panel). Another independent piece of information we extracted is the projected
near-Sun speed of the corresponding CME. This is based on the analysis of Georgoulis
(2008) and again involved the Beff value of the AR. It has indeed been found that near-Sun
CME speeds VCME are higher for higher Beff values of the source ARs via the following
fitting formula (see the bottom panel of Figure 2 of Georgoulis, 2008):

VCME = 87.3 B0.38
eff [km/s]. (4)

2.1.4. Output of the Solar Flare Forecasting and CME Likelihood Scheme

For each ARIA-identified solar AR, the output of the FORSPEF flare forecasting module
is a structure containing the AR NOAA number, its heliographic and device-coordinate lo-
cation, the corresponding Beff value, the 24-hour cumulative flare probabilities for each of
the 28 GOES flare classes (from C1.0 to X10.0) and their peak photon fluxes (PPFs), the
respective eruptive-flare or CME likelihoods, and the projected CME velocity. The solar
flare forecasting produces histogram curves of the cumulative flare probabilities and CME
likelihoods versus the flare PPF. The cumulative forecast probabilities for flares (solid red
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Figure 4 Pictorial output of the
FORSPEF solar flare forecasting
and likelihood of CME
prediction scheme: shown are the
24-hour cumulative forecast
probabilities for flares (solid red
histogram) and CME likelihoods
(solid blue histogram) for a
sample AR. The legend provides
further information on the
calculated value of the Beff, the
maximum CME likelihood, and
the corresponding CME velocity.
Figure taken from Papaioannou
et al. (2015).

histogram) and CME likelihood (solid blue histogram) for a sample AR are shown in Fig-
ure 4. For this case the maximum CME likelihood is ≈ 27%, with the projected near-Sun
CME velocity estimated at ≈ 1405 km/s.

2.2. Forecasting Solar Energetic Particle Events

2.2.1. The FORSPEF Database of SEP Events, Solar Flares, and CMEs

The foundation of the FORSPEF SEP event prediction (either in the forecasting or in the
nowcasting mode) is a new comprehensive database of SEP events, solar flares, CMEs, and
radio fluxes (Papaioannou et al., 2016), spanning from 1984 to 2013 (see Figure 5). The
starting point of the database was the soft X-ray (SXRs) measurements from GOES and
the CME information from the SOHO/Large Angle and Spectrometric Coronagraph Ex-
periment (LASCO). We have applied spatial and temporal criteria to link SXRs and CMEs.
Furthermore, we independently scanned GOES proton data of ≈ 10 MeV and identified 314
SEP events. The anticipated solar release time (SRT) was identified for each and every SEP
event of the database, using the velocity dispersion analysis (VDA) (Vainio et al., 2013). In
order to pinpoint the solar sources(s) of the SEP event in question, in addition to the VDA,
assessments with other published SEP lists as well as quantitative and qualitative checks
were made. Our analysis is constructed on recently recalibrated GOES proton data (with
IMP-8) that cover an energy range of 6 – 243 MeV (Sandberg et al., 2014). More details on
the database itself, together with an extended statistical analysis, are presented in Papaioan-
nou et al. (2016).

2.2.2. The Kernel of SEP Prediction

In the forecasting (pre-event) scheme, the FORSPEF tool provides the probability of SEP
occurrence based on the information delivered by the solar flare forecasting (i.e. the cumula-
tive solar flare probabilities). The work flow is the following: for a given location of an AR,
the solar flare forecasting module provides a cumulative probability function (CDF) over all
28 GOES solar flare classes (see Figure 4). For this given AR location, the nearest (in longi-
tude) 4000 historical solar flare events stored in the FORSPEF SEP database are identified.
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Figure 5 Time span of the
FORSPEF database of SEP
events, solar flares, CMEs, and
radio flux. It covers ≈ 30 years
and spans almost three solar
cycles. The solar cycles are
presented via the monthly
averaged sunspot number (black
trace) and their smoothed curve
(red line).

