Empirical Peak Ground-Motion Predictive Relations for Shallow Earthquakes in Greece

by A. A. Skarlatoudis, C. B. Papazachos, B. N. Margaris, N. Theodulidis, Ch. Papaioannou, I. Kalogeras, E. M. Scordilis, and V. Karakostas

Abstract In the present article new predictive relations are proposed for the peak values of the horizontal components of ground acceleration, velocity, and displacement, using 619 strong motion recordings from shallow earthquakes in the broader Aegean area, which are processed using the same procedure in order to obtain a homogeneous strong motion database. The data set is derived from 225 earthquakes, mainly of normal and strike-slip focal mechanisms with magnitudes $4.5 \le M \le 7.0$ and epicentral distances in the range 1 km $\leq R \leq 160$ km that have been relocated using an appropriate technique. About 1000 values of peak ground acceleration (PGA), velocity (PGV), and displacement (PGD) from horizontal components were used to derive the empirical predictive relations proposed in this study. A term accounting for the effect of faulting mechanisms in the predictive relations is introduced, and the UBC (1997) site classification is adopted for the quantification of the site effects. The new relations are compared to previous ones proposed for Greece or other regions with comparable seismotectonic environments. The regression analysis showed a noticeable (up to $\sim 30\%$) variance reduction of the proposed relations for predicting PGA, PGV, and PGD values compared to previous ones for the Aegean area, suggesting a significant improvement of predictive relations due to the use of a homogeneous strong motion database and improved earthquake parameter information.

Introduction

Empirical predictive attenuation relations are a fundamental tool for seismic hazard assessment. Such relations are based on the recorded peak ground motions using appropriate instruments (e.g., accelerographs) and are expressed as mathematical functions relating the observed quantity to earthquake source parameters, the propagation path, and the local site conditions. So far, much effort has been made in this field, and a large number of predictive relations for peak ground motion have already been published. These relations usually refer to large regions such as the northwest United States, Canada (Milne and Davenport, 1969; Campbell, 1985; Boore et al., 1993), or Europe (Ambraseys and Bommer, 1991; Ambraseys, 1995; Ambraseys et al., 1996; Rinaldis et al., 1998), but also to smaller regions with high levels of seismicity, such as Greece or Italy (Chiaruttini and Siro, 1981; Papaioannou, 1986).

Two major efforts for estimating empirical predictive relations were previously made in Greece, the first one by Theodulidis (1991) and Theodulidis and Papazachos (1992) and the latest by Margaris *et al.* (2002). The occurrence of recent strong disastrous earthquakes close to urban areas, the continuous increase of the number of strong motion record-

ings in Greece, the new more accurate automatic methods for digitization of analog recordings, and the new relocation techniques resulting in more accurate hypocenter determination raised the need for new improved predictive relations. Therefore, our aim is to propose new predictive relations for Greece by incorporating the most recent information available.

The study area (Fig. 1a) is seismically one of the most active regions in western Eurasia. The most dominant feature of the area is the Hellenic trench, where subduction of the eastern Mediterranean lithosphere takes place under the Aegean microplate. Shallow as well as intermediate-depth earthquakes with magnitudes up to about 8.0 have occurred in this area (e.g., Papazachos and Papazachou, 2002). To the north of the trench, the sedimentary part of the Hellenic arc (Dinarides–Hellenides mountains–Crete–Rhodes) represents the accretionary prism. Moving further north we can identify other typical elements of a subduction system, namely the south Aegean basin (Sea of Crete) and the volcanic arc. In the north Aegean the North Aegean trough, which is the continuation of the North Anatolia fault system into the Aegean, controls the regional tectonics and exhibits large

Figure 1. (a) Map of the study area where the main morphotectonic features are also noted. (b) Map of the available focal mechanisms and epicenters of the earthquakes used in this study.

strike-slip faults, whereas the remaining back-arc area is dominated by approximately north–south extension (e.g., Papazachos *et al.*, 1998, 1999).

Data Used

The data used in this article consist of 1000 peak ground-motion values, corresponding to 225 mainly normal and strike-slip faulting, shallow earthquakes in Greece. This data set was selected from the entire database of the available accelerograms in Greece (Institute of Engineering Seismology and Earthquake Engineering [ITSAK], www.itsak.gr, and National Observatory of Athens [NOA], www.gein.noa.gr) that spans the period 1973–1999. The selected records satisfy at least one of the following criteria: (a) the earthquake that triggered the instrument should have a moment magnitude of $\mathbf{M} \ge 4.5$; (b) the strong motion record should have PGA $\ge 0.05g$, independent of the earthquake magnitude; or (c) the record has PGA < 0.05g, but another record with PGA $\ge 0.05g$ should be available for the same earthquake.

The need for higher accuracy in the earthquake location routines used in Greece has led to the development of a relocation method that incorporates not only recent developments of the earthquake location software but also new time delays for P_n and S_n waves for the broader Aegean area, estimated using data from local experiments (Skarlatoudis, 2002; Skarlatoudis et al., 2003). This approach involves correction of the seismic-wave travel times at regional stations based on a calibration with well-located local earthquakes. From the comparison of the expected and the observed travel times of seismic waves, we calculated "absolute" residuals for each one of the regional stations located within the area of interest. These absolute residuals were processed through an inversion technique, which resulted in the estimation of time corrections for each one of the $1^{\circ} \times 1^{\circ}$ square windows into which the examined area had been divided. The data processing and relocation procedure was described in detail in Skarlatoudis (2002) and Skarlatoudis et al. (2003). Using this relocation method a new catalog with accurate earthquake hypocenter parameters (especially for focal depths) was compiled. The errors of this catalog were reduced to 9.8 \pm 9.1 km for the horizontal error 3.0 \pm 6.5 km for focal depths, and a root mean square (rms) error of 1.0 ± 0.2 sec. The importance of this relocated catalog for the results obtained in the regression analysis is examined in the present study. In Table 1 the earthquakes that produced the strong motion data set used in this article are listed.

The continuously increasing number of analog strong motion records from different institutions in Greece during recent years imposed the need of a database with homogenously processed strong motion data. In order to create this database, all the strong motion records were automatically digitized at 600 dots per inch scanning resolution. From the comparison of the Fourier amplitude spectra (FAS) of the components with the FAS of the fixed traces of the accelerogram the characteristic frequencies of a digital bandpass filter were computed. This filter was applied to the accelerograms in order to remove the noise introduced during the digitization and the processing of the records (Skarlatoudis et al., 2002). This filtering procedure succeeded in removing noise, especially in the low-frequency range that mostly affects velocities and displacements (due to the integration that is used for their computation from acceleration). Depending on the individual signal-to-noise spectral ratio, a different frequency range is available for each strong motion record-

 Table 1

 Hypocentral Parameters of the Earthquakes

 used in the Present Study

Table 1
(Continued)

