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New Fast QR Decomposition Least
Squares Adaptive Algorithms

Athanasios A. Rontogiannis and Sergios Theodoridis

Abstract—This paper presents two new, closely related adaptive
algorithms for LS system identification. The starting point for
the derivation of the algorithms is the inverse Cholesky factor
of the data correlation matrix, obtained via a QR decomposition
(QRD). Both algorithms are of O(p) computational complexity,
with p being the order of the system. The first algorithm is a
fixed order QRD scheme with enhanced parallelism. The second
is an order recursive lattice type algorithm based exclusively on
orthogonal Givens rotations, with lower complexity compared to
previously derived ones. Both algorithms are derived following a
new approach, which exploits efficient time and order updates of
a specific state vector quantity.

Index Terms—Adaptive algorithms, fast algorithms.

I. INTRODUCTION

A DAPTIVE least squares algorithms for system identifi-
cation [1]–[7] are popular due to their fast converging

properties and are used in a variety of applications, such
as channel equalization, echo cancellation, spectral analysis,
and control, to name but a few. Among the various effi-
ciency issues characterizing the performance of an algorithm,
those of computational complexity, parallelism, and numerical
robustness are of particular importance, especially in appli-
cations where medium to long filter lengths are required. It
may sometimes be preferable to use an algorithm of higher
complexity but with good numerical error robustness since
this may allow its implementation with shorter wordlenghts
and fixed point arithmetic. This has led to the development
of a class of adaptive algorithms, based on the numerically
robust QR factorization of the input data matrix via the Givens
rotation approach [23].

The development of Givens rotations-based QR decompo-
sition algorithms has evolved along three basic directions.
Schemes of complexity per time iteration were the
first to be derived, with being the order of the system [8],
[9]. These schemes update the Cholesky factor of the input
data correlation matrix and can efficiently be implemented on
two-dimensional (2-D) systolic arrays. Furthermore, as it is
shown in [9], the modeling error can be extracted directly
without it being necessary to compute explicitly the estimates
of the transversal parameters of the unknown FIR system.
Square-root free forms of the above algorithms related to the
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modified Gram–Schmidt factorization approach [10] were also
proposed. An alternative RLS scheme, based on the
update of the inverse Cholesky factor of the data correlation
matrix, was also recently developed [11], [12].

The other category of Givens rotations-based algorithms is
of the lattice, order recursive type, exhibiting complexity
per time iteration [13]–[16]. As with all LS lattice structures
[6], [7], these algorithms compute the modeling LS error for all
intermediate orders in a pipelined fashion. A third class con-
sists of algorithms that compute the modeling error directly,
although they lack the pipelining property of the lattice-type
algorithms [17]–[21]. On the other hand, they have lower
complexity, compared with their lattice counterparts, and they
are appropriate for fixed-order modeling. This is basically due
to the fact that a set of rotation parameters (corresponding to
the lattice reflection coefficients) are generated backward in
order, starting from the one with the maximum order [1].

This paper presents two closely related yet different Givens
rotations-based QR decomposition, algorithms. One is
of the latter type, i.e., fixed-order, direct error computing
algorithm. It has similar complexity, but it offers enhanced
parallelism compared with previously derived ones of the same
category. Thus, if two processors are used, the computation
time is almost halved. A modification of this algorithm leads
to an order recursive lattice-type scheme involving orthogonal
Givens rotations only. The complexity of the lattice-type
algorithm is the same to that of the fixed-order one. Therefore,
a substantial saving is accomplished compared to already
known QR lattice schemes.

In this work, a novel approach is used for deriving the algo-
rithms. Specifically, we concentrate on the (inverse) Cholesky
factor of the input data matrix and investigate its order and
time update properties. Then, a particular vector quantity,
which provides all the necessary for the LS error update
rotation parameters, is efficiently updated. This method is
different from the approach followed so far for the derivation
of fast QRD-based schemes [1], [17]–[20], where update
expressions of the orthogonal factor are formulated, and
then, a pinning vector is applied in order to extract the
necessary quantities. The new method is simpler, more direct,
and provides insight into all the internal quantities appearing
in the new algorithms.

The paper is organized as follows. Section II reviews the
application of the QR decomposition method to the RLS
problem. The new fast QRD algorithms are then derived in
Section III. Section IV highlights the connection of the new
algorithms with already known fast QRD schemes. Simula-
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Fig. 1. System identification problem.

tion results are provided in Section V, whereas Section VI
concludes this work. For clarity of presentation real signals
are considered throughout this paper. We mostly adopt the
notation that appears in [1].

