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Abstract

This document presents the sparse Bayesian unmixing algorithms recently
developed in the framework of the “HSI-MARS” research project. The un-
mixing process is formulated as a linear regression problem, where the abun-
dance’s physical constraints are taken into account. Based on this formu-
lation, a hierarchical Bayesian model is presented and suitable priors are
selected for the model parameters such that, on the one hand, they ensure
the non-negativity of the abundances, while on the other hand they favor
sparse solutions for the abundances’ vector. To perform Bayesian inference
based on the proposed hierarchical Bayesian model, we resort to the vari-
ational Bayes methodology. Hence, a computationally efficient variational
Bayes algorithm is then presented, where approximating posteriors for all
model parameters are derived. Experimental results on both synthetic and
real hyperspectral data illustrate that the proposed method converges fast,
favors sparsity in the abundances’ vector, and offers improved estimation
accuracy compared to other related methods.
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1 Introduction

Hyperspectral remote sensing has gained considerable attention in recent
years, due to its wide range of applications, e.g., environmental monitoring
and terrain classification [1–3], and the maturation of the required technology.
Hyperspectral sensors are able to sample the electromagnetic spectrum in
tens or hundreds of contiguous spectral bands from the visible to the near-
infrared region. However, due to their low spatial resolution, more than one
different materials can be mixed in a single pixel, which calls for spectral
unmixing, [3]. In spectral unmixing, the measured spectrum of a mixed pixel
is decomposed into a collection of constituent spectra, called endmembers,
and a set of corresponding fractions, called abundances, that indicate the
percentage contribution of each endmember to the formation of the pixel.

The process of hyperspectral unmixing is described by two major steps:
(a) the endmember extraction step, and (b) the inversion process. In the
endmember extraction step the spectral signatures of the endmembers con-
tributing to the hyperspectral image are determined. Popular endmember
extraction algorithms include the pixel purity index (PPI), [4], the N-FINDR
algorithm, [5], and the vertex component analysis (VCA) method, [6]. The
inversion process determines the abundances corresponding to the estimated
endmembers obtained in the previous step. The abundances should satisfy
two constraints, in order to remain physically meaningful; they should be
non-negative and sum to one. Under these constraints, spectral unmixing is
formulated as a convex optimization problem, which can be addressed using
iterative methods, e.g., the fully constrained least squares method, [7], or
numerical optimization methods, e.g., [8]. Bayesian methods have also been
proposed for the problem, e.g., the Gibbs sampling scheme applied to the hi-
erarchical Bayesian model of [9]. Semi-supervised unmixing, [9,10], which is
considered in this paper, assumes that the endmembers’ spectral signatures
are available. The objective of semi-supervised unmixing is (a) to determine
how many and which endmembers are present in the mixed pixel under study
and (b) to estimate their corresponding abundances.

An interesting perspective of the semi-supervised spectral unmixing prob-
lem arises when the latent sparsity of the abundance vector is taken into
account. A reasonable assumption is that only a small number of endmem-
bers are mixed in a single pixel, and hence, the solution to the endmember
determination and abundance estimation problem is inherently sparse. This
lays the ground for the utilization of sparse signal representation techniques,
e.g., [11–14], in semi-supervised unmixing. A number of such semi-supervised
unmixing techniques has been recently proposed in [10,15,16], based on the
concept of `1 norm penalization to enhance sparsity. These methods assume
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that the spectral signatures of many different materials are available, in the
form of a spectral library. Since only a small number of the available ma-
terials’ spectra are expected to be present in the hyperspectral image, the
abundance vector is expected to be sparse.

In this technical report, a hierarchical Bayesian approach for semi - su-
pervised hyperspectral unmixing is adopted, which is based on the sparsity
hypothesis and the non-negativity property of the abundances. The adopted
Bayesian model has been recently presented in [17]. In this hierarchical
model, appropriate prior distributions are assigned to the unknown parame-
ters, which reflect prior knowledge about their natural characteristics. More
specifically, to account for the non-negativity of the abundances, a truncated
non-negative Gaussian distribution is used as a first level prior. The vari-
ance parameters of this distribution are then selected to be exponentially
distributed. This two-level hierarchical prior formulates a Laplace type prior
for the abundances, which is known to promote sparsity, [18, 19]. In addi-
tion, compared to other related hierarchical models, [14,20,21], which employ
a single sparsity-controlling hyperparameter, the proposed model comprises
multiple distinct sparsity-controlling hyperparameters. It is proven that this
extension makes the model equivalent to a non-negativity constrained variant
of the adaptive least absolute shrinkage and selection operator (Lasso) crite-
rion of [22], whose solution provides a consistent abundance estimator. The
proposed hierarchical model also retains the conjugacy of the parameter dis-
tributions, which in the sequel is exploited to obtain closed form expressions
for the parameters’ posterior distributions.

As is usually the case in Bayesian analysis, the resulting joint posterior
distribution of the proposed hierarchical model does not possess a tractable
analytical form. To overcome this impediment, we rely on a VB algorithm
to perform statistical inference for the model parameters. Closed form ex-
pressions are provided for the updating of the parameters of all posterior
approximating distributions. More importantly, based on suitable algebraic
manipulations, a fast scheme is derived that allows us to reduce the computa-
tional complexity of the VB algorithm by one order of magnitude, [23]. This
scheme performs Bayesian inference for all model parameters, and hence,
there is no need for parameter cross-validation (as opposed to deterministic
methods, e.g. SUnSAL, [24]). To demonstrate the efficiency of the proposed
scheme, experimental results on both simulated and real hyperspectral data
are provided.