Unserv Organ Lar (N) Lar (N) <thlar (n)<="" th=""> <thlar (n)<="" th=""> <thlar< th=""><th colspan="4">used in the Present Study</th><th colspan="6">(Communed)</th></thlar<></thlar></thlar>	used in the Present Study				(Communed)									
Number 1 Diagn Lan 10 Date 10 Diagn Lan 10 <thdiagn 10<="" lan="" th=""> <thdiagn 10<="" lan="" th=""></thdiagn></thdiagn>	V				by (L)			Year	Origin Time	Lat. (°N)	Lon. (°E)	Dep. (km)	М	F
1973 1104115213.35 38.755 20.454 20.2 5.8 2 1988 122000547.32 33.442 21.37 0.0 4.9 0 1977 1122105257.52 33.449 22.322 8.9 5.0 1988 12131100347.53 37.57 21.06 16.6 4.8 1 1978 0523233411.72 40.737 23.37 4.9 5.8 0 1988 01201525.65 33.32 20.415 7.1 4.8 1 1978 0518001846.67 83.53 20.428.71 0.0 4.5 1 1988 01012525.65 33.38 20.077 21.37 1.0 4.8 1 1988 023013257.99 37.12 21.30 1.0 4.8 1 1980 02301497.96 33.14 21.29 1.0 4.8 0 1988 043037.97 33.14 21.29 1.0 4.4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Year	Origin Time	Lat. ('N)	Lon. ('E)	Dep. (km)	M	F	1988	0308113855.37	38.870	21.203	10.1	4.9	2
1973 110416113.04.4 38.753 20.332 21.1 5.0 1 1988 122005647.32 38.442 21.877 20.06 16.6 4.8 1 1978 062200023.59 40.732 23.242 13.0 6.5 0 1988 1020140059.31 40.501 22.948 14.3 4.8 1 1978 05220023.575 38.347 23.373 4.9 5.8 0 1988 0602100327.93 38.732 20.17 4.8 0 1988 0602100327.93 37.17 2.2.03 10.3 4.7 1 1.88 0.030237.93 7.1.2 2.1.03 10.3 4.7 1 1.980 07400057.06 39.222 2.7.78 0.0 6.7 1.988 042010355.03 38.140 2.2.88 10.5 4.5 1 1.980 042003357.93 38.140 2.2.88 10.5 4.5 1 1.981 04203357.93 38.140 2.2.88 10.5 4.5 1 1.981 042003357.93 38.140 2.2.88 10.5 4.5 1 1.981 0400033507.93 38.140	1973	1104155213.35	38.755	20.454	20.2	5.8	2	1988	0705203450.98	38.115	22.837	0.8	4.9	0
1977 1.22910527:52 88.449 22.322 8.9 5.0 1988 12231100347.5 37.75 21.00 1.6 4.8 1 1978 06523233411.72 40.737 23.374 1.9 5.8 0 1988 0624101032.97 38.842 20.515 7.3 8.8 20.515 7.3 8.8 20.515 7.3 8.8 20.517 6.3 4.8 1 1988 102102546.68 37.880 20.077 6.3 4.8 1 1980 012107575.67 38.12 21.11 10.3 4.7 10 10.3 4.7 10 10.3 4.7 10 10.3	1973	1104161136.44	38.753	20.333	21.1	5.0	1	1988	1222095647.32	38.424	21.875	0.0	4.9	0
1978 0.60220023.59 40.732 23.73 49 5.8 0 1988 1021040059.31 40.501 22.948 1.4.3 4.8 1.4.3 4.8 1.4.3 4.8 1.4.3 4.8 1.1.50 0 1988 0421003227 33.834 20.575 6.3.3 22.047 1.4.8 1.4.8 2.2.071 4.8 1.4.3 4.8.4 2.2.071 9.7.5 0.3.0 1.988 060210322.39 37.7.12 2.1.33 1.4.7 1.4 8.8 1.2.0.0257.39 37.7.12 2.1.33 1.0.7 1.3 0 1.988 040210327.39 37.7.12 2.1.33 1.0.6 4.5 1 1.988 040210357.39 37.7 1.2.2 1.0.9 4.5 1 1.988 040210357.39 37.7 1.0.2 0.4.5 1 1.988 040210357.39 37.7 1.0.2 0.4.5 1 1.988 040210357.39 37.7 1.0.2 1.0.3 1.0.3 1.0.3 1.0.3 1.0.3 1.0.3 1.0.3 1.0.3	1977	1229165257.52	38.449	22.322	8.9	5.0	0	1988	1213110034.75	37.757	21.206	16.6	4.8	1
1978 0532333411/72 40.737 23.73 4.9 5.8 0 1988 0624210122.97 38.854 20.51 9.7 4.8 1 1978 0518001346.67 38.374 21.817 0.0 4.5 1 1988 1031025948.68 37.803 20.415 7.1 4.8 1 1980 061101505.05 38.372 22.878 0.0 5.0 1988 092010382.66 37.815 21.00 4.6 0.4 1.00 4.6 0.4 1.01 4.6 0.4 1.03 0.0 6.4 0 1988 09201038.66 37.815 21.09 1.6.9 4.5 1 1981 022503551.88 38.809 20.968 11.3 5.2 1.988 00212257.1 38.107 21.831 21.84 8 1 1981 052715555.31 38.809 20.968 1.3 5.2 2 1989 0617121633.73 81.07 21.831 21.837 21.831 21.831 21.831 <td>1978</td> <td>0620200323.59</td> <td>40.732</td> <td>23.242</td> <td>13.0</td> <td>6.5</td> <td>0</td> <td>1988</td> <td>1020140059.31</td> <td>40.501</td> <td>22.948</td> <td>14.3</td> <td>4.8</td> <td>0</td>	1978	0620200323.59	40.732	23.242	13.0	6.5	0	1988	1020140059.31	40.501	22.948	14.3	4.8	0
1978 0472083327.0 38.971 22.008 1.1 5.0 0 1988 0602103525.65 38.332 20.415 7.1 4.8 1 1980 0811091559.91 39.309 22.837 10.7 5.3 0 1988 103102594.86 38.322 21.03 3.4 7 0 1980 041211559.91 39.309 22.877 10.7 5.3 0 1988 040211579.06 38.124 21.303 10.3 4.7 0 1980 0716000657.06 39.252 22.78 0.0 6.7 0 1988 003011358.06 37.15 21.29 0.0 4.5 1 1981 0224205336.83 38.21 22.717 3.9 5.6 2 1989 0031257.93 38.10 2.162 6.6 5.2 1989 012124531.43 38.00 2.164 5.4 1 1989 05150223.95 38.10 2.214 0.4 4.8 1 1981 052715551	1978	0523233411.72	40.737	23.373	4.9	5.8	0	1988	0424101032.97	38.854	20.551	9.7	4.8	1
1978 0518001846.67 38.374 21.817 0.00 45.1 1988 1031025948.68 37.880 20.975 6.3 4.7 1 1980 0411013211.31 38.553 20.402 6.4 5.3 1 1988 093010257.39 37.712 21.033 1.03 4.7 1 1980 0716000670 30.225 22.758 0.0 5.0 1988 092010353.66 37.815 21.299 1.6.9 4.5 1 1981 022405354.83 38.126 22.193 1.0.0 6.4 0 1988 002214514.64 37.915 2.0.44 0.0 4.5 1 1981 0527115276 33.80 2.0.78 3.5 2.2 1989 06719452.71 38.00 2.1.83 2.1.83 2.1.83 2.1.83 2.1.83 2.1.83 2.1.83 2.1.83 2.1.84 4.8 1 1981 052715251.83 3.8.80 2.0.94 3.3 5.2 2.1.9990 051120133.1 3.1.	1978	0427083327.70	38.971	22.008	1.1	5.0	0	1988	0602103525.65	38.332	20.415	7.1	4.8	1
1980 081109155991 39.309 22.837 10.7 5.3 0 1988 122307451847 55.893 2.4077 2.1.3 4.7 0 1980 071600057106 39.252 22.758 0.0 5.0 1 1988 04021575966 38.124 2.1.03 0.4 4.6 0 1980 022405336.88 38.221 22.945 0.0 6.7 0 1988 040303507.59 38.140 2.1.283 10.5 4.5 0 1981 025215251.83 38.262 2.3.103 0.0 6.4 0 1988 10211054.251 8.100 2.2.143 0.0 4.5 1 1981 0527150551 38.806 2.0.990 7.4 5.2 1998 061210547.41 8.100 2.2.148 0.4 4.8 1 1981 0527150551 3.8.70 2.0.91 7.0 1 1990 051602219.51 8.107 2.0.9 6.3 0.9 2.2.398 0.4 8.2	1978	0518001846.67	38.374	21.817	0.0	4.5	1	1988	1031025948.68	37.880	20.975	6.3	4.8	2
1980 0+12113211.31 38.353 20.402 6.4 3.3 1 1986 093013027,39 37,712 21.303 10.3 4.7 1 1980 07610005706 39.224 22.778 0.0 5.0 1988 093013057,39 37,712 21.403 10.0 4.6 0 4.5 1 1981 022402351.98 38.126 22.143 0.0 6.4 0 1988 00301357,79 38.140 22.883 10.0 4.5 1 1981 032101576 39.315 20.787 3.80 20.787 3.80 20.787 3.80 20.78 1.52 1 1989 0471210342,51 38.107 21.831 21.83 21.83 21.83 21.83 21.83 21.83 21.83 21.83 22.398 10.2 2.44 4.8 1 1981 052215055.51 3.88.05 21.055 1.7 7.0 1 1990 052112930.70 38.370 22.074 0.4 0.0 <td>1980</td> <td>0811091559.91</td> <td>39.309</td> <td>22.837</td> <td>10.7</td> <td>5.3</td> <td>0</td> <td>1988</td> <td>1223074518.47</td> <td>35.893</td> <td>24.097</td> <td>21.3</td> <td>4.7</td> <td>0</td>	1980	0811091559.91	39.309	22.837	10.7	5.3	0	1988	1223074518.47	35.893	24.097	21.3	4.7	0
1980 0716000571.06 39.252 22.788 0.0 5.0 0 1988 040215750.66 38.15 21.299 16.9 4.5 1 1981 0224005336.88 38.221 22.045 0.0 6.7 0 1988 040033507.59 38.140 22.883 10.5 4.5 0.0 4.5 1 1981 0221451464 37.95 2.0.941 0.0 4.5 1 1981 052715251.83 38.802 2.0.999 7.4 5.2 1.989 0607194552.71 38.007 21.831 2.8.1 2.1.83 0.0 4.8 1 1981 0527150551.83 38.07 2.0.933 9.4 4.6 2 1990 051002230.50 38.382 1.8.3 0.0 4.8 1 1900 051064403.20 38.107 2.0.84 3.7 6.0 2 1.990 051064403.20 38.370 2.2.277 1.0.3 4.8 0 0 1.1.3 1.990 0510641403.20 38	1980	0412113211.31	38.553	20.402	6.4	5.3	1	1988	0930130257.39	37.712	21.303	10.3	4.7	1
1980 0920041919.00 39.241 22./11 9.7 4.8 0 1988 092101038.06 38.140 22.893 10.5 4.5 0 1981 022502351.98 38.122 22.443 0.0 6.4 0 1988 1022145814.64 37.957 21.028 10.0 4.5 1 1981 0210157.66 39.312 20.787 37.9 5.5 2 1989 060719452.71 38.008 21.672 6.6 5.2 1 1980 052715251.83 38.805 21.004 5.3 5.2 2 1989 041202307.3 38.107 22.014 0.4 4.8 1 1981 0527150359.51 38.805 21.055 1.7 7.0 1 1990 0616021619.31 39.926 24.015 5.9 5.0 0 1983 0806154353.02 40.076 2.4.78 1.2.3 6.8 1 1990 0616021619.31 37.880 20.86 1.8.4 2.2 1.0.4 0.	1980	0716000657.06	39.252	22.758	0.0	5.0	0	1988	0402215759.66	38.124	24.112	0.0	4.6	0
1981 0.224/03.36.83 38.221 22.494 0.0 6.7 0 1988 0.0003307.59 38.140 22.883 10.5 4.5 0 1981 0.201651617.66 39.315 20.787 3.9 5.6 2 1989 0.001145527 33.008 21.671 38.008 20.668 1.5 5.2 1 1980 0.001145527 38.100 20.41 0.4 4.8 1 1981 052715251.83 38.806 20.0987 7.4 5.2 1989 0.0671945527 38.100 2.1.83 1.8.4 8.1 1981 0527305351 38.807 20.093 9.4 4.6 2 1990 0.120067141.4 40.20 22.38 10.2 6.8 1.21065714.4 40.920 22.38 1.0.2 5.0 0 9.332325104.56 38.197 20.215 5.7 1 1990 0.610021403.3 39.926 2.016 5.0 0 9.322145314.4 4.9 0.221.859 3.7.17 2.2.104	1980	0926041919.00	39.241	22.771	9.7	4.8	0	1988	0930110358.06	37.815	21.299	16.9	4.5	1
1981 0)22022351.93 38.126 2.103 0.0 0.4 0 1988 1021163481.464 37.915 20.041 0.0 4.5 1 1981 0527181201.73 38.809 20.968 11.3 5.2 2 1989 067174552.71 38.008 21.672 6.6 5.2 1 1981 0527153259.51 38.805 21.004 5.3 5.2 2 1989 0612105379.51 38.100 22.014 0.4 4.8 1 1981 0527153359.51 38.805 21.004 5.3 5.2 2 1989 051502230.59 38.328 21.380 0.0 4.8 1 1983 010160331.19 38.917 21.077 6.3 4.5 2 1990 051002230.57 38.372 22.077 10.3 4.9 0 1983 0310400214.10 38.188 20.228 10.1 5.4 1 1990 0524179597.13 37.742 20.04 0.0 4.8 2 1983 021475659.2 38.189 20.880 4.6 5.2 1	1981	0224205336.88	38.221	22.945	0.0	6.7	0	1988	0403033507.59	38.140	22.883	10.5	4.5	0
1981 051015017.06 39.315 20.787 3.9 5.6 2 1988 112716384.78 37.915 20.941 0.0 4.5 1 1981 052715251.83 38.806 20.989 7.4 5.2 2 1989 081212930.70 38.107 21.831 21.8 4.8 1 1981 052230358.7 38.806 20.983 9.4 4.6 2 1989 06150223.95 38.328 21.389 0.0 4.8 1 1983 052230358.77 38.807 20.983 9.4 4.6 2 1990 05105444.41 40.902 22.388 1.6.7 6.6 0 0 9.0 090919003.93 38.370 22.277 1.0.3 4.8 0 9.0 051074444.13 9.02 2.0.66 1.8 4.8 0 9.0 051074444.13 9.02 2.0.40 0.4 4.8 0 9.0 051074444.13 9.02 2.3.88 0.8 4.6 0.2 1.990 051074444.13 9.01 9.02 2.3.88 0.4 6.5 1 1.990	1981	0225023551.98	38.126	23.103	0.0	6.4	0	1988	1022145814.64	37.957	21.028	0.0	4.5	1
1981 0527181201.73 38.809 20.908 11.3 5.2 2 1989 0607194552.71 38.008 21.672 6.6 5.2 1 1981 0527153359.51 38.805 21.004 5.3 5.2 2 1989 0412100542.51 88.100 22.014 0.4 4.8 1 1981 05230358.77 38.807 21.087 7.6 3.4 5 2 1990 05100220.99 38.328 21.389 0.0 4.8 1 1983 0117121275 37.985 20.155 11.7 7.0 1 1990 05019003.83 39.926 24.015 5.9 5.0 0 1983 01010214.10 38.188 20.228 0.6 6.8 1 1990 052415950.13 37.880 20.866 1.0.8 8.3 2 2.108 0.0 4.8 2 2.198 0.0 4.8 2 2.108 0.0 4.8 2 1.0.3 4.5 1 1.900 0524175341.7 7.743 20.486 1.6.7 4.5 2 1.993	1981	0310151617.66	39.315	20.787	3.9	5.6	2	1988	1127163843.78	37.915	20.941	0.0	4.5	1
1981 052/15251.83 38.806 20.999 7.4 5.2 2 1989 052121293(7) 38.107 21.831 21.8 4.8 1 1981 052153551 38.807 20.993 9.4 4.6 2 1989 0151502230-59 38.100 2.2116 4.4 8.1 1 1990 0151502230-59 38.232 2.1.39 1.0.0 4.8 1 1983 0117124129.75 37.985 2.0.155 1.1.7 7.0 1 1990 0517084403.20 38.370 2.2.277 1.0.3 4.9 0 1983 011900214.10 38.188 20.229 9.5 5.8 1 1990 0517084403.20 38.370 2.2.104 0.0 4.8 0 1.88 0.0 4.8 0 1.990 0517084403.20 38.370 2.2.104 0.0 4.8 0 1.990 0517084403.20 38.370 2.2.104 0.0 4.5 1 1.990 050305757.41 7.173 2.0.80	1981	0527181201.73	38.809	20.968	11.3	5.2	2	1989	0607194552.71	38.008	21.672	6.6	5.2	1
1981 0.22/15039-J.3 38.00 21.004 3.3 5.2 2 1989 0.6120542.51 38.100 22.014 0.4 4.8 1 1981 0.623058.77 38.807 20.887 20.887 20.887 20.887 20.887 20.887 20.887 20.887 20.887 20.887 20.887 20.887 7 6.0 0 4.8 1 1990 061621619.31 39.169 20.564 3.7 6.0 0 1.8 0.0 6.2 1 1990 051706440.320 38.370 22.277 10.3 4.9 0 1983 011900214.10 38.188 20.229 9.5 5.8 1 1990 052411957.17 37.178 22.164 0.0 4.8 0 1983 01115525.52 38.101 20.217 10.2 5.3 1 1990 05241873.17 37.88 20.84 1.6 7.6 4.5 1 1990 052418514.866 37.72 20.84 1.6	1981	0527152551.83	38.806	20.989	7.4	5.2	2	1989	0831212930.70	38.107	21.831	21.8	4.8	1