Figure 6 Example of the distribution functions (DFs) obtained from the FORSPEF database, per longitudi-
nal bin over 28 GOES SXRs bins (left panel). The folding of the output of the FORSPEF database with the
output of the solar flare forecasting provides the probability of SEP occurrence (right panel) per longitudinal
bin. This latter plot is the output of FORSPEF’s SEP forecasting. The FORSPEF tool provides the maximum
probability as defined by the respective folded curve per longitudinal bin.

Figure 6 illustrates the procedure of establishing the local SEP model. Five longitudinal bins
cover the whole visible disk of the Sun. For each longitudinal bin, the historical 4000 flares
are used in order to derive a probability of SEP occurrence per solar flare magnitude defined
as P (SEPflare)i = (NSEP)i/(Nall)i with i = [1,28] covering all 28 GOES bins of the solar
flare forecasting. These P (SEPflare)i values are used to implement a local SEP statistical
model via distribution functions (DFs). The values are further fitted with a sigmoidal fit.
The derived probabilities and their corresponding sigmoidal fits are presented in Figure 6.
These probabilities depend on the FORSPEF database alone and not on the output of the
solar flare forecasting module.
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As a next and final step, the FORSPEF tool provides a weighted forecast for the expected
occurrence of an SEP event per AR, calculated as the product of the local SEP module and
the cumulative solar flare probabilities as identified in Figure 4 (solid red curve). The out-
put of the SEP forecasting (pre-event) scheme is the maximum probability for each of the
considered ARs. This is presented in the right panel of Figure 6, which shows the folded
probability of SEP occurrence from the FORSPEF database with the output of SF forecast-
ing (Figure 4). A detailed example of the FORSPEF SEP forecasting workflow is presented
in Papaioannou et al. (2015). A SEP forecast (pre-event) window is 24 hours, while forecasts
are renewed every three hours or more frequently.

2.3. Nowcasting of Solar Energetic Particle Events

Nowcasting is the short-term forecasting that is triggered by a solar eruptive event, i.e. so-
lar flare or CME, with known characteristics. Hence, nowcasting is also characterized as a
post-event mode. FORSPEF has developed two operational nowcasting modules – one that
is based on near real-time solar flare information (longitude, magnitude) and another mod-
ule that makes use of near-real time CME data (width, velocity). Furthermore, FORSPEF
implements another module that is non-operational in real-time mode. This is based on the
short-term forecasting concept introduced by Laurenza et al. (2009) and was recently further
refined and validated by Alberti et al. (2017). In this latter work this nowcasting scheme is
called ESPERTA.

2.3.1. Nowcasting Based on Solar Flares

For a given solar flare with known characteristics (longitude and magnitude), the data re-
served in the FORSPEF database are used in order to extract the DFs in the nowcasting
(post-event) scheme. For each spotted SF, the nearest (in longitude) 4000 historical solar
flare events are identified in the FORSPEF SEP database, as before. These are used to im-
plement the local statistical SEP model and to derive the SEP occurrence probability from
the FORSPEF SEP database, similar to the forecasting mode.

Furthermore, the FORSPEF database also stores pre-calculated SEP characteristics
(peak-flux, fluence) for all of its 314 SEP events in four integral energy channels (E > 10;
> 30; > 60; > 100 MeV) (Papaioannou et al., 2016). These values are used to statisti-
cally calculate the SEP-projected characteristics (e.g. maximum of the peak flux, time of
maximum of the peak flux, duration, and fluence) of the expected forthcoming SEP event.
Therefore, probable median values of the SEP characteristics (currently median values are
used, although the mean, 25th and 75th percentiles are also calculated and stored in the
FORSPEF system) are offered to the end-users of the FORSPEF tool.

