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Abstract— The problem of analyzing the performance
of switch and stay combing (SSC) diversity receivers,
operating over correlated and not necessarily identical
distributed Weibull fading channels is considered in this
paper. By means of a convenient expression for the bivari-
ate Weibull distribution, the probability density function
(PDF) of the SSC output signal-to-noise ratio (SNR) is
derived in terms of the first order Marcum’s Q-function.
The moments of the output SNR and the corresponding
cumulative distribution function (CDF) are also obtained
in closed form and are utilized to derive expressions for
the average output SNR, amount of fading and outage
probability. By using a rapidly convergent infinite series
representation for the bivariate Weibull distribution, an
analytical expression for the moments generating function
(MGF) is derived. The MGF can be efficiently used to
evaluate the average bit error probability (ABEP) for
several modulation schemes. The proposed mathematical
analysis is complimented by various numerical evaluated
results, which evaluate the effects of fading severity and
correlation on the overall system performance.

I. INTRODUCTION

Diversity is a powerful communication receiver tech-
nique that offers great potential for radio link perfor-
mance improvements at relatively low cost [1], [2]. There
are several diversity reception methods employed in
digital communication receivers including maximal-ratio
combining (MRC), selection combining (SC) and switch
and stay combing (SSC) [2]. Among them SSC diversity
is the least complex to implement and can be used in
conjunction with coherent, non-coherent and differen-
tially coherent modulation schemes. Additionally when
diversity reception techniques are employed without suf-
ficiently separated antennas due to space limitations, e.g.,
small size mobile terminals, the maximum theoretical
gain can not be achieved due to fading correlation [2].
As for the Weibull distribution, it fits very well to
experimental fading channel measurements [3], [4] but
only recently it has gained some interest [5]. It could

also be considered as an alternative and generic channel
model for the land-mobile satellite environment [6].

In the past there have been several papers studying the
switch diversity receivers operating over correlated fad-
ing channels including [7]–[10], and more recently [11].
In [7] the performance of dual SSC receivers operating
over independent and correlated Ricean fading channels
is analyzed and the average bit error probability (ABEP)
for non-coherent frequency shift keying (NCFSK) is
derived. In [8] the impact of fading correlation of dual
SSC is studied only for the case of Nakagami-m fading
channel. In [9] the moments output signal-to-noise ratio
(SNR) and the cumulative distribution function (CDF)
of SSC operating over lognormal fading channels were
derived. In the same paper the average SNR and the
outage probability (Pout) have been obtained. In [10]
integral representations for the MGF of SSC receiver
were presented for the general case of correlated fading
and nonidentical branches for several fading channels.
In a recent paper [11], closed form expressions for the
capacity of dual-branch MRC, SC and SSC diversity re-
ceivers over Nakagami-m fading channels were derived.

For the Weibull non-correlated fading channel, some
preliminary results have been presented for the error
rate performance of SSC diversity receivers [12]. In
[12] the channel has been considered to be uncorrelated.
However, despite the practical interest for a detailed
analysis of SSC receivers operating over correlated and
not identical distributed (ind) Weibull fading channels,
this problem has not been addressed yet in the open tech-
nical literature. Reasons for this include the absence of
an exact expression of the bivariate Weibull distribution
until very recently [3] and after the bivariate Weibull
distribution was presented, its complicated form.

The remainder of this paper is as follows. After this
introduction in Section II the system and channel model
is presented. In Section III important statistical metrics
and performance criteria, such as Pout, ABEP, amount of



fading (AoF) and average output SNR (ASNR) are stud-
ied. Finally in Section IV several numerical performance
evaluation results are presented.