1981 0.2223038.// 38.80/ 20.983 9.4 4.6 2 1989 0615002239.59 38.28 21.839 0.0 4.8 1 1988 0117124129.75 37.985 20.155 11.7 7.0 1 1990 0616021619.31 39.926 20.54 3.7 6.0 2 1983 0813435.02 40.076 24.783 12.3 6.8 1 1990 052149507.13 37.880 20.866 10.8 4.8 2 1983 031152459.22 38.107 20.215 4.3 5.4 1 1990 052417987.1837.17 37.880 20.866 10.8 4.8 2 1983 031152459.52 38.159 20.315 4.3 5.4 1 1990 052005775.84.3 38.271 20.445 1.4 5.0 1983 0311590567 38.830 20.88 4.6 5.2 1 1990 05214514.04.3 38.271 20.415 1.1 4.5 1	1981	0527150359.51	38.805	21.004	5.3	5.2	2	1989	0412100542.51	38.100	22.014	0.4	4.8	1
1981 0410083351.0 38917 21.007 6.3 4.5 2 1990 01221065744.41 0920 22.398 10.2 6.0 0 1983 01171212975 37.850 20.155 1.7 7.0 1 1990 0616021619.31 39.169 24.015 5.9 5.0 0 1983 032325104.56 8.193 20.188 0.0 6.2 1 1990 0570444.43 20.37.880 22.064 0.0 4.8 0 1983 0119000214.10 38.189 20.215 5.8 1 1990 0524195907.13 37.880 20.833 0.0 4.8 0 1983 011715532.81 38.110 20.217 10.2 5.3 1 1990 05205752.41 37.880 20.843 6.7 4.5 1 1983 02105550.5 38.300 20.880 4.6 5.2 1 1990 0524185148.66 37.723 20.406 8.3 4.5 1 1980	1981	0525230358.77	38.807	20.983	9.4	4.6	2	1989	0515092239.59	38.328	21.839	0.0	4.8	1
1983 011/124129.7.5 37.985 20.155 11.7 1.0 1 1990 09616021619.31 39.169 20.564 3.7 6.0 2 1983 01632535.02 40.076 24.783 12.3 6.8 1 1990 09517084403.20 38.370 22.277 10.3 4.9 0 1983 01300214.10 38.188 20.229 9.5 5.8 1 1990 0524195907.13 37.880 20.863 0.0 4.8 2 1983 0131152659.52 38.159 20.315 4.3 5.4 1 1990 052055254.1 37.738 20.884 16.7 4.5 1 1983 0117155535.35 38.100 20.272 11.5 5.2 1 1990 05205572.41 37.57 20.884 16.7 4.5 1 1983 0220054511.16 37.67 21.269 1.9 4.9 1 1990 0524185148.6 37.723 20.908 1.4 5.4 0 5.5 0 1991 0319120925.61 34.754 26.367 0.0 <t< td=""><td>1981</td><td>0410083331.19</td><td>38.917</td><td>21.077</td><td>6.3</td><td>4.5</td><td>2</td><td>1990</td><td>1221065744.41</td><td>40.920</td><td>22.398</td><td>10.2</td><td>6.0</td><td>0</td></t<>	1981	0410083331.19	38.917	21.077	6.3	4.5	2	1990	1221065744.41	40.920	22.398	10.2	6.0	0
1985 080615455.30 24.783 12.3 6.8 1 1990 09100234.30 39.926 24.015 5.9 5.0 0 1983 03235104.56 38.193 20.188 0.0 6.2 1 1990 051405403.20 38.370 22.277 10.3 4.9 0 1983 011900214.10 38.188 20.229 9.5 5.8 1 1990 052419507.13 37.880 20.866 10.8 4.8 2 1983 0131152659.52 38.159 20.315 4.3 5.4 1 1990 05205572.54 37.877 20.884 1.6.7 4.5 2 1983 01215553.95 38.810 20.217 11.5 5.2 1 1990 05205572.54 37.877 20.898 8.1 4.6 0 1 1990 052115433.2 38.25 20.406 8.3 4.5 1 1983 0220054511.16 37.687 21.269 11.9 4.9 1 1990 05211433.24 38.348 20.960 4.5 3.0 0 4.5	1983	0117124129.75	37.985	20.155	11.7	7.0	1	1990	0616021619.31	39.169	20.564	3.7	6.0	2
1988 01232251043.60 38.193 20.188 00 6.2 1 1990 0157084403.20 38.70 22.277 10.3 4.8 2 1983 019000214.10 38.188 20.228 9.5 5.8 1 1990 052419507.13 37.880 20.863 0.0 4.8 2 1983 0131152659.52 38.107 20.238 10.1 5.4 1 1990 052053254.14 37.873 20.833 0.0 4.7 2 1983 0117155355.95 38.100 20.272 11.5 5.2 1 1990 052055725.41 37.877 20.854 16.7 4.5 1 1983 0220054511.16 37.687 21.269 11.9 4.9 1 1990 041031915.87 38.255 20.406 8.3 4.5 1 1984 021080249.24 38.373 22.076 3.3 56 0 1991 01219225.61 34.754 26.367 0.0 5.5 0 1984 102108249.24 38.373 22.076 7.6 5.0	1983	0806154353.02	40.076	24.783	12.3	6.8	1	1990	0909190039.38	39.926	24.015	5.9	5.0	0
1985 0119000214.10 38.188 20.229 9.5 5.8 1 1990 0524195907.13 37.880 20.866 10.8 4.8 2 1983 031152659.52 38.157 20.315 4.3 5.4 1 1990 052417187.17 37.743 20.833 0.0 4.7 2 1983 0117165328.18 38.113 20.217 10.2 5.3 1 1990 052055725.41 37.857 20.854 16.7 4.5 2 1983 022054511.16 37.687 21.269 1.9 4.9 1 1990 052418544.45 38.271 20.906 1.8 4.5 1 1984 02210654511.16 37.687 21.667 3.5 6 1991 0519120925.61 34.754 26.367 0.0 5.5 0 1984 1025143827.88 40.087 21.617 2.4 5.5 0 1991 051920252.61 34.754 26.367 0.0 5.5 0 1984 1025143827.88 40.075 7.6 5.0 2 1991	1983	0323235104.56	38.193	20.188	0.0	6.2	1	1990	0517084403.20	38.370	22.277	10.3	4.9	0
1985 0324041730.67 38.107 20.238 10.1 5.4 1 1990 0808003507.68 37.178 22.104 0.0 4.8 0 1983 0117165328.18 38.1159 20.317 10.2 5.3 1 1990 090303549797 39.925 23.988 8.1 4.6 6.7 4.5 2 1983 0117165328.18 38.113 20.217 11.5 5.2 1 1990 0520055725.41 37.857 20.854 16.7 4.5 1 1983 0323190359.67 38.830 20.880 4.6 5.2 1 1990 0410031915.87 38.257 20.406 8.3 4.5 1 1983 0221054511.16 37.687 21.269 1.9 4.9 1 1990 0410031915.87 38.255 20.406 8.3 4.5 1 1984 10210424.24 38.373 22.076 3.3 5.6 0 1991 051212292.87 34.84 26.407 0.0 5.2 0 1991 061045201.15 36.982 21.907 1.1	1983	0119000214.10	38.188	20.229	9.5	5.8	1	1990	0524195907.13	37.880	20.866	10.8	4.8	2
1985 0111152693-22 38.139 20.315 4.3 5.4 1 1990 052417187.17 37.743 20.833 0.0 4.7 2 1983 0117165328.18 38.113 20.217 10.2 5.3 1 1990 092055525.41 37.857 20.854 16.7 4.5 2 1983 0323190359.67 38.830 20.880 4.6 5.2 1 1990 082412544.45 38.271 20.415 10.1 4.5 1 1983 0220054511.16 37.687 21.269 11.9 4.9 1 1990 052418514.86 37.723 20.906 1.2 5.3 0 1984 022104521.16 37.687 21.617 2.4 5.5 0 1991 031212925.61 34.754 26.367 0.0 5.5 0 1984 1025143827.88 40.067 21.617 2.4 5.5 0 1991 06120420.13 36.982 21.407 1.4 7.5 0.0 5.0 1991 06120420.13 36.982 21.444 3.7 5.9 <t< td=""><td>1983</td><td>0324041730.67</td><td>38.107</td><td>20.238</td><td>10.1</td><td>5.4</td><td>1</td><td>1990</td><td>0808003507.68</td><td>37.178</td><td>22.104</td><td>0.0</td><td>4.8</td><td>0</td></t<>	1983	0324041730.67	38.107	20.238	10.1	5.4	1	1990	0808003507.68	37.178	22.104	0.0	4.8	0
1985 0117165328.18 38.110 20.217 10.2 5.3 1 1990 090303549.97 39.925 23.988 8.1 4.6 0 1983 011715535.95 38.100 20.272 11.5 5.2 1 1990 0820155725.41 37.857 20.854 16.7 4.5 1 1983 0323190359.67 38.8100 20.272 11.5 5.2 1 1990 0410031915.87 38.255 20.406 8.3 4.5 1 1984 02210824511.16 7.687 21.269 11.9 4.9 1 1990 0524185148.66 37.723 20.908 1.2 4.5 1 1984 0211080249.24 38.373 22.076 3.3 5.6 0 1991 0319120292.61 34.534 20.366 1.2.4 5.3 0 1984 1004101509.63 37.584 20.775 7.6 5.0 2 1991 061070267.16 34.931 24.448 0.6 6.2 24.944 4.7 5.9 0 1984 10009021221.39 37.657 <td>1983</td> <td>0131152659.52</td> <td>38.159</td> <td>20.315</td> <td>4.3</td> <td>5.4</td> <td>1</td> <td>1990</td> <td>0524171837.17</td> <td>37.743</td> <td>20.833</td> <td>0.0</td> <td>4.7</td> <td>2</td>	1983	0131152659.52	38.159	20.315	4.3	5.4	1	1990	0524171837.17	37.743	20.833	0.0	4.7	2
1985 011/153353 38.100 20.272 11.5 5.2 1 1990 05200525241 37.857 20.854 16.7 4.5 2 1983 0323103567 38.830 20.884 4.6 5.2 1 1990 0524125240.45 38.271 20.405 8.3 4.5 1 1983 0220054511.16 37.687 21.269 11.9 4.9 1 1990 052418214866 37.723 20.908 1.9 4.5 1 1984 102108249.24 38.337 22.076 3.3 5.6 0 1991 052118214.866 37.723 20.908 1.2 5.5 0 1991 061041015201.15 36.982 21.907 1.1 4.7 0.0 5.2 0 1991 061054201.15 36.982 21.907 1.1 4.7 7.6 5.0 2 1991 061070227.06 34.931 24.488 0.0 4.6 2 1984 1002110243.79 37.657 20.441 4.7 5.9 0 11.8 4.7 5.9 0 11.8 4.7 <td< td=""><td>1983</td><td>011/165328.18</td><td>38.113</td><td>20.217</td><td>10.2</td><td>5.3</td><td>1</td><td>1990</td><td>0903053549.97</td><td>39.925</td><td>23.988</td><td>8.1</td><td>4.6</td><td>0</td></td<>	1983	011/165328.18	38.113	20.217	10.2	5.3	1	1990	0903053549.97	39.925	23.988	8.1	4.6	0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1983	0117155353.95	38.100	20.272	11.5	5.2	1	1990	0520055725.41	37.857	20.854	16.7	4.5	2
1985 082.012210.02 40.466 23.975 8.8 5.1 1 1990 0410031915.87 38.255 20.406 8.3 4.5 1 1983 022054511.16 37.687 21.269 11.9 4.9 1 1990 052418514.86 63.7.723 20.908 12.4 5.5 0 1984 0021143827.88 40.087 21.617 2.4 5.5 0 1991 06319120925.61 34.754 26.367 0.0 5.2 0 1984 1004101509.63 37.584 20.775 7.6 5.0 2 1991 0610154201.15 36.982 21.907 1.1 4.7 0 5.9 0 1984 100210243.79 37.657 20.943 0.0 4.7 2 1992 01500267.06 34.813 20.480 4.0 5.6 2 1984 100201243.79 37.055 21.661 0.0 4.5 1992 015224416.23 38.413 20.480 4.0 5.6 2 1984 100201243.59 37.352 21.641 0.7 <	1983	0323190359.67	38.830	20.880	4.6	5.2	1	1990	0824125440.45	38.271	20.415	10.1	4.5	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1983	0826125210.02	40.466	23.975	8.8	5.1	1	1990	0410031915.87	38.255	20.406	8.3	4.5	1
1984 0211080249.24 38.37 22.076 3.3 5.5 0 1991 0319120925.61 34.754 20.367 0.00 5.5 0 1984 1025113827.88 40.087 21.617 2.4 5.5 0 1991 0319212928.97 34.834 20.986 12.4 5.5 0 1984 1004101509.63 37.584 20.775 7.6 5.0 2 1991 0610054201.15 36.982 21.907 1.1 4.7 0.0 5.2 0 1984 1002110243.79 37.657 20.943 0.0 4.7 2 1992 1118211041.49 38.296 22.444 4.7 5.9 0 1984 100211221.39 37.052 21.661 0.0 4.5 1992 0530185539.27 38.011 21.440 17.4 5.2 1 1985 0430181412.23 39.239 22.883 6.5 5.6 1992 1110221459.33 38.768 20.656 2.0 4.8 1 1985 0907102049.09 37.325 21.194 4.7 5.4	1983	0220054511.16	37.687	21.269	11.9	4.9	1	1990	0524185148.66	37.723	20.908	1.9	4.5	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1984	0211080249.24	38.3/3	22.076	3.5	5.0	0	1991	0319120925.61	34.754	26.367	0.0	5.5	0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1984	1025145827.88	40.087	21.01/	2.4	5.5	0	1991	0626114333.24	38.384	20.986	12.4	5.3	0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1984	0/09185/12.19	40.642	21.895	13.2	5.2	0	1991	0319212928.97	34.834	26.407	0.0	5.2	0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1984	1004101509.05	37.384	20.775	/.0	5.0	2	1991	0601054201.15	36.982	21.907	1.1	4.7	0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1984	1025094917.05	37.062	21.751	0.0	5.0	0	1991	0617002627.06	34.931	24.488	0.0	4.6	2
1984 081721230:00 35.210 22.81 4.0 0 1992 0123042416.23 38.413 20.480 4.0 5.6 2 1984 1009021221.39 37.025 21.661 0.0 4.5 0 1992 0530185539.27 38.011 21.440 17.4 5.2 1 1985 0430181412.23 39.239 22.883 6.5 5.6 0 1992 01110221459.33 38.768 20.656 22.0 4.8 1 1985 0831060345.05 39.009 20.554 7.4 5.2 2 1992 0201090517.50 38.332 20.355 6.9 4.5 1 1985 0131163935.09 38.812 21.291 1.5 4.6 2 1993 0714123148.03 38.180 21.810 2.1 5.6 1 1985 0131163935.09 38.83 37.140 22.134 0.6 6.0 1993 0613232640.38 39.285 20.524 8.9 5.3 2 1 1986 0218143403.50 40.666 23.193 3.3 4.8	1984	1002110243.79	37.057	20.943	0.0	4./	2	1992	1118211041.49	38.296	22.444	4.7	5.9	0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1984	1000021221.20	38.210	22.010	2.8	4.0	0	1992	0123042416.23	38.413	20.480	4.0	5.6	2
1985 0430181412.23 39.239 22.883 6.5 5.6 0 1992 1110221439.33 38.768 20.656 22.0 4.8 1 1985 0907102049.09 37.325 21.194 4.7 5.4 0 1992 1111194509.08 38.079 21.414 12.5 4.7 1 1985 0831060345.05 39.009 20.554 7.4 5.2 2 1992 0201090517.50 38.332 20.355 6.9 4.5 1 1985 0131163935.09 38.894 21.291 1.5 4.6 2 1993 0714123148.80 38.180 21.810 2.1 5.6 1 1986 0913172433.83 37.140 22.134 0.6 6.0 0 1993 01613232640.38 39.285 20.524 8.9 5.3 2 0 1986 0218053442.63 40.686 23.193 3.3 4.8 0 1993 0305065506.28 37.044 2.0.44 0.0 5.3 0 1987 0227233452.75 38.387 20.329 8.2 5.7 1	1984	1009021221.39	37.025	21.001	0.0	4.5	0	1992	0530185539.27	38.011	21.440	17.4	5.2	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1985	0430181412.23	39.239	22.883	0.5	5.0	0	1992	1110221459.33	38.768	20.656	22.0	4.8	1