The detection of SEP events, in terms of the occurrence probability, is performed
based on the actual near real-time solar flare data (i.e. maximum solar flare magnitude
and position) that is routinely downloaded in near-real time mode from Solar Demon
(http://solardemon.oma.be/flares.php), a service operated by the Royal Observatory of Bel-
gium (ROB) (Kraaikamp and Verbeeck, 2015). A typical nowcast (post-event) warning win-
dow is on the order of ≈ 15 – 20 minutes, while nowcasts are renewed with the identification
of any new solar flare event. The inputs of the FORSPEF nowcasting work-scheme are in
practice the outputs of the Solar Demon service, in particular the maximum flare flux and its
position (longitude) on the visible part of the solar disk. FORSPEF makes use of all ≥ C1.0
flares spotted by this service.

http://solardemon.oma.be/flares.php
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2.3.2. Nowcasting Based on CMEs

In order to examine the SEP occurrence probability based on CME characteristics, we di-
vided SEPs and their associated CMEs from the FORSPEF database into nine subgroups
according to the CME speed (three groups: slow, moderate, and fast CMEs) and CME angu-
lar width (three groups: full-halo, partial-halo, and non-halo CMEs). Our results show that
the probabilities increase with CME speed and angular width. The probability of all nine
subgroups is 8.08% (154/1905). The highest probability is 72.7% for the subgroup with
fast and full-halo CMEs. The lowest probability is 0.7% for the subgroup of CMEs with
slow and non-halo CMEs. Further details on this module are presented in the recent work of
Papaioannou et al. (2017).

Within the operation point of view, this nowcasting scheme uses the near real-time out-
puts provided online through the computer-aided CME tracking software (CACtus) (Rob-
brecht and Berghmans, 2004; Robbrecht, Berghmans, and Van der Linden, 2009), operated
by ROB. The refresh rate of the outputs provided by CACtus is approximately six hours,
based on the CME cadence by SoHO/LASCO, but nonetheless, CACtus is the only near
real-time CME solution that provides reliable and continuous outputs that can be used as
seeders from SEP nowcasting efforts, such as the FORSPEF tool.

2.3.3. Nowcasting Based on the ESPERTA Model

In this scheme we used the method proposed by Laurenza et al. (2009) (ESPERTA model)
(Alberti et al., 2017) to indicate whether a solar eruption will produce an SEP event sur-
passing 10 pfu at an integral energy of E > 10 MeV, based on the solar flare location, the
SXR integrated flux (SXR fluence), and the radio-integrated flux at ≈ 1 MHz (i.e. radio
fluence). Our effort mainly focused on calculating the integrated radio and SXR flux for all
solar flares (see Figure 7) of the FORSPEF database within Solar Cycle 23 with a magni-
tude of > M1.0. For much of Solar Cycles 23 and 24, WIND/WAVES data were considered
in this part of the work, with 0.944 MHz being the closest frequency to 1 MHz at which
measurements were routinely made. We provide refined calculations of the radio and SXR
fluxes based on the SFs and SEP events in the FORSPEF database. We additionally applied
a regression probabilistic model (see Equation 5), similar to Laurenza et al. (2009), and we
obtained the relevant refined equations that could lead to the SEP occurrence prognosis:

P
(
log(x1), log(x2)

) = en

1 + en
, (5)

with n = b0 + b1x1 + b2x2 + b3x1x2, and x1 the integrated SXR flux, and x2 the integrated
radio flux.

However, we note that the ESPERTA model has not yet been integrated into the op-
erational FORSPEF tool, since the radio data from WIND/WAVES are not available in
near real-time. Nevertheless, in case such data are made available in the future, this can be
achieved.

3. Validation of the FORSPEF Tool

The validation of the FORSPEF tool was based on the calculation of categorical scores (i.e.
probability of detection – POD, false-alarm rate – FAR, Heidke skill score – HSS, overall
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Figure 7 Probability contours
for SEP forecasting based on the
ESPERTA concept, using the
FORSPEF database of SEP
events, solar flares, and CMEs.
Solar flares associated with SEPs
are illustrated as filled red circles,
while solar flares not associated
with SEPs are presented as open
blue circles. The sample covers
> 1422 solar flares with
magnitude ≥ M1.0. The
overplotted contours represent
different probabilities as these are
obtained from Equation 5.

accuracy – OA, critical success index – CSI, percent correct – PC, true skill statistics – TSS).
For consistency, we present the categorical score definitions in Appendix A. For a detailed
discussion, we refer to the WWRP/WGNE Joint Working Group on Forecast Verification
Research, available at http://www.cawcr.gov.au/projects/verification/.