Notation: We use lowercase boldface and uppercase boldface letters to
represent vectors and matrices respectively. With (·)T we denote transpo-
sition, and with ‖·‖1 and ‖·‖2 the `1 and `2 norm respectively, (‖x‖1 =
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∑N
i=1 |xi|, ‖x‖

2
2 = xTx). The determinant of a matrix or the absolute value

of a scalar is denoted by |·|, while diag(x) stands for a diagonal matrix,
that contains the elements of vector x on its diagonal. Finally, RN is the
N -dimensional Euclidean space, 0 denotes the zero vector, 1 the all-ones
vector, and IK is the K ×K identity matrix.

2 Problem formulation

In this section, we provide definitions and formulate rigorously the sparse
semi-supervised unmixing problem. Let y be a M × 1 hyperspectral im-
age pixel vector, where M is the number of spectral bands. Also let Φ =
[φ1,φ2, . . . ,φN ] stand for the M ×N signature matrix of the problem, with
M > N , where the M × 1 dimensional vector φi represents the spectral
signature (i.e., the reflectance values in all spectral bands) of the ith end-
member and N is the total number of distinct endmembers. Finally, let
w = [w1, w2, . . . , wN ]T be the N × 1 abundance vector associated with y,
where wi denotes the abundance fraction of φi in y.

In this work, the linear mixture model (LMM) is adopted, that is, the
previous quantities are assumed to be interrelated as follows

y = Φw + n. (1)

The additive noise n is assumed to be a zero-mean Gaussian distributed
random vector, with independent and identically distributed (i.i.d.) elements,
i.e., n|β ∼ N (n|0, β−1IM), where β denotes the inverse of the noise variance
(precision). Due to the nature of the problem, the abundance vector is usually
assumed to satisfy the following two constraints

wi ≥ 0, i = 1, 2, . . . , N, and
N∑
i=1

wi = 1, (2)

namely, a non-negativity constraint and a sum-to-one (additivity) constraint.
Based on this formulation, a semi-supervised hyperspectral unmixing tech-
nique is introduced, where the endmember matrix Φ is assumed to be known
a priori. As mentioned before, each column of Φ contains the spectral sig-
nature of a single material, and its elements are non-negative, since they
represent reflectance values. The mixing matrix Φ can either stem from
a spectral library or it can be determined using an endmember extraction
technique, e.g., [6]. However, the actual number of endmembers that com-
pose a single pixel’s spectrum, denoted as ξ, is unknown and may vary from
pixel to pixel. Sparsity is introduced when ξ � N , that is by assuming that
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only few of the available endmembers are present in a single pixel. This is
a reasonable assumption, that is in line with intuition, since it is likely for
a pixel to comprise only a few different materials from a library of several
available materials. Summarizing, in semi-supervised unmixing, we are in-
terested in estimating the abundance vector w for each image pixel, which
is non-negative and sparse, with ξ out of its N entries being non-zero.

This problem can be solved using either one of the recently proposed
compressive sensing techniques, e.g., [11, 13, 14, 20], that focus only on the
sparsity issue, or quadratic programming techniques, e.g., [8], that success-
fully enforce the constraints given in eq. (2), but do not exploit sparsity. In
the following, a hierarchical Bayesian model is adopted, that favors sparsity
and takes into account the non-negativity constraint of the problem. Then,
the variational Bayes framework is used to perform Bayesian inference for
the model parameters.

3 Hierarchical Bayesian model

This section describes the recently proposed hierarchical Bayesian model,
[17], used to estimate the sparse abundance vector w from (1), subject to
the non-negativity constraint given in (2). In a Bayesian framework, all
unknown quantities are assumed to be random variables, each one described
by a prior distribution, which models our knowledge about its nature. Before
we proceed, the definition of a truncated multivariate distribution is provided,
which will be frequently used in the sequel to follow.

Definition 1. Let RN be a subset ofRN
(
RN ⊆ RN

)
with positive Lebesgue

measure, P(·|ζ) a N -variate distribution, where ζ is a vector of parameters,
and PRN (·|ζ) the truncated probability density function (pdf) resulting from
the truncation of P(·|ζ) on RN . Then, x ∼ PRN (x|ζ) denotes a random vec-
tor, whose pdf is proportional to P(x|ζ) IRN (x), where IRN (·) is the indicator
function defined as,

3.1 Likelihood

Considering the observation model defined in (1) and the Gaussian property
of the additive noise, the likelihood function of y can be expressed as follows

p(y|w, β) = N (y|Φw, β−1IM) = (2π)−
M
2 β

M
2 exp

[
−β

2
‖y −Φw‖22

]
. (3)
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3.2 Parameter prior distributions

The Bayesian formulation requires that both the sparsity and non-negativity
properties of w should emanate from a suitably selected prior distribution.
A widely used prior that favors sparsity, [14, 18, 20, 21, 25], is the zero-mean
Laplace probability density function, which, for a single wi, is defined as

L(wi|λ) =
λ

2
exp [−λ|wi|] , (4)

where λ is the inverse of the Laplace distribution shape parameter, λ ≥
0. Assuming prior independence of the individual coefficients wi’s, the N -
dimensional prior over w can be written as

L(w|λ) =
N∏
i=1

L(wi|λ) =

(
λ

2

)N
exp [−λ ‖w‖1] . (5)

It can be easily shown, [18], that under the Laplace prior, the maximum a
posteriori (MAP) estimate of w is given by