1985 063100543.05 39.069 20.334 7.4 5.2 2 1992 0201090517.50 38.332 20.355 6.9 4.5 1 1985 1109233042.86 41.231 24.036 4.3 5.2 0 1992 0125122319.10 38.316 20.355 6.4 4.5 1 1985 0131163935.09 38.894 21.291 1.5 4.6 2 1993 0714123148.80 38.180 21.810 2.1 5.6 1 1986 0913172433.83 37.140 22.134 0.6 6.0 0 1993 0613232640.38 39.285 20.524 8.9 5.3 2 1986 0918114130.10 37.040 22.130 8.0 5.3 0 1993 0305065506.28 37.084 21.448 0.0 5.2 0 1986 021805342.63 40.686 23.193 3.3 4.8 0 1993 0326175016.28 37.714 20.755 14.3 4.9 1 1987 02105051.423 37.763 21.438 9.1 4.9	1985	0907102049.09	37.323	21.194	4./	5.4	0	1992	1111194509.08	38.079	21.414	12.5	4.7	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1985	1100222042.05	39.009	20.554	/.4	5.2	2	1992	0201090517.50	38.332	20.355	6.9	4.5	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1985	1109255042.80	41.231	24.030	4.5	5.2	0	1992	0125122319.10	38.316	20.357	6.4	4.5	1
1953 0522205757.92 39.005 21.147 3.0 4.3 2 1993 0526115819.29 37.653 21.286 30.1 5.4 1 1986 0913172433.83 37.140 22.134 0.6 6.0 0 1993 0613232640.38 39.285 20.524 8.9 5.3 2 1986 0915114130.10 37.040 22.130 8.0 5.3 0 1993 104051835.88 38.401 22.044 0.0 5.3 0 1986 0218143403.50 40.756 22.108 5.3 5.3 0 1993 032667506.28 37.084 21.448 0.0 5.2 0 1987 0610145010.63 37.145 21.369 12.5 5.3 0 1993 0326115614.28 37.763 21.438 9.1 4.9 2 1987 1005092701.82 36.308 28.275 9.0 5.3 1 1993 0326114516.26 37.709 21.393 9.1 4.9 1 1987 102025110200.27 36.315 28.254 13.1 5.1	1985	0131103935.09	38.894	21.291	1.5	4.0	2	1993	0/14123148.80	38.180	21.810	2.1	5.6	1
1986 0915172433.63 37.140 22.134 0.6 6.0 1993 0613232640.38 39.285 20.524 8.9 5.3 2 1986 0915114130.10 37.040 22.130 8.0 5.3 0 1993 1104051835.88 38.401 22.044 0.0 5.3 0 1986 0218143403.50 40.756 22.108 5.3 5.3 0 1993 0305065506.28 37.084 21.448 0.0 5.2 0 1986 0218053442.63 40.686 23.193 3.3 4.8 0 1993 0204022255.17 38.186 22.689 0.0 5.1 0 1987 0610145010.63 37.145 21.369 12.5 5.3 0 1993 0326115614.28 37.763 21.438 9.1 4.9 1 1987 1005092701.82 36.308 28.275 9.0 5.3 1 1993 0326114516.26 37.709 21.393 9.1 4.9 1 1987 1020200.27 36.315 28.254 13.1 5.1 1	1985	0322203737.92	39.003	21.147	5.0	4.5	2	1993	0326115819.29	37.653	21.286	30.1	5.4	1
19800913114130.1057.04022.1308.05.3019931104051853.8838.40122.0440.05.3019860218143403.5040.75622.1085.35.3019930305065506.2837.08421.4480.05.2019860218053442.6340.68623.1933.34.8019930204022255.1738.18622.6890.05.1019870227233452.7538.38720.3298.25.7119930926075325.3837.71420.73514.34.9119870610145010.6337.14521.36912.55.3019930326115614.2837.76321.4389.14.9219871005092701.8236.30828.2759.05.3119930326114516.2637.70921.3939.14.9119871025130200.2736.31528.25413.15.1119930326124916.2937.78821.36713.84.7119870201053534.7837.91521.9220.04.8119930910133318.9938.59020.4938.34.611988016123403.7237.91021.06113.06.0119930330190856.9837.75221.4112.84.6119880518051741.3338.38520.40410.15.3119930214001745.7737.6221.385 <td< td=""><td>1980</td><td>09151/2455.85</td><td>37.140</td><td>22.134</td><td>0.0</td><td>0.0 5.2</td><td>0</td><td>1993</td><td>0613232640.38</td><td>39.285</td><td>20.524</td><td>8.9</td><td>5.3</td><td>2</td></td<>	1980	09151/2455.85	37.140	22.134	0.0	0.0 5.2	0	1993	0613232640.38	39.285	20.524	8.9	5.3	2
19860218143405.3040.73622.1085.35.3019930305065506.2837.08421.4480.05.2019860218053442.6340.68623.1933.34.8019930204022255.1738.18622.6890.05.1019870227233452.7538.38720.3298.25.7119930926075325.3837.71420.73514.34.9119870610145010.6337.14521.36912.55.3019930326115614.2837.76321.4389.14.9219871005092701.8236.30828.2759.05.3119930326114516.2637.70921.3939.14.911987120225111.0936.57921.5560.05.2219930604032427.0338.69320.5058.44.8119870209122824.5935.39726.2460.04.9019930326124916.2937.78821.36713.84.7119870201053534.7837.91521.9220.04.8119930910133318.9938.59020.4938.34.6119880512034414.3738.37820.43312.85.4119930330190856.9837.75221.4112.84.6119880518051741.3338.64521.04918.75.1219930216004308.4638.52021.530 <td< td=""><td>1980</td><td>0913114130.10</td><td>57.040 40.756</td><td>22.150</td><td>8.0 5.2</td><td>5.5</td><td>0</td><td>1993</td><td>1104051835.88</td><td>38.401</td><td>22.044</td><td>0.0</td><td>5.3</td><td>0</td></td<>	1980	0913114130.10	57.040 40.756	22.150	8.0 5.2	5.5	0	1993	1104051835.88	38.401	22.044	0.0	5.3	0
19860218053442.6540.68623.1933.54.8019930204022255.1738.18622.6890.05.1019870227233452.7538.38720.3298.25.7119930926075325.3837.71420.73514.34.9119870610145010.6337.14521.36912.55.3019930326115614.2837.76321.4389.14.9219871005092701.8236.30828.2759.05.3119930326114516.2637.70921.3939.14.911987120225111.0936.57921.5560.05.2219930604032427.0338.69320.5058.44.8119870209122824.5935.39726.2460.04.9019930326124916.2937.78821.36713.84.7119870201053534.7837.91521.9220.04.8119930910133318.9938.59020.4938.34.6119880512034414.3738.37820.43312.85.4119930330190856.9837.75221.4112.84.6119880518051741.3338.45521.04918.75.1219930216004308.4638.52021.53011.74.5019880122061853.7038.64521.04918.75.1219930216004308.4638.52021.530<	1986	0218143403.50	40.756	22.108	5.5	5.5	0	1993	0305065506.28	37.084	21.448	0.0	5.2	0
1987 0227233432.75 38.387 20.329 8.2 5.7 1 1993 0926075325.38 37.714 20.735 14.3 4.9 1 1987 0610145010.63 37.145 21.369 12.5 5.3 0 1993 0326115614.28 37.763 21.438 9.1 4.9 2 1987 1005092701.82 36.308 28.275 9.0 5.3 1 1993 0326114516.26 37.709 21.393 9.1 4.9 1 1987 120225111.09 36.579 21.556 0.0 5.2 2 1993 06404032427.03 38.693 20.505 8.4 4.8 1 1987 0209122824.59 35.397 26.246 0.0 4.9 0 1993 0326124916.29 37.788 21.367 13.8 4.7 1 1987 0201053534.78 37.915 21.922 0.0 4.8 1 1993 0910133318.99 38.590 20.493 8.3 4.6 1 1988 0518051741.33 38.385 20.404 10.1 5.3	1980	0218053442.03	40.080	25.195	3.3	4.8	0	1993	0204022255.17	38.186	22.689	0.0	5.1	0
1987 0610143010.65 5.1.45 21.369 12.5 5.3 0 1993 0326115614.28 37.763 21.438 9.1 4.9 2 1987 1005092701.82 36.308 28.275 9.0 5.3 1 1993 0326114516.26 37.709 21.393 9.1 4.9 1 1987 1210225111.09 36.579 21.556 0.0 5.2 2 1993 0604032427.03 38.693 20.505 8.4 4.8 1 1987 1025130200.27 36.315 28.254 13.1 5.1 1 1993 0429075430.43 37.733 21.513 0.0 4.8 1 1987 0201053534.78 37.915 21.922 0.0 4.8 1 1993 071020605.81 37.871 21.109 13.4 4.7 1 1988 1016123403.72 37.910 21.061 13.0 6.0 1 1993 0330190856.98 37.752 21.411 2.8 4.6 1 1988 0522034414.37 38.385 20.404 10.1 5.3	1987	022/255452.75	38.387	20.329	8.2	5.1	1	1993	0926075325.38	37.714	20.735	14.3	4.9	1
19871005092701.8236.50828.2739.05.3119930326114516.2637.70921.3939.14.9119871210225111.0936.57921.5560.05.2219930604032427.0338.69320.5058.44.8119871025130200.2736.31528.25413.15.1119930429075430.4337.73321.5130.04.8119870209122824.5935.39726.2460.04.9019930326124916.2937.78821.36713.84.7119870201053534.7837.91521.9220.04.8119930710202605.8137.87121.10913.44.7119881016123403.7237.91021.06113.06.0119930910133318.9938.59020.4938.34.6119880522034414.3738.37820.43312.85.4119930714123910.9938.07921.5940.04.6119880518051741.3338.38520.40410.15.311993021401745.7737.76221.38514.24.5019880122061853.7038.64521.04918.75.1219930216004308.4638.52021.53011.74.50	1987	1005002701.82	37.145	21.309	12.5	5.5	0	1993	0326115614.28	37.763	21.438	9.1	4.9	2
19871210223111.0930.57921.5300.05.2219930604032427.0338.69320.5058.44.8119871025130200.2736.31528.25413.15.1119930429075430.4337.73321.5130.04.8119870209122824.5935.39726.2460.04.9019930326124916.2937.78821.36713.84.7119870201053534.7837.91521.9220.04.8119930710202605.8137.87121.10913.44.7119881016123403.7237.91021.06113.06.0119930910133318.9938.59020.4938.34.6119880522034414.3738.37820.43312.85.4119930330190856.9837.75221.4112.84.611988052120538.2737.93721.07614.55.3119930214101745.7737.6221.38514.24.5019880122061853.7038.64521.04918.75.1219930216004308.4638.52021.53011.74.50	198/	1003092701.82	26.508	20.273	9.0	5.5	1	1993	0326114516.26	37.709	21.393	9.1	4.9	1
19871025150200.2730.51320.29415.15.11199304290/5430.433/.73321.5130.04.8119870209122824.5935.39726.2460.04.9019930326124916.2937.78821.36713.84.7119870201053534.7837.91521.9220.04.8119930710202605.8137.87121.10913.44.7119881016123403.7237.91021.06113.06.0119930910133318.9938.59020.4938.34.6119880522034414.3738.37820.43312.85.4119930330190856.9837.75221.4112.84.6119880922120538.2737.93721.07614.55.3119930214101745.7737.6221.38514.24.5019880122061853.7038.64521.04918.75.1219930216004308.4638.52021.53011.74.50	198/	1210223111.09	26 215	21.330	0.0	5.2	2 1	1993	0604032427.03	38.693	20.505	8.4	4.8	1
19870209122824.3953.39720.2400.04.9019930326124916.2937.78821.36713.84.7119870201053534.7837.91521.9220.04.8119930710202605.8137.87121.10913.44.7119881016123403.7237.91021.06113.06.0119930910133318.9938.59020.4938.34.6119880522034414.3738.37820.43312.85.4119930330190856.9837.75221.4112.84.6119880922120538.2737.93721.07614.55.3119930714123910.9938.07921.5940.04.6119880518051741.3338.38520.40410.15.3119930214101745.7737.76221.38514.24.5019880122061853.7038.64521.04918.75.1219930216004308.4638.52021.53011.74.50	1907	1023130200.27	25 207	26.234	13.1	J.1	1	1993	04290/5430.43	37.733	21.513	0.0	4.8	1
19870201053534.7851.91521.9220.04.8119930710202605.8137.87121.10913.44.7119881016123403.7237.91021.06113.06.0119930910133318.9938.59020.4938.34.6119880522034414.3738.37820.43312.85.4119930330190856.9837.75221.4112.84.6119880922120538.2737.93721.07614.55.3119930714123910.9938.07921.5940.04.6119880518051741.3338.38520.40410.15.3119930214101745.7737.76221.38514.24.5019880122061853.7038.64521.04918.75.1219930216004308.4638.52021.53011.74.50	198/	0209122824.59	33.397	20.240	0.0	4.9	1	1993	0326124916.29	37.788	21.367	13.8	4.7	1
19881010123403.7257.91021.00113.06.0119930910133318.9938.59020.4938.34.6119880522034414.3738.37820.43312.85.4119930330190856.9837.75221.4112.84.6119880922120538.2737.93721.07614.55.3119930714123910.9938.07921.5940.04.6119880518051741.3338.38520.40410.15.3119930214101745.7737.76221.38514.24.5019880122061853.7038.64521.04918.75.1219930216004308.4638.52021.53011.74.50	198/	0201053534.78	37.915	21.922	0.0	4.8	1	1993	0/10202605.81	37.871	21.109	13.4	4.7	1
1966 0322034414.57 38.578 20.433 12.8 5.4 1 1993 0330190856.98 37.752 21.411 2.8 4.6 1 1988 0922120538.27 37.937 21.076 14.5 5.3 1 1993 0714123910.99 38.079 21.594 0.0 4.6 1 1988 0518051741.33 38.385 20.404 10.1 5.3 1 1993 0214101745.77 37.762 21.385 14.2 4.5 0 1988 0122061853.70 38.645 21.049 18.7 5.1 2 1993 0216004308.46 38.520 21.530 11.7 4.5 0	1988	1016123403.72	37.910	21.061	13.0	0.U	1	1993	0910133318.99	38.590	20.493	8.3	4.6	1
1966 0922120338.27 57.957 21.070 14.5 5.5 1 1993 0714123910.99 38.079 21.594 0.0 4.6 1 1988 0518051741.33 38.385 20.404 10.1 5.3 1 1993 0214101745.77 37.762 21.385 14.2 4.5 0 1988 0122061853.70 38.645 21.049 18.7 5.1 2 1993 0216004308.46 38.520 21.530 11.7 4.5 0	1988	0022120528.27	38.3/8	20.433	12.8	5.4	1	1993	0330190856.98	37.752	21.411	2.8	4.6	1
1958 0318051/41.55 38.385 20.404 10.1 5.3 1 1993 0214101745.77 37.762 21.385 14.2 4.5 0 1988 0122061853.70 38.645 21.049 18.7 5.1 2 1993 0216004308.46 38.520 21.530 11.7 4.5 0	1988	0922120538.27	31.931	21.076	14.5	5.3	1	1993	0714123910.99	38.079	21.594	0.0	4.6	1
1900 0122001055.70 50.045 21.049 10.7 5.1 2 1993 0216004308.46 38.520 21.530 11.7 4.5 0	1988	0122061952 70	38.383 20 6 4 5	20.404	10.1	5.5	1	1993	0214101745.77	37.762	21.385	14.2	4.5	0
	1900	0122001855.70	38.043	21.049	16./	3.1	2	1993	0216004308.46	38.520	21.530	11.7	4.5	0