3.1. Solar Flare Forecasting

To validate the Beff-based solar flare prediction scheme, we used contingency tables that
applied to dichotomous/categorical forecasting. To populate the contingency table and infer
skill scores, we took a threshold, pthres for the Beff-based flare probabilities starting from
0.05 and ending at 0.95 with increments of 0.05 for all GOES flare classes (C1 – X10). In
all cases, achieving p ≥ pthres (p < pthres) implies a YES (NO) flare forecast. From this
analysis, we deduced that the significant values of the achieved skill scores and in particular,
values of HSS and TSS, peak at ≈ 0.4 and ≈ 0.5, respectively. Moreover, peak TSS values
are typically slightly or significantly higher than peak HSS values. As expected, for higher
performance, misses and false positives should both be restricted to low values, ideally lower
than those of hits. The great majority of entries in the contingency table are classified as true
negatives, which can be understood from the fact that only a slim minority of ARs flare with
PPFs ≥C1.0.

In Figure 8 we show the six skill-score values plotted as functions of the probability
threshold for three reference GOES flare classes, namely C1, M1, and X1. We note that HSS
and TSS both peak at pthres ≈ 0.4 for C-class flares and above, while for much lower pthres

values for flares ≥ M1.0 and ≥ X1.0 they peak at 0.15 – 0.20 and 0.05 – 0.10, respectively.
These pthres values are critical skill-scores peaks that can be used to specify which predictive
probabilities can be characterized as most significant, if achieved. These are the probabilities
for which forecasting comes as close as possible to a dichotomous YES/NO prediction.

http://www.cawcr.gov.au/projects/verification/
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Figure 8 Skill-score values
obtained for three reference
GOES flare classes (C1 top; M1
middle; X1 bottom) as a function
of the probability threshold pthres
adopted to construct the
respective contingency tables.
A forecast window of 24 hours
holds for all cases.

3.2. Solar Energetic Particle Event Nowcasting Modules

3.2.1. Probabilities of Detection

For the post-event nowcasting mode, categorical measures were calculated. For the control
and test sample of events, the time interval from the beginning of Solar Cycle 23, i.e. 1997
to the end of the FORSPEF database (i.e. 2013), was chosen. This is because we were
in need of a time span that could be used as the basis of the validation, but also for the
intercomparison between the different submodules of the nowcasting mode. There were
10,026 solar flares, 3,680 different CMEs, 174 SEP events, and 150 Type III bursts2 within
this time span in the FORSPEF database of SEP events, solar flares, and CMEs. Of these,
we selected ≈ 90% (9026 solar flares) of the solar flares as the control sample, and the rest
(10%) were treated as the test sample, with the selection of the test and control samples being

2Type III bursts signify the propagation of beams of nonthermal electrons in the solar atmosphere and the
solar system. As a result, they provide information on electron escape, acceleration, and transport, as well as
on the conditions of the background ambient plasma they travel through.
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Figure 9 Categorical performance statistics for FORSPEF’s nowcasting mode, based on solar flare input
(left panel), CME data (middle panel) and radio and SXR integrated fluence data (right panel), as a function
of the probability threshold.

Table 1 Mean values of the HSS, POD, FAR, and pt for the ten independent test samples.

FORSPEF nowcasting based on HSS POD FAR pt

Solar flare data 0.37 ± 0.011 0.40 0.57 0.25

CME data 0.67 ± 0.007 0.71 0.41 0.25

Radio and SXR fluence data 0.47 ± 0.04 0.55 0.42 0.28

completely random. This procedure was repeated ten times, and we obtained ten different –
completely independent – control and test samples.