ŵ = arg min
w

{
β

2
‖y −Φw‖22 + λ ‖w‖1

}
, (6)

which is the solution of the Lasso criterion of [26]. However, if the Laplace
prior was applied to the sparse vector w directly, conjugacy1 would not be
satisfied with respect to the Gaussian likelihood given in (3), and hence, the
posterior probability density function of w could not be derived in closed
form. As noted in [27], a key property of the Laplace distribution is that it
can be expressed as a scaled mixture of normals, with an exponential mixing
density, i.e.,

λ

2
exp [−λ |wi|] =

∫ +∞

0

1√
2πs

exp

[
−w

2
i

2s

]
λ2

2
exp

[
−λ

2s

2

]
ds, λ > 0, (7)

In the framework of the problem at hand, eq. (7) suggests that the Laplace
prior is equivalent to a two-level hierarchical Bayesian model, where the
vector of abundances w follows a Gaussian distribution (first level), with
exponentially distributed variances (second level). This hierarchical Bayesian
model, which is a type of a Gaussian scale mixture (GSM), [28], has been
adopted in [14, 18, 20, 21, 25, 29]. The main advantage of this formulation is
that it maintains the conjugacy of the involved parameters.

1In Bayesian probability theory, if the posterior p(θ|x) belongs to the same distribution
family with the prior p(θ), (for instance if they are both Gaussians), the prior and posterior
are then called conjugate distributions.
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In this work, a slightly different Bayesian model is adopted. More specif-
ically, in order to satisfy the non-negativity constraint of the abundance
vector w, the proposed hierarchical Bayesian approach uses a truncated nor-
mal distribution2 in the non-negative orthant of RN as a first-level prior for
w.

Assuming that all wi’s are i.i.d. and γi’s are the (normalized by β) vari-
ances of wi’s, the prior assigned to w is expressed as (see Section 7.1)

p(w|γ, β) = NRN
+

(w|0, β−1Λ−1). (8)

RN
+ is the non-negative orthant of RN , NRN

+
(·) stands for the N -variate

truncated normal distribution in RN
+ according to Definition 1, and Λ is the

N × N diagonal matrix with Λ−1 = diag(γ), where γ = [γ1, γ2, . . . , γN ]T .
Note that the use of β as a normalization parameter in (8), ensures the
unimodality of the posterior distribution of w, [21, 29].

For the second parameter, β, appearing in the likelihood function (3), a
Gamma prior distribution is assumed, defined as

p(β|κ, θ) = Γ(β|κ, θ) =
θκ

Γ(κ)
βκ−1exp [−θβ] , (9)

where β ≥ 0, κ is the shape parameter, κ ≥ 0, and θ is the inverse of the
scale parameter of the Gamma distribution, θ ≥ 0. The mean and variance
of the Gamma distribution are E[p(β|κ, θ)] = κ

θ
, and var[p(β|κ, θ)] = κ

θ2
,

respectively.

3.3 Hyperparameters’ priors

Having defined the truncated Gaussian distribution for wi’s, we now focus
on the definition of the exponential distributions for γi’s, in the spirit of eq.
(7). Before we describe the model for the priors of the hyperparameters γi’s
proposed in this work, let us first describe the model adopted in [18, 20].
There, the following exponential priors on γi are used

p(γi|λ) = Γ(γi|1,
λ

2
) =

λ

2
exp

[
−λ

2
γi

]
, i = 1, 2, . . . , N, (10)

where λ is a hyperparameter, which controls the level of sparsity, λ ≥ 0. If
these priors were used for the elements of γ in (8), the prior distribution of

2Note that the truncation of the normal distribution preserves conjugacy.
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w would be given as follows

p(w|λ, β) =

∫
p(w|γ, β)p(γ|λ) dγ =

N∏
i=1

∫ ∞
0

p(wi|γi, β)p(γi|λ)dγi

= (βλ)
N
2 exp

[
−
√
βλ

N∑
i=1

|wi|

]
IRN

+
(w) = L

(
w|
√
βλ
)
IRN

+
(w).(11)

With respect to Definition 1, L
(
w|
√
βλ
)
IRN

+
(w) is denoted as LRN

+
(w|
√
βλ),

and is a truncated Laplace distribution on RN
+ . We have already pointed out

the relationship between the Laplace density, shown in (5), and the Lasso
criterion (6). In a similar way, it can be easily shown that under the truncated
Laplace prior given in (11), the MAP estimator of w would be the solution of
a non-negativity constrained Lasso criterion. Moreover, from a Lasso point
of view, [26], it is known that as λ increases, sparser solutions arise for w.

After the previous parenthesis, we proceed with the description of the
model for γi’s proposed in this work. The latter is an extension of that
given in (10), where instead of having a single λ for all γi’s, a distinct λi is
associated with each γi (the motivation for such a choice will become clear
in the analysis to follow). Thus, in the second stage of our hierarchical
model, N independent Gamma priors are assigned to the elements of γ, each
parameterized by a distinct λi, as follows

p(γi|λi) = Γ(γi|1,
λi
2

) =
λi
2

exp

[
−λi

2
γi

]
, i = 1, 2, . . . , N, (12)

where λi ≥ 0, i = 1, 2, . . . , N . By assuming that all γi’s are independent,
the joint distribution of γ can now be written as

p(γ|λ) =
N∏
i=1

[
λi
2

exp

[
−λi

2
γi

]]
=

(
1

2

)N
|Ψ| exp

[
−1

2

N∑
i=1

λiγi

]
, (13)

where λ = [λ1, λ2, . . . , λN ]T and Ψ = diag(λ).
The first two stages of the Bayesian model, summarized in (8) and (13),