(continued)

(continued)

Table 1

Table 1

	(Continued)						(Continued)						
Year	Origin Time	Lat. (°N)	Lon. (°E)	Dep. (km)	М	F	Year	Origin Time	Lat. (°N)	Lon. (°E)	Dep. (km)	М	F
1993	1222194012.72	38.331	21.817	8.9	4.5	0	1997	1118130739.88	37.421	20.603	14.1	6.6	2
1993	0326122632.93	37.782	21.408	7.2	4.5	1	1997	1013133937.10	36.303	22.038	2.3	6.4	2
1993	0325054409.48	37.697	21.399	4.3	4.5	1	1997	1118131350.76	37.584	20.636	29.8	6.0	1
1994	0901161241.45	41.146	21.299	6.5	6.1	0	1997	1105211028.10	38.364	22.361	8.4	5.6	0
1994	0225023049.54	38.772	20.544	10.2	5.4	1	1997	1118152331.75	37.279	21.105	11.3	5.1	1
1994	1201071735.24	38.727	20.561	6.1	5.3	1	1997	0426221834.08	37.194	21.364	10.4	5.1	1
1994	0410194620.89	39.997	23.675	12.1	5.1	0	1997	1112162656.61	39.137	20.265	7.9	5.0	1
1994	1129143027.72	38.752	20.527	7.4	5.1	1	1997	0216110317.32	37.582	20.445	13.8	4.9	1
1994	0114060750.36	37.661	20.783	27.2	4.9	1	1997	1119003306.77	37.524	20.691	11.4	4.8	1
1994	0718154417.12	38.636	20.502	12.4	4.9	2	1997	1118134406.02	37.593	20.840	6.5	4.8	1
1994	0227223454.00	38.771	20.552	10.2	4.8	1	1997	1021175746.20	38.995	22.111	14.1	4.7	0
1994	1027070230.39	37.689	21.024	14.3	4.7	1	1997	0/18014522.84	36.368	28.107	12.6	4.6	0
1994	101/090217.35	37.810	20.913	24.3	4.6	1	1997	1105102/53.14	38.307	23.486	0.0	4.6	0
1994	12010/325/.25	38./39 20.129	20.460	10.5	4.0	1	1997	0/1/132101./3	28 245	28.107	8./ 5.0	4.5	1
1994	0414230134.34	39.138	20.908	7.0	4.5	2 1	1997	1214092035.72	36.343 40.150	22.572	3.9 2.1	4.5	1
1994	0513224103.32	30.040 40.162	20.434	3.1	4.5	0	1997	0822031747.00	40.130	21.023	2.1	4.5	2
1995	0615001550.20	38 401	21.724	17.6	6.0	0	1997	1006122741.02	37.430	20.703	0.1	4.J 5.4	2
1995	0615003051.66	38 313	22.235	17.0	5.6	0	1998	0501040014 57	37.130	20.982	10.0	53	1
1995	0517041424 81	40.046	21.520	9.9	53	0	1998	1008035018 30	37.862	20.735	13.6	5.2	0
1995	0504003410.65	40.540	23.652	7.4	5.3	0	1998	0411092913 51	39,903	23.884	7.0	5.2	0
1995	0517041425.94	40.074	21.626	5.4	5.3	0	1998	0224151143.77	36.442	27.993	2.4	5.1	0
1995	0717231815.41	40.108	21.584	5.3	5.2	0	1998	0716172915.59	38.695	20.478	8.9	4.8	1
1995	0503214327.26	40.562	23.656	9.0	5.1	0	1998	1122215252.04	38.143	20.315	11.7	4.7	1
1995	0515041356.49	40.083	21.591	8.7	5.1	0	1998	0423120332.50	38.288	20.397	9.9	4.5	1
1995	0519064849.47	40.009	21.577	7.5	5.1	0	1999	0907115651.40	38.059	23.571	14.5	5.9	0
1995	0519064850.62	40.054	21.580	6.8	5.1	0	1999	1124033854.23	39.639	20.628	5.2	5.0	2
1995	0517094507.92	40.014	21.549	8.2	5.0	0	1999	0907204455.65	38.069	23.535	4.6	4.9	0
1995	0503213654.09	40.547	23.646	7.2	5.0	0	1999	0908125501.66	38.070	23.542	14.1	4.7	0
1995	0517094506.83	39.975	21.523	5.8	5.0	0	1999	0308051015.43	37.570	21.762	1.1	4.7	1
1995	0513114330.97	40.129	21.631	12.1	4.9	0	1999	0314152117.10	37.438	20.749	12.1	4.6	2
1995	0516235728.48	40.095	21.619	3.3	4.9	0	1999	1021084548.08	38.217	21.775	11.8	4.6	0
1995	0513180600.57	40.129	21.621	13.3	4.8	0	1999	0903052933.33	38.354	23.179	11.3	4.6	0
1995	1005082130.37	38.160	20.292	9.9	4.8	1	1999	0605061918.75	38.322	22.383	10.1	4.6	0
1995	0611185146.80	39.950	21.532	9.2	4.8	0	1999	0629150959.18	38.411	22.076	1.0	4.6	0
1995	0519073649.13	40.041	21.586	8.8	4.8	0	1999	1226200537.01	37.723	20.664	18.0	4.5	1
1995	0213131635.99	40.695	22.758	7.3	4.8	1	1999	1102034248.98	39.774	20.622	15.0	4.5	2
1995	0606043559.45	40.128	21.601	0.5	4.8	0	1999	0625074214.76	38.298	22.754	11.4	4.5	0
1995	0011185147.85	39.907	21.559	4.5	4.8	1	1999	1000102112.02	38.088	25.541	11.5	4.5	1
1995	0310002309.80	28 454	20.547	15.0	4.7	1	1999	1009103112.92	30.342 40.554	22.220	10.5	4.5	1
1995	0705182459.22	40 117	22.279	5.8	4.7	0	1999	1212192538.24	38 120	20.230	5.0	4.5	1
1995	0503153955.89	40.569	23.699	53	47	0	1999	0406123231 11	37 427	20.250	4.5	4.5	2
1995	0316062510.21	38 646	20.368	24	47	1	1777	0100120201.11	57.127	20.755	1.0	1.0	
1995	0516230041.93	40.031	21.572	0.3	4.7	0	Norn	nal, strike-slip, and	thrust fault	ing mechar	isms are de	noted i	n the
1995	0510224600.25	38.056	20.576	17.9	4.6	1	last col	umn (F) with 0, 1, a	nd 2, respe	ctively.			
1995	0608021348.18	39.995	21.516	13.6	4.6	0							
1995	1217082226.05	38.163	20.458	13.3	4.6	1							
1995	0404171009.99	40.563	23.668	7.5	4.6	0	in a T	ſ				41	
1995	0528195640.36	38.388	22.026	4.9	4.6	0	ing. H	lowever, compai	ison of t	the PGA	values fro	m the	un-
1995	0518062255.28	40.019	21.550	3.9	4.6	0	correc	ted and the proc	essed (fil	tered) acc	celerogran	ns sho	wed
1995	0615045119.81	38.287	22.281	11.2	4.5	0	praction	cally identical va	alues for	almost al	l records,	hence	e the
1995	0514144657.66	40.123	21.666	9.0	4.5	0	filterii	ng procedure was	s able to	remove n	oise witho	out sig	nifi-
1995	0813051729.41	38.091	22.802	6.8	4.5	0	cantly	affecting peak	value ch	aracterist	ics (Skarl	atoud	is <i>et</i>
1995	0515081700.54	40.111	21.525	3.9	4.5	0	al 20	(02) Therefore	using the	- nreviou	s routine	all the	- 20-
1996	0606162535.90	37.580	21.092	8.9	4.9	1	alaro	grams of the Cr	aals strop	a motior	dotobaco		ho
1996	1009094629.37	36.784	21.294	0.0	4.9	2	celefo	grains of the Gr	CCK SUOI	ig monor		were	110-
1996	0811114345.35	37.671	21.345	12.9	4.7	1	moger	neously processe	a and co	rrected in	order to c	obtain	and
1996	0526214418.87	38.183	20.240	10.2	4.7	1	use th	e peak values of	the corre	esponding	records in	n the p	pres-
1996	0704215718.53	38.189	20.262	8.3	4.6	1	ent stu	ıdy.					
1996	0629010903.28	56.332	23.116	6.3	4.5	U	Т	he magnitudes	of the e	arthquak	es in our	data	base

(continued)

The magnitudes of the earthquakes in our database come from the catalog of the geophysical laboratory of Ar-

istotle University of Thessaloniki (Papazachos *et al.*, 2000). The size of the earthquakes in this catalog is expressed in a scale equal or equivalent to the moment magnitude, **M** (Hanks and Kanamori, 1979). For earthquakes lacking original moment magnitude estimates, the equivalent moment magnitude was used, as it is calculated from the equation (Papazachos *et al.*, 1997)

$$M_{\rm W}^* = 0.97 M_{\rm LGR} + 0.58, \tag{1}$$

where $M_{\rm LGR}$ is the local magnitude calculated from the trace amplitudes of the Wood–Anderson and short-period instruments of the Institute of Geodynamics of the National Observatory of Athens and the geophysical laboratory of Aristotle University of Thessaloniki. Moment magnitude was confirmed to be a suitable independent variable in defining predictive relations for the Aegean area (Papazachos *et al.*, 2001a), in agreement with similar observations worldwide (Joyner and Boore, 1981). Furthermore, the linearity of equation (1) has been shown (Papazachos *et al.*, 1997; Margaris and Papazachos, 1999) to be valid for the examined $M_{\rm LGR}$ range ($4.0 \le M_{\rm LGR} \le 6.5$). This is important issue in order to avoid introducing nonlinear effects in the predictive relations from magnitude-conversion relations (e.g., Fukushima, 1996; Papazachos *et al.*, 2001a).