We considered next the performance categorical quality measures for POD, FAR, HSS,
and PC, which are defined as functions of the probability threshold (pt). All categorical
scores were derived for all test samples with the categorical measures calculated using the
solar flare, the CME, and the integrated radio and SXRs flux information as input to the
corresponding submodules of the nowcasting mode.

Indicative examples are presented in Figure 9. Specifically, the panel on the left refers to
the submodule based on solar flare data, the middle panel to the submodule based on CME
data, and the panel on the right to the submodule based on radio and SXRs fluence data
(the ESPERTA concept). An examination of all three plots shows that FAR decreases when
pt increases, but at the expense of POD, which is also decreasing with increasing threshold
(Balch, 2008).

We also note that the optimal skill score (using HSS) is achieved for all three submodules
at the range of probabilities (pt) from 20% to 30% (specific mean values of pt per submod-
ule are presented in Table 1). This result is consistent with the literature (i.e. Balch, 2008).
However, there is a clear possibility to enhance the accuracy of the predictions since even
at the optimal pt value, false alarms and missed events are both far from insignificant. Fur-
thermore, it seems that the higher mean POD was achieved for the CME submodule (0.71)
with a mean FAR of 0.41. Nonetheless, the scores also demonstrate the actual operational
capabilities of the FORSPEF tool per submodule, since they rely on solar flare and CME in-
formation – which is the only precursor information available continuously in near real-time
mode.

Next we investigated specific case studies. We examined the October–November 2003
period – known as the “Halloween Events”, including five consecutive SEP events (Jiggens
et al., 2014), and the events on 20 January 2005 (Bütikofer et al., 2008) and the 07 March
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Figure 10 Case studies used in
this part of the study. From top to
bottom we present the time
profiles of the five consecutive
“Halloween” SEP events that
were recorded onboard
GOES/EPS at an energy range of
4.0 – 80.0 MeV (top panel); the
time profile of the SEP event of
20 January 2005 – again at the
same energy range (middle
panel); and the time profile of the
SEP event of 07 March 2012
identified onboard GOES/EPS at
a wider energy range from
4.0 – 900 MeV (bottom panel).

2012 (Patsourakos et al., 2016). These events had characteristic signatures in the low- and
high-energy channels and have been extensively analyzed by the scientific community. In
Figure 10 we present plots of these events as recorded onboard GOES/EPS, ranging from
4 – 80 MeV in all cases, with the exception of the event of 07 March 2012, which was
recorded up to the highest available EPS energies.

Using the associated parent solar events as input parameters for these SEP events (Pa-
paioannou et al., 2016), we derived the probability of SEP detection per case (event) and per
module. Figure 11 presents the obtained outputs. The blue histogram denotes the outputs of
the CME module, the orange histogram displays the outputs of the solar flare module, and
the red histogram presents the outputs of the ESPERTA module. The pt thresholds above
which an alert/notification would have been issued are presented with a continuous (CME,
solar flare modules) and a dotted (ESPERTA module) line, as identified above (see Table 1).
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Figure 11 Comparison of the predicted probabilities of SEP detection per module, under the nowcasting
mode for all seven case studies presented in Figure 10. The blue histogram represents the outputs of FOR-
SPEF’s nowcasting mode based on CME data, the orange histogram represents the outputs of the mode based
on solar flare data, and the red histogram represents the outputs of the mode based on the ESPERTA con-
cept. The horizontal lines represent the thresholds above which the modules would issue a notification for a
forthcoming SEP event – see text for details.

As a result, it seems that all three FORSPEF nowcasting modules would spot all of these
events.

3.2.2. Characteristics of SEP Events

As a next step, the predicted flux at E > 30; E > 60 and E > 100 MeV for all SEP events
in the FORSPEF database with complete flare information (i.e. longitude and flux) was
calculated. In what follows, the predicted peak flux versus the observed peak flux per energy
is presented (Figure 12).