constitute a sparsity-promoting non-negative (truncated) Laplace prior. This
prior can be obtained by marginalizing the hyperparameter vector γ from
the model. In the one dimensional case, we get

p(wi|λi, β) =

∫ ∞
0

p(wi|γi, β)p(γi|λi)dγi

=
√
βλi exp

[
−
√
βλi |wi|

]
IR1

+
(wi), (14)
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whereas, for the full model, the truncated Laplace prior is given by

p(w|λ, β) =

∫
p(w|γ, β)p(γ|λ)dγ =

N∏
i=1

∫ ∞
0

p(wi|γi, β)p(γi|λi)dγi

= β
N
2 |Ψ|

1
2

N∏
i=1

[
exp

[
−
√
βλi |wi|

]
IR1

+
(wi)

]
= β

N
2 |Ψ|

1
2 exp

[
−
√
β

N∑
i=1

√
λi |wi|

]
IRN

+
(w). (15)

Our intention behind the use of a hyperparameter vector λ instead of a single
λ for all γi’s is to form a hierarchical Bayesian analogue to the adaptive
Lasso, proposed in [22]. Indeed, as it is shown in Section 7.2, the MAP
estimator of w that follows the truncated Laplace prior of (15) coincides
with the estimation of w resulting via the optimization of the non-negativity
constrained adaptive Lasso criterion, which is expressed as

w̃ = arg min
w

{
β

2
‖y −Φw‖22 +

N∑
i=1

αiwi

}
, s.t. w ∈ RN

+ , (16)

for αi =
√
βλi, i = 1 . . . N . As shown in (16), the main feature of the adaptive

Lasso is that each coordinate wi of w is now weighted by a distinct positive
parameter αi. This modification results in a consistent estimator, [22], which
is not the case for the original Lasso estimator (6).

It is obvious from (15) that the quality of the endmember selection pro-
cedure depends on the tuning parameter vector λ. Typically, tuning param-
eters reflect one’s prior knowledge about the estimation problem and they
can either be manually set, or can be considered as random variables. We
choose the latter alternative, by assuming a Gamma hyperprior for λ,

p(λi|r, δ) = Γ(λi|r, δ) =
δr

Γ(r)
λi
r−1exp [−δλi] , i = 1, 2, . . . , N (17)

where r and δ are hyperparameters, with r ≥ 0 and δ ≥ 0. Both Gamma
priors of β, in (9), and λi, in (17), are flexible enough to express prior in-
formation, by properly tuning their hyperparameters. In this paper, we use
a non-informative Jeffrey’s prior (p(x) ∝ 1

x
) over these parameters, which

is obtained from (9) and (17) by setting all hyperparameters κ, θ, r, δ of the
Gamma distributions to zero, as in [9,19,20]. A schematic representation of
the proposed hierarchical Bayesian model in the form of a directed acyclic
graph is shown in Fig. 1.
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Figure 1: Directed acyclic graph of the proposed Bayesian model. The de-
terministic model parameters appear in boxes.

4 Bayesian Inference

As it is common in Bayesian inference, the estimation of the parameters
is based on their joint posterior distribution. This posterior for the model
presented in Section III is expressed as

p (w, β,γ,λ|y) =
p (y|w, β) p (w|β,γ) p (γ|λ) p (λ) p (β)

p(y)
, (18)

which is intractable, in the sense that the integral

p(y) =

∫ ∫ ∫ ∫
p (y,w, β,γ,λ) dwdγdλdβ (19)

cannot be expressed in closed form. In such cases, the variational Bayes
algorithm [30–33] provides an alternative method for overcoming this imped-
iment. Variational Bayesian methods are primarily used (a) to provide an
analytical approximation to the posterior probability of the Bayesian model
parameters, in order to do statistical inference over these parameters, and
(b) to derive a lower bound for the marginal likelihood (sometimes called the
”evidence”) of the observed data (i.e. the marginal probability of the data
given the model). In the following, we derive the exact posterior approxi-
mating distributions for all model parameters defined in Section 3.

4.1 Variational Bayes

Assuming posterior independence among model parameters, the joint poste-
rior (18) can be factorized as

p (w, β,γ,λ|y) ≈ q (w, β,γ,λ) = q(w)q(β)
N∏
i=1

q(γi)
N∏
i=1

q(λi), (20)
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and we can derive closed form expressions for all approximate posterior dis-
tributions q(w), q(γ), q(λ), and q(β), by utilizing the Kullback-Leibler (KL)
distance minimization criterion, [33]. It is not difficult to verify by simple
computations that the posterior q(w) is a non-negatively truncated Gaussian
distribution given by

q(w) = NRN
+

(w|µ,Σ), (21)

with

µ = 〈β〉ΣΦTy, and Σ = 〈β〉−1
(
ΦTΦ + 〈Γ−1〉

)−1
, (22)

where 〈·〉 denotes expectation of a random variable with respect to its corre-
sponding posterior q(·). The posterior q(β) for the precision parameter β is
expressed as

q(β) = Γ

(
M +N

2
+ κ,

1

2
〈‖y −Φw‖2〉+ θ +

1

2
〈wTΓ−1w〉

)
. (23)

Straightforward computations yield that the approximating posterior pdf of
γi, i = 1, 2, . . . , N is the following generalized inverse Gaussian distribution

q(γi) =

(
〈λi〉
2π

) 1
2

γ
− 1

2
i exp

[
−〈β〉〈w

2
i 〉

2γi
− 〈λi〉

2
γi +

√
〈β〉〈λi〉〈wi〉

]
. (24)