The effect of source mechanism in predictive attenuation relations was recognized and pointed out many times by many researchers. McGarr (1984), Campbell (1984, 1997), Sadigh et al. (1993), Boore et al. (1997), and Anooshehpoor and Brune (2002) showed that thrust faults exhibit higher PGAs than those from other source mechanisms. Accordingly all the available information on the focal mechanisms of the earthquakes of our data set was collected from Papazachos and Papazachou (2002), from Papazachos et al. (2001c), as well as from the online catalog of the institutes Istituto Nazionale di Geofisica (I.N.G.), Eidgenössische Technische Hochschule (E.T.H.), and Harvard. For 67 earthquakes fault-plane solutions were available from the previous catalog. An effort to quantify the previous results and include them in the relations proposed by this article has been made. Earthquakes were classified in three categories of normal, strike-slip, and thrust faulting using the plunges of the P and T axes according to Zoback (1992). Beach-ball symbols in Figure 1b denote the fault-plane solutions, while gray circles denote the epicenters of the remaining earthquakes of our data set. These earthquakes were also categorized in the three categories, using current knowledge about the geotectonic environment for the regions where they occurred (Papazachos et al., 1998, 1999, 2001b).

Figure 2 shows the distribution of epicentral distance, R, against moment magnitude, \mathbf{M} , of the earthquakes used in the study for normal, strike-slip, and thrust faulting. It is observed that a correlation exists between these two parameters, introducing some difficulties in defining predictive attenuation relations. In fact, for small magnitudes, $4.5 \leq \mathbf{M} \leq 5.0$, the existing recordings are mainly distributed over

Figure 2. Distribution of the data in terms of moment magnitude, **M**, and epicentral distance, *R*, for (a) normal, (b) strike-slip, and (c) thrust faulting. The trigger level plus one standard deviation cut-off distance limit proposed by Fukushima and Tanaka (1990) and the corresponding trigger level (upper curve)/ trigger level plus one standard deviation (lower curve) limits derived from the present study attenuation curves are also shown by dashed line and gray-shaded area, respectively (see text for explanation).

small epicentral distances ($R \le 40$ km). On the contrary, large-magnitude events are mostly recorded at intermediate and long distances. Furthermore, for earthquakes with $\mathbf{M} > 6.0$ there is a lack of observations in the near field (R < 20 km). Figure 3 shows the distribution of PGA values as a function of epicentral distance (Fig. 3a) and magnitude \mathbf{M} (Fig. 3b), respectively. A dense coverage for distances up to 40 km is observed for PGA values less than 100 cm/sec². Similar remarks can be made for $\mathbf{M} < 6.0$.

Figure 3. Distribution of the peak ground acceleration, PGA, as a function of (a) the epicentral distance, R, and (b) moment magnitude, \mathbf{M} , for the strong motion records used in the present work.

An important point to be considered in the determination of predictive relations is the effect of record truncation at large distances. This problem is imposed by the trigger threshold of accelerographs (typically \sim 3–5 cm/sec²), which excludes lower-level acceleration data from the analysis (as they are not recorded) and may lead to the introduction of bias at large distances in cases of unusually high accelerations due to, for example, the presence of high-Q zones (e.g., Fukushima, 1997). It must be noted that such high accelerations at large distances are usually observed from intermediate-depth or deep subduction events, which were specifically excluded from this analysis. However, in order to avoid such bias, Joyner and Boore (1981) and Fukushima and Tanaka (1990) have suggested rejecting data at distances further from the trigger level or the trigger level plus one standard deviation, respectively. Such a procedure involves adoption of an attenuation relation in order to define the trigger-level distance threshold for each examined magnitude. In Figure 2 the dashed line corresponds to the limits proposed by Fukushima and Tanaka (1990), while the gray-shaded area corresponds to the trigger level (5 cm/sec², upper curve) and trigger level plus one standard deviation (~ 10 cm/sec², lower curve) for the mean predictive relation defined later in the present work. It is evident that all the data lie within the acceptable magnitude–distance area, while only 14 points (2% of our data set) are within one standard deviation from the theoretically estimated trigger threshold limit. After tests we found that excluding these data did not change the result presented later in the regression analysis; hence we can safely conclude that record truncation at large distances does not affect the analysis of the present data set.

In order to classify the local site conditions of the recording stations, we adopted the classification proposed by NEHRP (1994) and UBC (1997), classifying them in the five Universal Building Code categories, namely, A, B, C, D, and E. The classification was performed by using geotechnical information for the sites where such information was available (Klimis et al., 1999). For the remaining stations, information from the geological map of the specific area was used. In our case, the vast majority of recording stations that were finally adopted in this study corresponded to categories B, C, and D. Specifically, 19 recording stations were classified in category B, 68 in C, and 25 in D. Very few sites (six) having geotechnical/geological characteristics between A and B were also included in category B. In Table 2 the classification of site conditions of the recording stations used is presented.

Data Regression and Results

The equations examined in the regression analysis (e.g., Campbell, 1985) were

log
$$Y = c_0 + c_1 \mathbf{M} + c_2 \log(R^2 + h^2)^{1/2} + c_3 F + c_5 S$$
 (2a)

$$\log Y = c_0 + c_1 \mathbf{M} + c_2 \log(R + c_4) + c_3 F + c_5 S,$$
(2b)

where *Y* is the strong motion parameter to be predicted, usually in centimeters per second squared, in centimeters per second, and centimeters if *Y* stands for PGA, PGV, and PGD, respectively, **M** is the moment magnitude, *R* is the epicentral distance, *h* is the focal depth of each earthquake, *S* is the variable accounting for the local site conditions, and *F* is the variable referring to the effect of the faulting mechanism of the earthquakes in the predicting relations. In equations (2a) and (2b) a base-10 logarithm is used and units for *R* and *h* are in kilometers. Scaling coefficients c_0 , c_1 , c_2 , c_3 , and c_5 are to be determined from regression analysis. Coefficient c_4 in equation (2b) accounts for saturation in the near field and is difficult to determine directly by regression analysis on the available data, given its strong correlation with scal-

Table 2 prosed by NEHRP (1994) for th Site Classification Pr

Table	2
Continue	. 1

Site Classification Proposed by NEHRP (1994) for the			(Continued)					
F	Recording Stations U	Jsed in This Study		Name	Lat. (°N)	Lon. (°E)	Class	
Name	Lat. (°N)	Lon. (°E)	Class	LAM1	38.902	22.425	В	
ABS1	40.650	23.100	В	LAR1	39.637	22.417	D	
AGR1	38.621	21.406	D	$LEF1^{\dagger}$	38.826	20.702	D	
AGRA	38.630	21.420	D	LEFA	38.830	20.710	D	
AIG1	38.250	22.067	С	LEVA	38.430	22.880	С	
$ALM1^{\dagger}$	39.181	22.761	С	LXRA	38.200	20.440	С	
AMAA	37.800	21.350	D	MES1	37.050	22.000	С	
AMIA	38.530	22.380	С	MRNA	38.530	22.120	С	
AML1	38.858	21.160	В	MSLA	38.370	21.430	D	
ANS1	36.472	23.101	В	NAUA	38.400	21.830	В	
ARCA	36.200	28.130	С	OUR1	40.326	23.974	В	
ARG1 [†]	38.167	20.483	С	PAL1	39.935	23.673	С	
ARGA	38.170	20.470	С	$PAT1^{\dagger}$	38.250	21.733	С	
ART1	39.158	20.984	В	PAT2	38.238	21.738	С	
ARTA	39.159	20.985	С	PAT3 [†]	38.254	21.738	D	
ATH1	38.018	23.789	С	PATA	38.250	21.730	С	
ATH2	38.018	23.789	С	PATB	38.236	21.718	D	
ATH3	37.972	23.706	С	PEL1	37.050	21.850	С	
ATH4	37.996	23.743	С	POL1	40.374	23.438	В	
ATHA	38.000	23.770	С	PRE1	38.956	20.755	С	
ATHB	37.937	23.700	С	PREA	38.950	20.750	С	
ATHC	37.980	23.730	С	PYR1 [†]	37.670	21.438	D	
ATLA	38.650	23.000	В	PYR2	37.670	21.438	D	
CHN1	35.518	24.019	D	PYR3	37.670	21.438	D	
CHNA	35.510	24.020	С	PYR4	37.670	21.438	D	
CHR1	40.133	21.733	С	PYRA	37.670	21.430	D	
DEKA	38.100	23.780	A/B	RFNA	38.060	23.980	С	
DMKA	37.990	23.820	В	ROD1	36.433	28.233	С	
DRA1	41.139	24.142	С	ROD2	36.433	28.233	В	
EDE1	40.805	22.051	С	ROD3	36.433	28.233	С	
EGIA	38.250	22.080	С	ROD4	36.433	28.233	С	
FLO1	40.787	21.404	В	RODA	36.430	28.220	С	
GRE1	40.086	21.425	С	RTHA	35.370	24.470	D	
GRE2	40.085	21.426	С	SAR1	40.091	23.974	С	
GTH1	36.754	22.567	A/B	SER1	41.085	23.541	С	
HER1	35.318	25.102	С	SGMA	37.980	23.740	С	
HERA	35.350	25.130	С	SIT1	35.216	26.104	С	
IER1	40.391	23.873	С	SPAA	37.080	22.430	С	
IGM1	39.503	20.268	A/B	$THE1^{\dagger}$	40.620	22.970	С	
ISTA	38.950	23.150	D	THE2	40.617	22.967	В	
JAN1	39.659	20.851	С	$THE3^{\dagger}$	40.633	22.933	С	
KAL1 [†]	37.033	22.100	С	$THE4^{\dagger}$	40.517	23.017	D	
$KAL2^{\dagger}$	37.033	22.100	С	$THE5^{\dagger}$	40.633	22.933	С	
KALA	37.030	22.120	С	$THE6^{\dagger}$	40.633	22.933	С	
KAR1	39.366	21.920	С	$THE7^{\dagger}$	40.633	22.933	С	
KAS1 [†]	40.518	21.259	В	THEA	40.630	22.960	D	
KAT1	40.267	22.500	С	$THV1^{\dagger}$	38.317	23.317	С	
KAV1	40.935	24.403	В	THVC	38.320	23.318	С	
KEN1	40.017	21.617	В	$TMN1^{\dagger}$	40.667	22.900	С	
KIL1	40.990	22.869	С	$TMU1^{\dagger}$	40.617	22.967	С	
KNI1	40.083	21.583	С	VAR1	37.850	21.200	D	
KOR1	37.939	22.933	D	VAS1	38.626	20.605	С	
KORA	37.930	22.930	D	VER1	40.526	22.203	A/B	
KOZ1	40.302	21.784	В	VLSA	38.170	20.600	A/B	
KOZ2	40.300	21.790	С	VOL1	39.366	22.951	С	
KRN1	36.802	21.961	С	XLCA	38.080	22.630	D	
KRP1	38.917	21.800	A/B	ZAK1	37.785	20.900	D	
KRR1	39.950	21.617	С	ZAKA	37.780	20.900	D	
KYL1	37.933	21.133	С					
$KYP1^{\dagger}$	37.250	21.667	В	[*] Stations whe	re geotechnical inform	nation was available.		
KYPA	37.250	21.670	В					

ing coefficient c_2 , as was shown using appropriate Monte Carlo simulations (Papazachos and Papaioannou, 1997, 1998). For this reason, the value of $c_4 = 6$ km was adopted from Margaris *et al.* (2002), roughly corresponding to the average focal depth of the events used in the present study.

Joyner and Boore (1981) and Fukushima and Tanaka (1990), among others, have proposed various regression methods based on two-step regression procedures for predicting strong ground motion. Those methods aimed to overcome the problem of distance-magnitude correlation that was observed in all strong motion data sets used by previous researchers. More recent studies (Joyner and Boore, 1993) have shown that the stagewise regression methods give similar results with maximum likelihood analysis in one step. Since stagewise regression methods always give results with less precision than maximum likelihood analysis in one step (Draper and Smith, 1981), an optimization procedure based on the least-squares method in one step using the singular value decomposition method (Lanczos, 1961) was used in this article. Such an analysis allows controlling the stability of the optimization and accurate determination and analysis of the errors in the final solution (e.g., Golub and Reinsch, 1970; Press et al., 1992). Furthermore, through this analysis we also expect to overcome and quantify the problems arising from the observed correlation between magnitude and epicentral distance in our data set.

The term for describing site conditions in the predicting equations (2a) and (2b) is expressed as a linear transformation of the classification proposed by NEHRP (1994) and UBC (1997). However, we have also examined the possibility of including separate terms in the predicting equations for site conditions. Therefore, we considered that equations (2) without the site-effect term correspond to soil category B and included two additional terms, one for describing soil category C (S_C) and one for the effect for soil category D $(S_{\rm D})$. Using all the available data, the values obtained for the two coefficients from the regression of equations (2a) and (2b) were $S_{\rm C} = 0.058$ and $S_{\rm D} = 0.125$. From these results it is clear that the S_D value (site effect of D category) is essentially twice the value of $S_{\rm C}$. This result verifies the applicability of the usual assumption for the linearity between the finally adopted variable S in equations (2a) and (2b) and the classification proposed by NEHRP (1994) and UBC (1997). Therefore, the results obtained suggest that the variable S in equations (2a) and (2b) can be assumed to take the values of 0, 1, and 2 for soil categories B, C, and D, respectively.