II. SYSTEM AND CHANNEL MODEL

Let us consider a dual-branch diversity receiver op-
erating over a correlated Weibull fading channel. The
baseband received signal in the �th (� = 1, 2) antenna
is z� = s h� + n�, where s is the transmitted complex
symbol of energy Es = E

〈|s|2〉, with E 〈·〉 denoting
expectation and | · | absolute value, n� is the complex
additive white Gaussian noise (AWGN), with single
sided power spectral density N0, and h� is the channel
complex gain. The n�’s are assumed to be uncorrelated
and by considering slowly varying fading the h�’s are
assumed to be known at the receiver [2]. The fading
envelopes R1 = |h1| and R2 = |h2| are modeled as
correlated Weibull random variables. The instantaneous
SNR per symbol is γ� = R2

� Es/N0 and the corre-
sponding average input SNR γ� = E

〈
R2
�

〉
Es/N0 =

Γ (1 + 2/β�) Ω2/β�

� Es/N0, with Ω� = E
〈
Rβ�

�

〉
and Γ(·)

being the Gamma function [13, eq. (8.310/1)].
Let γssc represent the instantaneous SNR per symbol

at the output of the SSC and γτ the predetermined
switching threshold. The PDF of γssc is given by [8]

fγssc
(γ) =

{
gssc(γ), γ ≤ γτ

gssc(γ) + fγ1(γ), γ > γτ
(1)

where

fγ1(γ) =
β1

2

[
Γ(1 + 2/β1)

γ1

]β1/2

× γβ1/2−1 exp

[
−
(
γ

γ1

Γ(1 + 2/β1)
)β1/2

]

with β� expressing the severity of the fading of the �th
branch. Moreover, using [8, eq. (70)], gssc(γ) can be
expressed as

gssc(γ) =
∫ ∞

0
fγ1γ2(γ, γ2)dγ2 −

∫ ∞

γτ

fγ1γ2(γ, γ2)dγ2

(2)
where fγ1γ2(·, ·) is the joint PDF of γ1, γ2, which can be
derived by using [3, eq. (11), (30), (31)]. In this paper
gssc(γ) has been obtained in closed form in terms of the
first order Marcum Q-function, [2, eq. (4.33)], as

gssc(γ) =Aγβ1/2−1 exp
(
−Bγβ1/2

)
×
[
1 −Q1

(
C1γ

β1/4,D2

)] (3)

where

A =
β1β2 Γ(1 + 2/β1)β1/2 Γ(1 + 2/β2)2 24/β2

γ
β1/2
1 γ2

2 8 (1 − ρ)4/β2

,

B =
Γ(1 + 2/β1)β1/2

γ
β1/2
1

1
1 +

√
ρ
,

C� =
√

2ρ
1 − ρ

Γ (1 + 2/β�)
β�/4

γ
β�/4
�

,

D� =
√

2Γ(1 + 2/β�)β�/4

√
1 − ρ γ

β�/4
�

with ρ representing the Weibull correlation coefficient
given in [3, eq. (14)]. Hence, by substituting (3) in (1)
the PDF of γssc is obtained in closed-form.

III. STATISTICAL METRICS AND PERFORMANCE

ANALYSIS

In this section using the previously derived expression
for the PDF of γssc, the outage probability Pout and the
moments will be obtained in closed form. Moreover, by
using an infinite series representation for the PDF of γssc
the MGF will be derived and consequently the ABEP
will be studied.

A. Outage Probability (Pout)
Using [14, eq. (20)] the CDF of γssc can be obtained

as

Fγssc
(γ) = Pr (γτ ≤ γ1 ≤ γ)

+ Pr (γ2 < γτ and γ1 < γ)
(4)

which after some manipulations can be expressed in
terms of the CDF’s as

Fγssc
(γ) =

{
Fγ1,γ2(γ, γτ ), γ ≤ γτ
Fγ1(γ) − Fγ2(γτ ) + Fγ1,γ2(γ, γτ ), γ > γτ

(5)

where

Fγ�
(γ) = 1 − exp

{
− [(γ/γ�) Γ (1 + 2/β�)]

β�/2
}
.