Next, the posterior q(λi), i = 1, 2, . . . , N is expressed as

q(λi) = Γ

(
αi|1 + ρ,

〈γi〉
2

+ δ

)
. (25)

It is easy to verify from the resulting posterior distributions that the model
parameters are interrelated. This gives rise to an iterative updating proce-
dure, where the distributions’ moments are easily evaluated using the follow-
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ing results

〈wi〉 = µi,tr, (26)

〈w2
i 〉 = µ2

i,tr + σii,tr (27)

〈γi〉 =

√
〈β〉〈w2

i 〉
〈λi〉

+
1

〈λi〉
, (28)

〈γ−1i 〉 =

√
〈λi〉
〈β〉〈w2

i 〉
(29)

〈λi〉 =
1 + ρ

1
2
〈γi〉+ δ

(30)

〈‖y −Φw‖2〉 = ‖y −Φµtr‖
2 + Trace

[
ΦΣtrΦ

T
]

(31)

〈wTΓ−1w〉 =
N∑
i=1

[
〈γ−1i 〉〈w2

i 〉
]

(32)

〈β〉 =
M+N

2
+ κ

1
2
〈‖y −Φw‖2〉+ θ + 1

2
〈wTΓ−1w〉

, (33)

where µtr = [µ1,tr, µ2,tr, . . . , µN,tr]
T is the mean and Σtr is the covariance

matrix of the truncated Gaussian distribution q(w) in (21). Note that µtr

will be the estimate of the sparse abundance vector of the pixel y. The pro-
posed VB scheme iterates among the parameters of the approximating pos-
terior distributions q(w), q(γi), q(λi), q(β), utilizing the required moments
in (26)-(33). Convergence is achieved since in each step the KL distance
between the true posterior (18) and the approximating distribution (20) is
decreased. The most computationally demanding tasks of the proposed VB
algorithm involve the computation of µtr and Σtr of the truncated Gaussian
distribution (21). To reduce complexity significantly, an efficient scheme
is presented next for the computation of µtr. Moreover, the need to com-
pute Σtr analytically is alleviated by making the reasonable approximations
〈‖y −Φw‖2〉 = ‖y −Φµtr‖

2 and 〈w2
i 〉 = µ2

i,tr. The details of the proposed
variational Bayes algorithm are also described in [23].

4.2 Fast computation of the abundance vector esti-
mate µtr

In [17], an iterative scheme has been proposed to compute the expectation of
a multivariate Gaussian distribution truncated in the non-negative orthant of
RN . In this paper, we propose a more computationally efficient implementa-
tion of this scheme, based on suitable algebraic manipulations. The scheme
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proposed in [17] iterates among the means of the one-dimensional conditional
distributions of the i-th element of w conditioned on the remaining elements
µ¬i,tr = [µ1,tr, . . . , µi−1,tr, µi+1,tr, . . . , µN,tr]

T . These conditional distributions
are expressed as, [17],

wi|µ¬i,tr ∼ NR1
+

(
wi|µ∗i , σ∗2ii

)
(34)

with

µ∗i = µi + σT
¬iΣ

−1
¬i¬i

(
µ¬i,tr − µ¬i

)
(35)

σ∗2ii = σii − σT
¬iΣ

−1
¬i¬iσ¬i, (36)

where µi and σii represent the i-th and ii-th elements of µ and Σ respectively,
the (N − 1)× (N − 1) matrix Σ¬i¬i is formed by removing the i-th row and
the i-th column from Σ, while the (N − 1)× 1 vector σ¬i is the ith column
of Σ after removing its ith element, and µ¬i is the vector resulting from µ
after removing its i-th element µi. The j-th iteration of the proposed scheme
can be expressed as

1. µ
(j)
1,tr = E[p(w1|µ(j−1)

2,tr , µ
(j−1)
3,tr , . . . , µ

(j−1)
N,tr )]

2. µ
(j)
2,tr = E[p(w2|µ(j)

1,tr, µ
(j−1)
3,tr , . . . , µ

(j−1)
N,tr )]

... (37)

N. µ
(j)
N,tr = E[p(wN |µ(j)

1,tr, µ
(j)
2,tr, . . . , µ

(j)
N−1,tr)].

Note that in the one-dimensional case, the expectation of a random variable
x ∼ NR1

+
(x|µ∗, σ∗2), such as those in (37), can be computed as, [17],

E [x] = µ∗ +

1√
2π

exp
(
−1

2
µ∗2

σ∗2

)
1− 1

2
erfc

(
µ∗√
2σ∗

)σ∗, (38)

with erfc(·) being the complementary error function. It has been experimen-
tally verified that this scheme converges after a few iterations, [17].