The predicted peak flux at any energy can be calculated statistically and represented via
the median (50%), the lower (25th percentile), and the upper (75th percentile) limit. In what
follows, the top row of Figure 12 represents the predicted peak flux at the lower limit as a
function of the observed peak flux at all energies, i.e. E > 30, E > 60, and E > 100 MeV
(magenta), the middle row represents the same plots, but for the median value (red), and
the bottom row represents the same plots for the upper limit (blue). The predicted peak
flux at E > 30 MeV as a function of the observed peak flux at the same energy shows
a weak correlation since the correlation coefficient (cc) is calculated to be 0.256 (lower
limit), 0.332 (median), and 0.321 (upper limit). Although there is significant scatter from
the perfect dichotomous prediction line, most of the time the predictions are within one
order of magnitude of the observations, but not always (Figure 12, first column). The same
results for the predictions as a function of the observed flux at E > 60 and E > 100 MeV
follow in Figure 12, in the middle and right columns, respectively. The ccs are slightly better
(cc = 0.394 (lower limit), 0.410 (median), 0.406 (upper limit), and cc = 0.370 (lower limit),
0.374 (median), and 0.402 (upper limit)), but the important feature here is that small events
are dominant and with much less scatter about the perfect prediction line.

In addition, the predicted flux at E > 30, E > 60, and E > 100 MeV for all SEP events
in the FORSPEF database with complete CME information (i.e. velocity and width) was
calculated. In what follows, the predicted peak SEP flux as a function of the corresponding
observed value per energy is presented in Figure 13.

The predicted peak flux at E > 30 MeV as a function of the observed peak flux at the
same energy shows a relatively strong correlation since the correlation coefficient is cal-
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Figure 12 Comparison of predicted with observed peak flux for 262 SEP events from 1984 – 2013. The
middle row provides the comparison for the predicted median value, while the top row represents the lower
limit (25th percentile) and the bottom row the upper limit (75th percentile).

culated to be 0.55. Although there is significant scatter of the points about the perfect di-
chotomous prediction line, it seems that there is a tendency for underforecasting, since the
difference between the predicted and the observed values is within a factor of ≈ 3, but not
always (Figure 13). The same results for the predicted as a function of the observed flux at
> 60 and > 100 MeV follow in Figure 13, in the middle and right panels, respectively. The
ccs are slightly degrading (cc = 0.49 (E > 60 MeV) and 0.43 (E > 100 MeV)).

4. Discussion and Conclusions

The FORSPEF tool is a new operational open-access forecasting system that provides re-
liable forecasting and nowcasting of SEP events, as well as forecasting of SFs based on
precursor information. Given the two operational modes of the tool, FORSPEF provides ex-
pected probabilities of SEP occurrence using either the outputs of the solar flare forecasting
or the near real-time solar event identifications.

The basic implementations of the FORSPEF tool presented in this study are summarized
as follows:



 134 Page 18 of 21 A. Anastasiadis et al.

Figure 13 Comparison of predicted with observed peak flux for 158 SEP events from 1996 – 2013, based
on CME input data.

• To predict solar flares, FORSPEF incorporates a module that makes use of the effective
connected magnetic field strength prediction metric (Beff). The corresponding statistics
are based on an extended database of magnetograms that covers Solar Cycle 23.

• The prognosis of SEP events is based on a new database of SEP events and their parent
solar events (i.e. SFs and CMEs). This comprehensive database covers an extended time
span from 1984 – 2013, and brings together solar and particle observations coupling the
events at the Sun to those detected at 1 AU.

• From an inferred flare probability for a single AR, we obtain a respective CME probabil-
ity.

• On a region-per-region basis, we coupled this probability with CME velocity information
and assessed the likelihood of CME shock formation thus.

• Furthermore, coupling the SF probability with a local DF obtained via the FORSPEF
database of SEPs, solar flares, and CMEs, we assessed the likelihood of an SEP event in
geospace 24hr in advance.