A similar approach was adopted for the independent variable that describes the effects of focal mechanisms. Initially two different variables, $F_{\rm S}$ and $F_{\rm T}$, were used in equations (2a) and (2b) for strike-slip and thrust faults, respectively, in order to estimate the different contributions for $F_{\rm S}$ and $F_{\rm T}$, considering that strike-slip and thrust faults possibly exhibit higher PGA values than normal faults. The regression showed that the two coefficients were almost equal, revealing that the effects in the predicting equations (2a) and (2b)

from both strike-slip and thrust faults in Greece are similar using the data set of the present study. Therefore, only one variable was used in the regression, in order to describe the higher PGA values from strike-slip and thrust faults, merging $F_{\rm S}$ and $F_{\rm T}$ into a common variable, *F*.

In order to incorporate nonlinear effects of large earthquakes in the proposed equations for strong motion prediction, a second-order magnitude term was also added in predicting equations (2a) and (2b) (e.g., Boore *et al.*, 1993). Unfortunately the small number of large earthquakes in our data set resulted in inadmissible values of magnitude coefficients (positive coefficient for the second-order magnitude term) in the regression analysis; hence such effect could not be resolved from the present strong motion data set in Greece.

Following the previously described procedure, empirical predictive relations were defined for PGA, PGV, and PGD. The results are summarized in the following equations:

$$\log PGA = 0.86 + 0.45M - 1.27 \log(R^2 + h^2)^{1/2} + 0.10F + 0.06S \pm 0.286$$
(3a)

$$log PGA = 1.07 + 0.45M - 1.35 log(R + 6) + 0.09F + 0.06S \pm 0.286$$
(3b)

$$\log PGV = -1.47 + 0.52M - 0.93 \log(R^2 + h^2)^{1/2} + 0.07F + 0.11S \pm 0.303$$
(4a)

log PGV = -1.31 + 0.52M - 0.97 log(R + 6) $+ 0.06F + 0.11S \pm 0.305$ (4b)

$$\log \text{PGD} = -4.08 + 0.88\text{M} - 1.27 \log(R^2 + h^2)^{1/2} - 0.02F + 0.25S \pm 0.424 \quad (5a)$$

 $\log PGD = -3.87 + 0.87M - 1.31 \log(R + 6)$ $- 0.04F + 0.24S \pm 0.428.$ (5b)

The last term in equations (3) to (5) expresses the standard deviation of the predicted value for each equation.

In Figure 4a we present a comparison of the observed values and our relation for PGA versus PGD reduced to a magnitude M 6.5, plotted together with the ± 1 standard deviation curves. In Figures 4b and 4c the same plots for PGV and PGD, respectively, are shown. All the proposed relations were plotted in the previous figures for "rock" soil conditions (UBC category B), that is, S = 0, for normal faulting mechanisms, that is, F = 0, and for focal depth equal to the "effective" depth of shallow events, that is, the average depth where seismic energy is released. For Greece the value that corresponds to the average focal depth being $h_0 = 7$ km, as this value was estimated using mainly macroseismic data for the area of Greece (Papazachos and Papaioannou, 1997, 1998). It is clear that Figure 4 is slightly misleading, as the reduction of all data to a common magnitude (M 6.5) neglects the magnitude-distance correlation (Fig. 2). However, examination of Figure 4 allows a rough visual inspection of the data fit of proposed relations, reduced to a typical magnitude of a strong earthquake. Therefore the true validity and quality of the fit of the proposed relations are to be evaluated from the rms error of each relation and from the additional statistical analysis presented later in the text.

Figure 4. Comparison of the horizontal (a) PGA empirical relation, (b) PGV empirical relations, and (c) PGD empirical relations, plotted together with the $\pm 1\sigma$ curves with the observed values scaled to M 6.5.

The examination of the residuals resulting from the regression analysis for each of the variables used in the regression model did not show any systematic variations as a function of the remaining variables. As an example, the distribution of the resulting residuals for each proposed relation is plotted against distance in Figure 5. It is obvious that no apparent trend can be identified in the residuals.

Comparison with Similar Predictive Relations

Comparison of the proposed horizontal PGA predictive relations with those previously proposed for the area of Greece (Theodulidis, 1991; Margaris et al., 2002), for UBC soil category B, S = 0, are shown in Figure 6a. The higher levels of PGA values predicted by Theodulidis (1991) are probably due to the multiple-step least-squares method followed in his regression analysis, which resulted in a strong correlation between coefficient c_1 and predicted values, the more rough and empirical soil categorization, and the much smaller data set used. Significant differences are observed mainly at smaller distances and for large magnitudes, with the relation proposed in this study resulting in higher values in the near field than the one proposed by Margaris et al. (2002). This is probably due to the much larger number of records in near-field distances used in the present work, amplifying the completeness of our data set in this distance range (Figs. 2 and 3).

In Figures 6b and 6c the same comparison of the proposed horizontal PGV and PGD relations is shown. We can

Figure 5. Distribution of the residuals of PGA, PGV, and PGD in terms of distance.

Figure 6. Comparison of the PGA, PGV, and PGD empirical relations (continuous line) with those proposed by Theodulidis (1991) (black dash-dotted line) and Margaris *et al.* (2002) (dashed line) for Greek data: (a) comparison for PGA empirical relations, (b) comparison for PGV relations, and (c) comparison for PGD empirical relations, for **M** 6.5 and rock soil conditions (UBC class B, S = 0).

observe some differences in the comparison of horizontal PGV relations, resulting from both the enriched data set used, as described earlier, and better classification of the recording stations with respect to local site conditions. A noticeable agreement between the relations defined in this work and the relations proposed by Margaris *et al.* (2002) for PGD for earthquakes with \mathbf{M} 6.5 is observed.

In Table 3 a comparison between the standard deviations of each proposed relation for Greece and the corresponding variance reduction are shown. It is obvious that incorporating the relocated catalog for the earthquakes that produced the Greek strong motion data set (Skarlatoudis *et al.*, 2003), as well as the homogeneous analog recording processing (Skarlatoudis, 2002; Skarlatoudis *et al.*, 2002), resulted in improved and more accurate predictive relations, mainly for PGD and PGV and to a lesser extent for PGA. The previous arguments and the comparison of the proposed relations with the ones of Margaris *et al.* (2002), which were calculated with similar regression method and with the use of a slightly smaller catalog, demonstrate the validity of the proposed relations of this study.

In Figure 7 a comparison of the horizontal PGA relations with those proposed by Ambraseys et al. (1996), Sabetta and Pugliese (1987), and Spudich *et al.* (1999) for rock (S = 0) soil conditions (UBC B class) is shown. The comparison is made for M 6.5 in order to overcome the problem related to the different magnitude scales used by Ambrasevs et al. (1996) and Sabetta and Pugliese (1987), as pointed out by Papazachos *et al.* (1997) for $M_{\rm S} < 6.0$. The comparison with the Ambraseys relation shows good agreement for a range of distances from 10 to 30 km. For distances greater than 30 km, Ambraseys's relation shows a deviation and gives higher PGA values. Considering the fact that for the derivation of this relation different data sets have been used, which come from various seismotectonic environments with different stress fields (northern Europe, Mediterranean region, etc.), different distance measures, and different regression models in the regression analysis, such a deviation can be expected. In fact, the smaller attenuation rate observed in the Ambraseys et al. (1996) relation, which included data from less active tectonic environments, is in agreement with similar observations from macroseismic data (Papazachos and Papaioannou, 1997, 1998).

Ta	bl	le	3
	~ .		~

Standard Deviation and Variance Reduction of the Regression Analysis for Predictive Relations Proposed by Three Different Studies for Greece

	PG	A	PG	V	PGD		
	$\sigma_{ m PGA}$	$V_{\rm r}^{\rm PGA}$	$\sigma_{ m PGV}$	$V_{\rm r}^{\rm PGV}$	$\sigma_{ m PGD}$	$V_{\rm r}^{\rm PGD}$	
Present study	0.286	-	0.303	_	0.424	_	
Margaris et al. (2002)	0.304	11%	0.347	24%	0.469	18%	
Theodulidis (1991)	0.286	0%	0.317	9%	0.516	32%	

Figure 7. Comparison of the PGA empirical relations (black continuous line) with those proposed by Ambraseys *et al.* (1996) (dark gray dashed line), Sabetta and Pugliese (1996) (light gray continuous line), and Spudich *et al.* (1999) (black dashed line) for **M** 6.5 and rock soil conditions (UBC class B, S = 0).

Relations proposed by Sabetta and Pugliese (1987) show higher predicted values for all epicentral distances. The use of a high percentage (50%) of thrust faulting earthquakes in their data set probably produces part of this divergence. Spudich *et al.* (1999) proposed empirical predicting relations of PGA based on records from earthquakes that occurred in mainly normal faulting (extensional regime) regions. In general, the Spudich *et al.* (1999) relation is in good agreement with the one proposed in this work, exhibiting comparable values for far-field distances, although the predicted values in the near-field range are considerably lower.

Discussion and Conclusions

Abrahamson and Silva (1997), Boore *et al.* (1997), and Campbell (1997) proposed various empirical relations (in the framework of the National Seismic Hazard Mapping Project in the United States) taking into account the type of earthquake faulting. The incorporation of such a term that accounts for the effects of focal mechanisms in the attenuation of seismic waves has been applied for the first time in empirical prediction relations for Greece. In our proposed relations a decrease in the values of coefficient c_3 is observed, as we move from PGA to PGV and PGD relations. This decrease shows that the high-frequency portion of the source spectra is affected mostly from the faulting mechanism since ground acceleration records are "richer" in high frequencies than ground velocity records, and the same applies also for ground velocity and ground displacement records. The high-frequency part of the source spectra is physically related with the estimated Brune stress drop, $\Delta\sigma$, through the corner frequency of the spectra (Boore, 1983). Many researchers showed that thrust and strike-slip faulting earthquakes exhibit higher values for Brune stress (McGarr, 1984; Cocco and Rovelli, 1989; Rovelli et al., 1991; Margaris and Hatzidimitriou, 2002) or apparent stress (McGarr and Fletcher, 2002) than normal faulting earthquakes for different regions. We should point out that the stress drop notion used here refers to its traditional use as a scaling parameter of the high-frequency acceleration spectrum, similar to the *M*-drop, ΔM , quantity proposed by Atkinson and Beresnev (1997). This dynamic stress drop derived using Brune's or other equivalent point-source model may be very different and bear a rather complex relation to the static stress-drop (fault slip as a fraction of fault dimension). Hence, the higher stress drop proposed for thrust and strike-slip events in the Aegean area does not necessarily reflect differences in source geometry (slip, dimensions) but a rather systematic higher acceleration level of the Fourier spectrum at high frequencies for such events.

However, the enhancement in high frequencies of the source spectra may be also attributed to other factors except from the high dynamic stress drop. A very critical factor that affects the frequency content of the source spectra is the dimension of the fault rupture (Thatcher and Hanks, 1973) and asperity (Kanamori, 1981). Also, high rupture velocities or local high-Q values can result in more rich high-frequency components in the spectra (Mori, 1983). In our case the data set used comes from earthquakes with equivalent moment magnitudes from M 4.5 to 7.0, that is, faults with very different dimensions; thus the coefficient c_3 was calculated independently of the fault dimension. Moreover, there are no observations of systematically higher rupture velocities for thrust and strike-slip faults (compared to normal faults) in the Aegean area, where all the examined earthquakes have occurred. In addition, the areas where most of the recorded thrust or strike-slip fault earthquakes occur (western Greece-Ionian Islands) have relatively low Q-values due to thick layers of sediments of the recording sites (usually category D). The previous observations may provide evidence that the decrease in c_3 from PGA to PGV and PGD should be attributed to the fact that thrust and strike-slip faults are simply more rich in the higher frequency part of the source spectra compared to normal faults. It should be noted that the similar values of amplification found for thrust and strike-slip faults in Greece are probably due to the fact that the examined strike-slip faults (mainly from the Ionian Islands) usually have a significant thrust component, suggesting that the tectonic setting is closer to compressional than extensional.

The coefficient c_5 in equations (3) to (5) shows a relatively large value for the PGV relation (compared to PGA) and a much larger value for the PGD proposed relation. Hence, sites for soil category D show an increase of 30%

for expected PGA values at the same distance and magnitude in comparison to soil category A/B or B. However, this amplification increases to approximately 70% and 300% when considering PGV and PGD values, respectively. This strong amplification increase is the expected evidence of the strong dependence of ground velocity and displacement on the local soil conditions. It is known that surficial layers of soft sediments are strongly affected by the low-frequency content of seismic waves, because of their relatively low resonance frequency (small elastic modulus, deposits which usually have significant thickness). This correlates with the fact that ground velocity and displacement records have enhanced low-frequency content, unlike with PGA ones, as has been mentioned before. As a result, the local site effect for sedimentary deposits is expected to be stronger for PGV and even more pronounced for PGD values, which is reflected in the increase of coefficient c5 from PGA to PGV and PGD. Unfortunately, a similar tendency is seen for the standard deviation of the proposed relations for PGV and PGD. This increase is mainly due to the limitations of the processing and filtering during the correction of strong motion records, which attempts to reduce spectral noise mostly in low frequencies (Skarlatoudis et al., 2002) that affects velocities and displacements more than acceleration, as previously explained.