In the sequel we show that it is possible to drop the dependence on µ
in (35) and sidestep the complex operations of matrix inversions, i.e., the
computation of Σ−1¬i¬i∀i, which have complexity O(N(N − 1)3). To this end,
straightforward computations for µ∗i in (35) yield that

µ∗i = µi + σT
¬iΣ

−1
¬i¬i(w̃¬i − µ¬i)

= σT
¬iΣ

−1
¬i¬iµ¬i,tr +

[
−σT

¬iΣ
−1
¬i¬i 1

] [ µ¬i
µi

]
. (39)
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Setting z = ΦTy, (22) becomes µ = 〈β〉Σz and we get[
µ¬i
µi

]
= Tiµ = 〈β〉TiΣz = 〈β〉TiΣTT

i Tiz = 〈β〉Σi(Tiz) (40)

where Ti is an appropriate permutation matrix and Σi is obtained from Σ
by moving its i-th column and row to the end of the matrix,

Σi =

[
Σ¬i¬i σ¬i

σT
¬i σii

]
. (41)

By substituting (41) in (40), and then in (39), it easily follows that

µ∗i = σT
¬iΣ

−1
¬i¬iµ¬i,tr + 〈β〉σ∗2ii zi (42)

Let us denote with vT¬i the i-th row of V = 〈β〉−1Σ−1 excluding its i-th
element vii. From (41) and the partitioned covariance matrix inversion for-
mula, [34], we get

vT¬i = −〈β〉
−1

σ∗ii
σT
¬iΣ

−1
¬i¬i, (43)

and

σ∗2ii =
〈β〉−1

vii
. (44)

Using (43), (42) becomes

µ∗i =
1

vii
(zi − vT¬iµ¬i,tr), (45)

that is, each µ∗i is efficiently computed with N operations.
The proposed algorithm is summarized in Table 1. Note that matrix

inversions have been completely eliminated and the required computational
complexity of the algorithm is O(N2) per iteration t, which is one order of
magnitude less than the original BI-ICE algorithm, [17]. In addition, both
algorithms converge very fast, exhibit similar estimation performance, and
produce sparse estimates without the need of tuning or cross-validating any
parameters.
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Input y,Φ
Initialize β,γ,λ
Compute A = ΦTΦ, and z = ΦTy
for t = 1, 2, . . .

- compute V(t) = A + Γ−1(t)
for i = 1, 2, . . . , N

- extract v¬i(t) and vii(t) from V(t)
- compute σ∗2ii (t) from (43) and µ∗i (t)

from (45)
- compute µi,tr(t) from (38)

end for
- compute β(t) from (33)
- compute γ(t) from (28)
- compute λ(t) from (30)

end for

Table 1: The proposed fast variational Bayes algorithm.

4.3 Embedding the sum-to-one constraint

The sparsity-promoting hierarchical Bayesian model presented in the previ-
ous sections takes into consideration the non-negativity of the abundance
vector w. However, the abundances’ sum-to-one constraint has not yet been
considered. As noted in [24], the sum-to-one constraint is prone to strong
criticisms. In real hyperspectral images the spectral signatures are usually
defined up to a scale factor, and thus, the sum-to-one constraint should be
replaced by a generalized constraint of the form

∑
ciwi = 1, in which the

weights ci denote the pixel-dependent scale factors. Moreover, it is known
that the sparse solution of a linear system with Φ having non-negative en-
tries already admits a generalized sum-to-one constraint, [35]. Thus, it can
be safely assumed that the impact of not enforcing the sum-to-one constraint
on the performance of the algorithm is not expected to be severe. Despite
this fact, in this section we describe an efficient way to enforce this constraint,
although through a regularization parameter.

Note that direct incorporation of this constraint to the proposed Bayesian
framework would require truncation of the prior normal distribution of w over
a simplex, rendering the derivation of closed form expressions for the con-
ditional posterior distributions intractable. To alleviate this, we choose, as
in [7,10], [36, p. 586], to impose the sum-to-one constraint deterministically,
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by augmenting the initial LMM of (1) with an extra equation as follows,[
y

α

]
=

[
Φ

α1T

]
w +

[
n

0

]
(46)

where α is a scalar parameter, which controls the effect of the sum-to-one
constraint on the estimation of w. Specifically, the larger the value of α is,
the closer the sum of the estimated wi’s will be to one. It should be noticed
that the augmentation of the LMM as in (46) does not affect the proposed
hierarchical Bayesian model and the subsequent analysis.

5 Experimental Results

5.1 Simulation Results on Synthetic Data

This section illustrates the effectiveness of the proposed variational Bayes
algorithm, by a series of experiments related to the unmixing of a synthetic
hyperspectral image. Following the experimental settings of [24], where a
thorough comparison of several sparse semi-supervised unmixing algorithms
is presented, we consider two spectral data sets for the simulated hyperspec-
tral scene: (a) Φ1 ∈ R453×220, which is a matrix containing the spectral
signatures of 220 endmembers selected from the USGS spectral library, [37],
and (b) Φ2 ∈ R453×220, which is a matrix of i.i.d. components uniformly
distributed in the interval [0 1]. As expected, the spectral signatures of the
materials of Φ1 are highly correlated. The condition number and the mutual
coherence, [24], of Φ1 are 36.182 × 106 and 0.999933 respectively, whereas,
for Phi2, the same measures are equal to 82 and 0.8373 respectively. The
abundance fractions of the simulated image and the number of different end-
members composing a single pixel are generated according to a Dirichlet
distribution, [6]. In all simulations, the observations are considered to be
corrupted by either white Gaussian or colored noise. Colored noise is pro-
duced by filtering a sequence of white noise using a low-pass filter with a
normalized cutoff frequency of 5π/M . The variance of the additive noise is
determined by the SNR level.