• Three modules were developed for short-term forecasting of SEP events and their corre-
sponding characteristics, based on solar flare, CME, and radio flux data.

All components of the FORSPEF tool were validated based on archived data. As a first
step, we validated the forecasting/nowcasting modules using an extensive statistical study
on a significant large archived sample of solar flare, CME, radio flux, and SEP events. We
constructed categorical scores for the predictions issued by the different modules, with the
analysis performed on randomly selected training and trial samples. Furthermore, we in-
cluded scatter plots of observed versus predicted SEP properties (characteristics) to quantify
the capabilities of the tool.

Additionally, as a second step, we investigated detailed case studies of significant SEP
events that have previously been reported in the literature. Blind tests with archived parent
solar data of these events were applied to the various modules of the FORSPEF tool in order
to derive the probabilities of SEP detection per module and per event.

The real-time results of FORSPEF are assessed in both textural and pictorial form
through the web portal http://tromos.space.noa.gr/forspef/.
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Appendix A: Categorical Scores

In general, in order to derive categorical scores, we need to enable the construction of
contingency tables and to calculate the various skill scores stemming from them. We im-
posed thresholds on predictive probabilities above/below which a YES/NO prediction was
adopted, and we inferred the skill scores as a function of these thresholds. However, the
application of categorical measures to probabilistic forecasts requires the definition of a
probabilistic threshold, pt. If the forecast/nowcast probability is ≥ pt, a warning is issued,
while if the forecast/nowcast probability is < pt, no warning is issued. Based on this, it is
possible to construct a contingency table (see Table 2) and calculate event-based norms.

For our purposes of validation, we used the following scores:

• The overall accuracy (OA) with a perfect score of 1 achieved in the case that there are no
misses and no false positives: OA = a + d/N .

• The probability of detection (POD), which ignores false positives and true negatives and
achieves a perfect score of 1 in the case that there are no misses: POD = a/a + c.

• The critical success index (CSI), which ignores true negatives and achieves a perfect score
of 1 in the case that there are no false positives and no misses: CSI = a/a + b + c.

• The probability of a false alarm (PFA) or false-alarm rate (FAR), which ignores misses
and true negatives and achieves a perfect score of 0 in the case that there are no false
positives: FAR = PFA = b/a + b.

• The Heidke skill score (HSS), which was used to quantify the ability of achieving correct
predictions with respect to chance. A value of 0 or lower implies that correct predictions
could be completely due to chance, while a perfect score of 1 is achieved in the opposite
case: HSS = 2(ad − bc)/(a + c)(c + d) + (a + b)(b + d).

• The percent correct (PC), which provides the ratio of correct predictions as a percentage
of the total number of forecasts: PC = a + c/N .

• The true skill statistic (TSS) obtains values in the range [−1,1] with a perfect score
of 1 attained in the case that there are no false positives and no misses (same as CSI),

Table 2 Classical 2 × 2 contingency table for dichotomous forecasting on a total of N predictions. Table
elements correspond to (a) hits, corresponding to events that were predicted and observed, (b) false positives
or false alarms, corresponding to events that were predicted but not observed, (c) misses, corresponding to
events that were not predicted but observed, and (d) true negatives, corresponding to events that were neither
predicted nor observed.

Event forecast Event observed

YES NO Marginal total

YES a (hits) b (false positives) a + b

NO c (misses) d (true negatives) c + d

Marginal total a + c b + d a + b + c + d = N
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and a totally unskilled value of −1 attained in the case that there are no hits and no
true negatives. A value of 0 demonstrates equal “sensitivity” to hits, compared to false
positives, and misses, compares to true negatives: TSS = a/(a + b) − c/(c + d).

For probabilistic forecasts, we can treat the probability threshold, pt, as an independent
variable ranging within [0.0,1.0] and calculate the categorical scores (POD, FAR, HSS, and
PC) per pt value. It is expected to identify a decrease of FAR while pt increases. At the same
time, however, a decrease in POD is also marked. The optimal score is traced using HSS for
a value of pt.
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