Acknowledgments

We would like to thank Y. Fukushima, A. McGarr, and an anonymous reviewer for their useful comments, which helped to improve the manuscript. Professor P. Hatzidimitriou also provided an early review and made important suggestions. This work was partially supported by the Earthquake Planning and Protection Organization project "Homogeneous database of strong motion records in Greece," Number 4121-15, and the EEC project "Internet-Site for European Strong-Motion Data ISESD."

References

- Abrahamson, N. A., and W. J. Silva (1997). Empirical response spectral attenuation relations for swallow crustal earthquakes, *Seism. Res. Lett.* 68, 94–127.
- Ambraseys, N. N. (1995). The prediction of earthquake peak ground acceleration in Europe, *Earthquake Eng. Struct. Dyn.* 24, 467–490.
- Ambraseys, N. N., and J. J. Bommer (1991). The attenuation of ground accelerations in Europe, *Earthquake Eng. Struct. Dyn.* 20, 1179– 1202.
- Ambraseys, N. N., K. A. Simpson, and J. J. Bommer (1996). Prediction of horizontal response spectra in Europe, *Earthquake Eng. Struct. Dyn.* 25, 371–400.
- Anooshehpoor, R., and J. N. Brune (2002). Precarious rock evidence for low ground accelerations associated with normal faults and extensional strike-slip faults, in *Proc. of the 2002 AGU Fall Meeting*, 6– 10 December, San Francisco, S71B–1078.
- Atkinson, G., and I. Beresnev (1997). Don't call it stress drop, Seism. Res. Lett. 68, 3–4.
- Boore, D. M. (1983). Stochastic simulation of high-frequency ground motion based on seismological models of the radiated spectra, *Bull. Seism. Soc. Am.* 73, 1865–1894.
- Boore, D. M., W. B. Joyner, and T. E. Fumal (1993). Estimation of response spectra and peak accelerations from western North American earth-

quakes: an interim report, U.S. Geol. Surv. Open-File Rept. 93-509, 72 pp.

- Boore, D. M., W. B. Joyner, and T. E. Fumal (1997). Equations for estimating horizontal response spectra and peak acceleration from western North American earthquakes: a summary of recent work, *Seism. Res. Lett.* 68, 128–153.
- Campbell, K. W. (1984). Near-source attenuation of strong ground motion for moderate to large earthquakes: an update and suggested application to the Wasatch fault zone in north-central Utah, in *Proc. of Workshop on Evaluation of Regional and Urban Earthquake Hazards and Risks in Utah*, Salt Lake City, U.S. Geol. Surv. Open-File Rept. 84-763, 483–499.
- Campbell, K. W. (1985). Strong motion attenuation relations: a ten year perspective, *Earthquake Spectra* 1, 759–804.
- Campbell, K. W. (1997). Empirical near-source attenuation relationships for horizontal and vertical components of peak ground acceleration, peak ground velocity, and pseudo-absolute acceleration response spectra, *Seism. Res. Lett.* 68, 154–179.
- Chiaruttini, C., and L. Siro (1981). The correlation of peak ground horizontal acceleration with magnitude, distance, and seismic intensity for Friuli and Ancona, Italy and the Alpide belt, *Bull. Seism. Soc. Am.* 71, 1993–2009.
- Cocco, M., and A. Rovelli (1989). Evidence for the variation of stress drop between normal and thrust faulting earthquakes in Italy, *J. Geophys. Res.* 94, 9399–9416.
- Draper, N. R., and H. Smith (1981). Applied Regression Analysis, Second Ed., Wiley, New York, 709 pp.
- Fukushima, Y. (1996). Scaling relations for strong ground motion prediction models with M^2 terms, *Bull. Seism. Soc. Am.* **86**, 329–336.
- Fukushima, Y. (1997). Comment on "Ground motion attenuation relations for subduction zone events," Seism. Res. Lett. 68, 947–949.
- Fukushima, Y., and T. Tanaka (1990). A new attenuation relation for peak horizontal acceleration of strong earthquake ground motion in Japan, *Bull. Seism. Soc. Am.* 80, 757–778.
- Golub, G. H., and C. Reinsch (1970). Singular Value Decomposition and Least Squares Solutions: Handbook for Automatic Computation, Vol. 2, Linear Algebra, J. Wilkinson and C. Reinsch (Editors), Springer, New York.
- Hanks, T. C., and H. Kanamori (1979). A moment magnitude scale, J. Geophys. Res. 84, 2348–2350.
- Joyner, W. B., and D. M. Boore (1981). Peak horizontal acceleration and velocity from strong-motion records including records from the 1979 Imperial Valley, California, Earthquake, *Bull. Seism. Soc. Am.* 71, 2011–2038.
- Joyner, W. B., and D. M. Boore (1993). Methods for regression analysis of strong motion data, *Bull. Seism. Soc. Am.* **83**, 469–487.
- Kanamori, H. (1981). The nature of seismicity patterns before large earthquakes, in *Earthquake Prediction, an International Review*, Maurice Ewing Series, Vol. 4, 1–19.
- Klimis, N. S., B. N. Margaris, and P. K. Koliopoulos (1999). Site-dependent amplification functions and response spectra in Greece, *J. Earthquake Eng.* 3, 237–270.
- Lanczos, C. (1961). *Linear Differential Operators*, D. Van Nostrand, Princeton, New Jersey, 564 pp.
- Margaris, B. N., and P. M. Hatzidimitriou (2002). Source spectral scaling and stress release estimates using strong motion records in Greece, *Bull. Seism. Soc. Am.* 92, 1040–1059.
- Margaris, B. N., and C. B. Papazachos (1999). Moment-magnitude relations based on strong motion records in Greece and surrounding area, *Bull. Seism. Soc. Am.* 89, 442–455.
- Margaris, B. N., C. B. Papazachos, Ch. Papaioanou, N. Theodoulidis, I. Kalogeras, and A. A. Skarlatoudis (2002). Empirical attenuation relations for the horizontal strong ground motion parameters of shallow earthquakes in Greece, in *Proc. of the 12th European Conf. on Earthquake Engineering*, 9–13 September, London.
- McGarr, A. (1984). Scaling of ground motion parameters, state of stress, and focal depth, J. Geophys. Res. 89, 6969–6979.

- McGarr, A., and J. B. Fletcher (2002). Mapping apparent stress and energy radiation over fault zones of major earthquakes, *Bull. Seism. Soc. Am.* 92, 1633–1646.
- Milne, W. G., and A. G. Davenport (1969). Distribution of earthquake risk in Canada, *Bull. Seism. Soc. Am.* 59, 729–754.
- Mori, J. (1983). Dynamic stress drops of moderate earthquakes of the eastern Aleutians and their relation to a great earthquake, *Bull. Seism. Soc. Am.* 73, 1077–1097.
- NEHRP (1994). Recommended provisions for seismic regulations for new buildings and other structures, Part 1: Provisions, FEMA 222A Building Seismic Safety Council, Washington D.C., 290 pp.
- Papaioannou, Ch. A. (1986). Seismic hazard assessment and long term earthquake prediction in Southern Balkan region, in *Proc. of the 2nd Int. Seminar on Earthquake Prognostics*, A. Vogel and K. Brandes (Editors), 14–27 June, Berlin, 223–241.
- Papazachos, B. C. (1990). Seismicity of the Aegean and surrounding area, *Tectonophysics* 178, 287–308.
- Papazachos, B. C., and K. Papazachou (2002). Earthquakes of Greece, Second Ed., Ziti Publications, Thessaloniki (in Greek), 317 pp.
- Papazachos, B. C., P. E. Comninakis, G. F. Karakaisis, B. G. Karacostas, Ch. A. Papaioannou, C. B. Papazachos, and E. M. Scordilis (2000). A catalog of earthquakes in Greece and surrounding area for the period 550BC–1999, http://geohazards.cr.usgs.gov/iaspei/europe/ greece/the/catalog.htm (last accessed October 2003).
- Papazachos, B., B. Karakostas, A. Kiratzi, B. Margaris, C. Papazachos, and E. Scordilis (2001a). Applicability of magnitude scales for defining strong motion parameters relations in Greece (in Greek), in *Proc. of the 2nd Hellenic Conf. on Earthquake Engineering and Engineering Seismology* 1, 55–64.
- Papazachos, B. C., D. M. Mountrakis, C. B. Papazachos, M. D. Tranos, G. F. Karakaisis, and A. S. Savvaidis (2001b). The faults which have caused the known major earthquakes in Greece and surrounding region between the 5th century BC and today (in Greek), in *Proc. of the 2nd Hellenic Conf. on Earthquake Engineering and Engineering Seismology* 1, 17–26.
- Papazachos, B. C., A. A. Kiratzi, and B. G. Karakostas (1997). Towards a hogeneous moment magnitude determination for earthquakes in Greece and the surrounding area, *Bull. Seism. Soc. Am.* 87, 474–483.
- Papazachos, B. C., E. E. Papadimitriou, A. A. Kiratzi, C. B. Papazachos, and E. K. Louvari (1998). Fault plane solutions in the Aegean sea and the surrounding area and their tectonic implications, *Boll. Geofis. Teorica Appl.* 39, 199–218.
- Papazachos, B. C., Ch. Papaioannou, C. B. Papazachos, and A. S. Savvaidis (1999). Rupture zones in the Aegean region, *Tectonophysics* 308, 205–221.
- Papazachos, C. B., and Ch. Papaioannou (1997). The macroseismic field of the Balkan area, J. Seism. 1, 181–201.
- Papazachos, C. B., and Ch. Papaioannou (1998). Further information on the macroseismic field in the Balkan area (reply on the comment of M. D. Trifunac on the paper "The macroseismic field of the Balkan area"), J. Seism. 2, 363–375.
- Papazachos, C. B., D. A. Vamvakaris, G. N. Vargemezis, and E. V. Aidona (2001c). A study of the active tectonics and deformation in the Mygdonia basin (N. Greece) using seismological and neotectonic data, *Bull. Geol. Soc. Greece* 34, 303–309.
- Rinaldis, D., R. Berardi, N. Theodulidis, and B. Margaris (1998). Empirical predictive models based on a joint Italian and Greek strong motion database: I, peak ground acceleration and velocity, in *Proc. of 11th ECEE* (CD-ROM) 6–11 September, Paris.
- Rovelli, A., M. Cocco, R. Console, B. Alessandrini, and S. Mazza (1991). Ground motion waveforms and source spectral scaling from close-

distance accelerograms in a compressional regime area (Friuli, northeastern Italy), *Bull. Seism. Soc. Am.* **81**, 57–80.

- Press W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery (1992). Numerical Recipes in FORTRAN, The Art of Scientific Computing, Second Ed., Cambridge U Press, New York, 968 pp.
- Sabetta, F., and A. Pugliese (1987). Attenuation of peak horizontal acceleration and velocity from Italian strong motion records, *Bull. Seism. Soc. Am.* 77, 1491–1513.
- Sadigh, K., C.-Y. Chang, N. A. Abrahamson, S. J. Chiou, and M. Power (1993). Specification of long period motions: updated attenuation relations for rock site conditions and adjustment factors for near-field effects, *Proc. ATC 17-1*, 11–12 March, San Francisco, 59–70.
- Skarlatoudis, A. (2002). Relocation of hypocentral earthquake parameters of Greece with the use of data from local experiments and effects in the strong motion attenuation relations, *Master's Thesis* (in Greek), 200 pp.
- Skarlatoudis, A., C. Papazachos, and V. Margaris (2002). Spectral noise determination from strong motion recordings in Greece, in *Proc. of* the 12th European Conf. on Earthquake Engineering and Engineering Seismology (CD-ROM), 9–13 September, London.
- Skarlatoudis, A. A., C. B. Papazachos, E. M. Scordilis, and V. Karakostas (2003). P_n and S_n station corrections and upper mantle velocity structure in the Aegean area using data from local experiments, in EGS-AGU-EUG Joint Assembly, Nice, France, 6–11 April 2003.
- Spudich, P., W. B. Joyner, A. G. Lindh, D. M. Boore, B. N. Margaris, and J. B. Fletcher (1999). SEA99: a revised ground motion prediction for use in extensional tectonic regimes, *Bull. Seism. Soc. Am.* 89, 1156– 1170.
- Thatcher, W., and T. Hanks (1973). Source parameters of southern California earthquakes, J. Geophys. Res. 78, 8547–8576.
- Theodulidis, N. P. (1991). Contribution to strong ground motion study in Greece, *Ph.D. Thesis* (in Greek), 500 pp.
- Theodulidis, N., and B. Papazachos (1992). Dependence of strong ground motion on magnitude–distance, site geology, and macroseismic intensity for shallow earthquakes in Greece: I, Peak horizontal acceleration, velocity, and displacement. *Soil Dyn. Earthquake Eng.* 11, 387–402.
- Uniform Building Code (UBC), (1997). Itern. Conf. Building Officials, USA, Vol. II, 489 pp.
- Zoback, M. L. (1992). First and second-order patterns of stress in the lithosphere: the world stress map project, J. Geophys. Res. 97, 11,703– 11,728.

Geophysical Laboratory

Aristotle University of Thessaloniki

GR-54124 Thessaloniki, Greece

(A.A.S., C.B.P., E.M.S., V.K.)

Institute of Engineering Seismology and Earthquake Engineering P.O. Box 53 Foinikas

GR-55102 Thessaloniki, Greece (B.N.M., N.T., C.P.)

Geodynamic Institute National Observatory of Athens P.O. Box 20048 GR-11810 Athens, Greece (I.K.)

Manuscript received 16 January 2003.