First, the fast convergence and sparse estimations of w exhibited by the
new algorithm are depicted in Fig. 2. In this experiment, a pixel with three
non-zero abundances (0.1397, 0.2305, 0.6298) is considered, and white noise
is added to the model, such that the SNR is equal to 25dB. The curves in
Fig. 2 are the average of 50 noise realizations. We observe that less than
15 iterations are sufficient for the variational Bayes algorithm to converge to
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Figure 2: Estimation of the entries of the sparse vector w, as the variational
Bayes algorithm progresses. The algorithm is applied to simulated data,
generated using (a) a highly correlated matrix of spectral data, (b) a matrix
of i.i.d uniform data. White noise is added (SNR = 25 dB). Dashed lines:
true values. Solid lines: estimated values.

the correct sparse solution of w. That is, it determines correctly the abun-
dance fractions of the endmembers present in the pixel, while all remaining
abundance fractions converge to zero.

contrast,

5.2 Simulation Results on Real Data

This section describes the application of the variational Bayes algorithm to
real hyperspectral image data sets. The first data set was collected by the air-
borne visible/infrared imaging spectrometer (AVIRIS) flight over the Cuprite
mining site, Nevada, in 1997, [38]. The AVIRIS sensor is a 224-channel
imaging spectrometer with approximately 10-nm spectral resolution cover-
ing wavelengths ranging from 0.4 to 2.5 µm. The spatial resolution is 20 m.
This data set has been widely used for remote sensing experiments [6,39–41].
The spectral bands 1-2, 104-113, 148-167, and 221-224 were removed due
to low SNR and water-vapor absorption. Hence, a total of 188 bands were
considered in this experiment. The subimage of the 150th band, including
200 vertical lines with 200 samples per line (200× 200) is shown in Fig. 3.

The VCA algorithm was used to extract 14 endmembers present in the
image, as in [6]. Using these spectral signatures, three algorithms are tested
to estimate the abundances, namely the LS algorithm, the QP method, and
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Figure 3: Band 150 of a subimage of the Cuprite Aviris hyperspectral data
set.

the variational Bayes algorithm. The unmixing process generates an output
image for each endmember, depicting the endmember’s estimated abundance
fraction for each pixel. The darker the pixel, the smaller the contribution of
this endmember in the pixel is. On the other hand, a light pixel indicates
that the proportion of the endmember in the specific pixel is high. The
abundance fractions of four endmembers, estimated using the LS, QP and
variational Bayes algorithms, are shown in Fig. 4a, Fig. 4b, and Fig. 4c,
respectively. Note that, for the sake of comparison, a necessary linear scaling
in the range [0 1] has been performed for the LS abundance images. By simple
inspection, it can be observed that the images taken using the LS algorithm
clearly deviate from the images of the other two methods. The LS algorithm
imposes no constraints on the estimated abundances, and hence the scaling
has a major impact on the abundance fractions, resulting in performance
degradation. On the contrary, the images obtained by QP and the variational
Bayes algorithm share a high degree of similarity and are in full agreement
with previous results concerning the selected abundances and reported in
[6, 41], as well as with the conclusions derived in Section 5.1.

Next, we test the proposed VB algorithm on the calibrated OMEGA cube
of the Syrtis Major area used in [42]. The endmember matrix Φ contains the
spectral signatures of 32 mineral, previously detailed in [42]. Syrtis Major is a
Hesperian volcanic complex composed essentially of basalts. Mafic minerals,
olivine and both low-calcium (LCP) and rich-calcium (HCP) pyroxenes [43],
as well as phyllosilicates [44] have been identified in the area. Moreover,
there is a significant presence of hydrated minerals [45], feldspar [44] and
iron-bearing minerals such as iron oxides [46]. In the study area, Mustard
et. al. in [43] have already identified the presence of three specific mafic
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(a) LS algorithm

(b) QP algorithm

(c) Variational Bayes algorithm

Figure 4: Estimated abundance values of four endmembers using: (a) the LS
algorithm, (b) the QP algorithm, (c) the variational Bayes algorithm
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Figure 5: Abundance maps of (a) hypersthene (b) diopside and (c) magnetite
in Syrtis Major obtained using the proposed VB algorithm.

minerals (i) hypersthene, (ii) diopside and (iii) fayalite.
Abundance maps obtained by applying the proposed algorithm reveal

the presence of three areas with distinct characteristics in the image. In the
middle part of the image, LCP pyroxenes prevail, as shown in Fig. 5a. The
results shown in Fig. 5a are in accordance to the corresponding maps in [42].
The upper part of the image presents low reflectance and low abundance
values and no spatially predominant mineral. HCP diopside is observed only
in this area but in localized outcrops, as shown in Fig. 5b. In addition, the
lower zone of the image is characterized by strong presence of iron oxides,
such as magnetite (Fig. 5c) and hematite, accompanied by clay minerals
such as nontronite. Finally, olivines are detected in few pixels with low
abundance values in the middle left part of the image, while phyllosilicates
such as muscovite are detected in the whole image, although having low
abundances. The latter results are not shown here due to space limitations.

Furthermore, the mean number of abundances of value higher than 0.1 is
1.74, i.e., in the mean, approximately two endemembers are present in each
pixel, which justifies the use of a sparsity-promoting unmixing scheme. The
sum of abundances per pixel in the upper half of the image varies around
0.35 while in the bottom half the same sum exceeds 1.5. This is possible
since the sum-to-one constraint, i.e.,

∑N
i=1wi = 1, is not imposed in the
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proposed model and is an indication that the endmembers library used in
the unmixing process may be insufficient to effectively describe the exact
mineral composition of the scene, as also noted in [42].

6 Conclusion

A variational Bayesian method for sparse semi-supervised hyperspectral un-
mixing has been presented in this report. The unmixing problem has been
expressed in the form of a hierarchical Bayesian model, where the problem
constraints and the parameters’ properties were incorporated by suitably se-
lecting the priors’ and hyperpriors’ distributions of the model. Then, a new
Bayesian inference iterative scheme has been developed for estimating the
model parameters. The proposed variational Bayes algorithm is computa-
tionally efficient, converges very fast and exhibits enhanced estimation per-
formance compared to other related methods. Moreover, it provides sparse
solutions, without necessitating the tuning of any parameters, which are nat-
urally estimated from the algorithm. Extensions of the proposed algorithm
that also take into account the spatial information of the hyperspectral scene
are currently under investigation.