Moreover Fγ1,γ2(x, y) is the CDF of γ1, γ2 and can be
derived by using [3, eq. (II-2)] as

Fγ1,γ2(x, y) = 1 − exp

[
−xβ1/2 Γ (1 + 2/β1)

β1/2

γ
β1/2
1

]

×Q1

(
yβ2/4D2, x

β1/4C1

)

− exp

[
−yβ2/2 Γ (1 + 2/β2)

β2/2

γ
β2/2
2

]

×
[
1 −Q1

(
yβ2/4C2, x

β1/4D1

)]
.

(6)



Since Pout is defined as the probability that the output
SNR falls below a given threshold, γth, it can be easily
obtained for γssc as

Pout(γth) = Fγssc
(γth). (7)

B. Moments

By using (1) in the definition of the nth order moment
of γssc, µγssc

(n) [15, eq. (5.38)], yields

µγssc
(n) =

∫ ∞

0
γn gssc(γ)dγ +

∫ ∞

γτ

γn fγ1(γ)dγ

= I1 + I2.

(8)

The solution of the first integral is given in closed-form
in the Appendix I. By setting ψ = γβ1 and using [13,
eq. (3.381/3)], I2 yields

I2 =
γn1

Γ (1 + 2/β1)
n

× Γ

(
2n/β1 + 1,

Γ (1 + 2/β1)
β1/2

γβ1/2

)
γβ1/2
τ .

(9)

where Γ (α, x) is the incomplete gamma function [13,
eq. (8.350/2)].

The ASNR, γout, is a useful performance measure
serving as an excellent indicator for the overall system’s
fidelity. The AoF, defined as AoF ∆= var (γssc) /γ2

ssc, is
a unified measure of the severity of the fading channel
[2], which can be expressed in terms of first- and second-
order moments of γssc as

AoF =
µγssc(2)
µγssc(1)2

− 1. (10)

Closed-form expressions for both ASNR and AoF can
be obtained by using (9), (A-3) and (A-2).

C. Moments Generating Function (MGF)

Using the (1) and (3) in the definition of the MGF,
[15, eq. (5.62)], is very difficult, if not impossible, to
derive the MGF of γssc, Mγssc

in closed form. On the
contrary, by using the infinite series representation for
the bivariate Weibull PDF [3, eq. (19)] and after some
straight forward mathematical manipulations, (2) can be
expressed as

gssc(γ) = Eγψ1−1 exp
(
−G1γ

β1/2
)

(11)

where

E =
∞∑
k=0

β1β2

4(k!)2
ρk

(1 − ρ)2k+1

Γ (1 + 2/β1)
ψ1

γψ1
1

× Γ (1 + 2/β2)
ψ2

γψ2
2

2γ
(
k + 1,G2

√
γτ
)

β2Gk+1
2

,

G� =
Γ (1 + 2/β�)

β�/2

(1 − ρ)γβ�/2
�

, ψ� = β�(k + 1)/2,

where γ (·, ·) is the lower incomplete Gamma function
[13, eq. (8.350)]. Hence, using (11) Mγssc

can be
expressed as

Mγssc
(s) = E

∫ ∞

0
γψ1−1 exp(−sγ)

× exp
(
G1γ

β1/2
)
dγ +

∫ ∞

γτ

exp(−sγ)fγ1(γ)dγ

= I3 + I4.

(12)

The same kind of integrals as I3 have been already
solved in [3, eq. (8)] as

I3 =
E
sψ1

λψ1
√
κ/λ(√

2π
)κ+λ−2

Gκ,λλ,κ

[( G1

sβ1/2

)κ λλ
κκ

∣∣∣∣ (1−ψ1)/λ, (2−ψ1)/λ,··· ,(λ−ψ1)/λ

0, 1/κ,··· ,(κ−1)/κ

]
,

(13)

where λ/κ = β1/2.
Moreover, by representing the exponential as infinite

series [13, eq. (1.211/1)], using [13, eq. (3.381/3)] and
after some straight forward mathematical manipulations
I4 can be solved as

I4 =
∞∑
k=0

(−s)k
k!