7 Appendices

7.1 Derivation of the truncated Gaussian prior distri-
bution of w

Assuming that all wi’s are i.i.d., the prior of the abundance vector w can be
analytically expressed as

p(w|γ, β) =
N∏
i=1

[
NR1

+
(wi|0,

γi
β

)

]
=

N∏
i=1

[
2 (2π)−

1
2 β

1
2γ
− 1

2
i exp

[
−β

2

w2
i

γi

]
IR1

+
(wi)

]
= 2N (2π)−

N
2 β

N
2 |Λ|

1
2 exp

[
−β

2
wTΛw

]
IRN

+
(w) = NRN

+
(w|0, β−1Λ−1),

(47)

where R1
+ is the set of non-negative real numbers and RN

+ is the non-negative
orthant of RN , NRN

+
(·) stands for the N -variate truncated normal distribu-

tion in RN
+ according to Definition 1, γ = [γ1, γ1, . . . , γN ]T is the N×1 vector

containing the hyperparameters, γi ≥ 0, i = 1, 2, . . . , N , and Λ is the N ×N
diagonal matrix, with Λ−1 = diag(γ).
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7.2 The Non-negativity Constrained Bayesian Adap-
tive Lasso

The MAP estimator of w is defined as

wMAP = arg max
w

p(w|y). (48)

From Bayes’ theorem, the MAP estimator can be expressed as

wMAP = arg max
w

p(y|w, β)p(w|λ, β) = arg min
w
{−log [p(y|w, β)p(w|λ, β)]} .

(49)
Then, substituting in (49) the likelihood function from (3) and the truncated
Laplace prior from (15), the MAP estimator can be expressed as

wMAP = arg min
w

{
−log

[
(2π)−

M
2 β

M
2 (50)

exp

[
−β

2
‖y −Φw‖22

]
β

N
2 |Ψ|

1
2 exp

[
−
√
β

N∑
i=1

√
λi |wi|

]
IRN

+
(w)

]}

= arg min
w

[
β

2
‖y −Φw‖22 +

N∑
i=1

√
βλi |wi| − log

(
IRN

+
(w)

)]
. (51)

Note that −log
(
IRN

+
(w)

)
= ∞, for w /∈ RN

+ , and −log
(
IRN

+
(w)

)
= 0, for

w ∈ RN
+ , i.e., this term severely penalizes w’s with negative elements. Thus,

it is established that the MAP estimation of w, given the truncated Laplace
prior of (15), is equivalent to solving the adaptive Lasso criterion of (16), for
αi =

√
βλi, i = 1, . . . , N , subject to w being non-negative, i.e., w ∈ RN

+ .

7.3 The approximating posterior distribution q(γi|y, wi, λi, β)
and its mean

Using (8) and (12) the posterior conditional distribution p(γi|y, wi, λi, β) for
wi ≥ 0 can be computed as

q(γi|y, wi, λi, β) =
p(y|wi, β)p(wi|γi, β)p(γi|λi)p(λi)p(β)∫
p(y|wi, β)p(wi|γi, β)p(γi|λi)p(λi)p(β)dγi

=
p(wi|γi, β)p(γi|λi)∫
p(wi|γi, β)p(γi|λi)dγi

=
2(2π)−

1
2β

1
2γ
− 1

2
i exp

[
−β

2

w2
i

γi

]
IR1

+
(wi)

λi
2

exp
[
−λi

2
γi
]

∫∞
0

2(2π)−
1
2β

1
2γ
− 1

2
i exp

[
−β

2

w2
i

γi

]
IR1

+
(wi)

λi
2

exp
[
−λi

2
γi
]
dγi
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=
γ
− 1

2
i exp

[
−β

2

w2
i

γi
− λi

2
γi

]
∫∞
0
γ
− 1

2
i exp

[
−β

2

w2
i

γi
− λi

2
γi

]
dγi

=
γ
− 1

2
i exp

[
−β

2

w2
i

γi
− λi

2
γi

]
√

2π
λi

exp
[
−
√
βλiw2

i

]
=

(
λi
2π

) 1
2

γ
− 1

2
i exp

[
−βw

2
i

2γi
− λi

2
γi +

√
βλi |wi|

]
, (52)

where we used [47, equation 3.471.15] to compute the integral. The mean of
(52) is computed as

E [q(γi|y, wi, λi, β)] =

∫ ∞
0

γi p(γi|y, wi, λi, β)dγi

=

∫ ∞
0

(
λi
2π

) 1
2

γ
1
2
i exp

[
−βw

2
i

2γi
− λi

2
γi +

√
βλi |wi|

]
dγi

=

(
λi
2π

) 1
2

exp
[√

βλi |wi|
] ∫ ∞

0

γ
1
2
i exp

[
−βw

2
i

2γi
− λi

2
γi

]
dγi

=

(
2λi
π

) 1
2
(
βw2

i

λi

) 3
4

exp
[√

βλi |wi|
]
K3/2

(√
βλi |wi|

)
,

(53)

where we used [47, equation 3.471.9] for the integral computation. Note that
this does not affect the variational Bayes algorithm, since wi’s are guaranteed
to be non-negative (the fact wi < 0 is impossible by the formulation of the
problem).
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