γ1

Γ (1 + 2/β1)
k

× Γ

[
2k/β1 + 1,

Γ (1 + 2/β1)
β1/2

γ
β1/2
1

γβ1/2
τ

]
.

(14)

Using the MGF-based approach [2] the ABEP of
binary differential phase shift keying (BDPSK) can be
derived directly by setting s = 1 in (13) and (14).

IV. NUMERICAL RESULTS

Based on the proposed formulation, representative
performance criteria of SSC diversity receivers have been
numerically evaluated, including the ABEP and Pout.
In Fig. 1, the ABEP performance of dual branch SSC
is illustrated for BDPSK signaling as a function of the
average input SNR per bit, γb = γ/ log2M , and for
several values of β1. As expected, the ABEP improves
as γ increases, while for a fixed value of γ, ABEP
improves as β and/or ρ decreases. Moreover, the curves

1For the convenience of the presentation of the performance results,
it is assumed that β1 = β2 = β and γ1 = γ2 = γ.



IB1 =
1
2

(
2n
β1

)
!

γ
n+β1/2
1 (1 − ρ)2n/β1+1

Γ (1 + 2/β1)
n+β1/2

(
1 −√

ρ
)2n/β1+1

ρ

ρ−√
ρ+ 1

exp

[
−Γ (1 + 2/β2)

β2/2 γ
β2/2
τ

(
1 −√

ρ
)

γ
β2/2
2

(
ρ−√

ρ+ 1
)
(1 − ρ)

]

×
2n/β1∑
ν=0

εν

(
1 −√

ρ

ρ−√
ρ+ 1

)ν
Lν

[
− Γ (1 + 2/β2)

β2/2 ρ γ
β2/2
τ

γ
β2/2
2 (1 − ρ)(ρ−√

ρ+ 1)

]
.

(A-3)

also indicate that the differences among them become
less significant as either β increases and/or ρ decreases.

In Fig. 2, Pout is plotted as a function of the normal-
ized outage threshold γth/γb for several values of β and
ρ. The exponentially power decaying profile (PDP) has
been considered [16], [17], i.e., γ� = γ1 exp [−δ(�− 1)],
where δ is the power decaying factor. In Fig. 2 it is
illustrated that as β increases and/or ρ decreases Pout
decreases.

APPENDIX I
DERIVATION OF INTEGRAL I1 IN CLOSED-FORM

Using (2), I1 can be expressed as

I1 = A
[∫ ∞

0
γn+β1/2−1 exp

(
−Bγβ1/2

)
dγ

−
∫ ∞

0
γn+β1/2−1 exp

(
−Bγβ1/2

)
Q1

(
Cγβ1/4,D

)
dγ

]
= A (IA1 − IB1

)
.

(A-1)

By setting x = γβ1/2 and using [13, eq. (3.381/4)], IA1
can be solved as

IA1 =
2 Γ (2n/β1 + 1)
B2n/β1+1 β1

. (A-2)

Moreover, by setting x = γβ1/4, using [18, eq. (9)]
and after some mathematical simplifications IB1 can be
solved as in (A-3)(top of this page). In (A-3) Lν(·) is
the Laguerre polynomials [13, eq. (8.970/1)] and εν is
given by

εκ =




1, ν < 2n
β1

1 + [Γ(1+2/β1)
β1/2]

/
[γβ1/2

1 (1−√
ρ)/(1−ρ)]

[ρΓ(1+2/β1)
β1/2]

/
[(1−ρ)γβ1/2

1 ]
, ν = 2n

β1
.

(A-4)

ACKNOWLEDGMENTS

This work has been performed within the frame-
work of the Satellite Network of Excellence (SatNEx-II)
project (IST-027393), a Network of Excellence (NoE)
funded by European Commission (EC) under the FP6
program.

Fig. 1. ABEP of BDPSK signaling versus γ in a correlated Weibull
fading environment.
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