II. FORMULATION OF THE PROBLEM

Fig. 1 illustrates the typical system identification task, which
is our main concern in this paper. Given an unknown FIR
system excited by an input signal , we seek the estimates
of the unknown tap coefficients so that the error
between the measured output of the system and the
output of an associated model is minimum in the least
squares sense. That is, the sum

is minimum, where is the usual forgetting factor with

and

The quantity in the figure stands for the measurement
noise. From the above definitions

is readily understood, where

and is the input data matrix given by

...

...
...

...

In other words, the prewindowed assumption is adopted. The
solution to the above problem is provided by the well-known
normal equations

where

The task of the current paper is to develop new algorithms for
the efficient computation of The approach is via the
QR decomposition [23] of the input data matrix that is

with is a
upper triangular factor. Obviously

By premultiplying with , we obtain

where is the upper part and the lower
part of the resulting (transformed) vector. It is by

now well known [1] that the LS solution is given by

(1)

The efficient update of the factor is at the heart of our
problem. It has been shown that ([1])

(2)

and consists of a sequence of basic Givens rotations,
which successively annihilate the elements of against

, resulting in the update That is

(3)

where

(4)
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At the same time, it is most interesting that ([1])

(5)

where

and is the a priori error expressed as

(6)

The so-called angle normalized error is related to the
rotation angles by [1, pp. 271–272]

(7)

and is the square root of the likelihood related variable
defined as ([2])

(8)

Two types of algorithms will be presented in the following
sections. The first is of the fixed-order type, computing directly
the error A modification of this leads to an order-
recursive scheme (lattice type) for direct error computation.

III. T HE NEW FAST QRD ALGORITHMS

In contrast to previously derived fast QRD algorithms [1],
[17]–[21], our starting point is the vector

(9)

The essence behind any fast fixed-order scheme is
that the time shift property of the input data offers the
possibility to circumvent the time update of a matrix by
updating a vector quantity instead. Different algorithms are
built on different vectors (the state variables of the equivalent
algorithmic system [1]). In this paper, the algorithms evolve
around , whose time update provides all necessary
rotation angles.

A. Time Update of

From the definition of the factor , it is easy to see that

(10)

where is the upper part of the vector ,
and

that is, the last column of the data matrix
is a quantity related to the backward prediction QR problem
[1]. Multiplying both sides of (10) by an orthogonal matrix

, which annihilates the elements of by rotating
them against its first element, we obtain

with

being the square root of the backward prediction error power
[1]. It is now straightforward that

(11)

holds. Assuming persistency of excitation, the inverse of the
factor exists and can easily be obtained from (11) as

(12)

Moreover, by establishing a relation between and
, we will end up with a step-up/step-down update

procedure for Indeed, if triangularizes
, then

(13)

where is related to the forward error power as

If now is the orthogonal matrix that annihilates the
elements of against the first element of the matrix in
(13), which initially is , we get

(14)

Consider now the upper part of the matrix in
the right-hand side of (14), say, In order to obtain
the Cholesky factor of , must be
multiplied with an appropriate orthogonal matrix, say, ,
as described by

(15)

The matrix , which fulfils the required triangularization
in (15), can be contructed as a sequence ofGivens rotations,
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which annihilate in a bottom-up procedure the elements of
against the element in the top row of

[initially, ]. As a result, the orthogonal
matrix can be written as the product of rotation
matrices, that is

(16)

where

(17)
Indeed, it is easily verified that such a preserves the
triangular structure of the matrix in (15), although
its value will be changed as a result. In addition to this,
“fills” the zero elements of the first row of and, thus,
transforms into a upper triangular
matrix (with positive diagonal elements).

A byproduct of the triangularization in (15) is that all lower
order forward energies are generated. These quantities
appear as top left elements of the resulting matrices after each
multiplication with in (15) for
Indeed, if the initial data matrix in (13) was instead
of , then the corresponding blocks of the matrix in
the right-hand side of (13) would be and

, respectively. Since coincides with the first
columns of , completion of the procedure in

(13), for the remaining columns of , could be
accomplished in such a way that remains unaffected.
As a result, is essentially the upper part of
Taking the procedure for theth-order problem further on, the
nonzero blocks of the matrix in the right-hand side of (14)
turn out to be and In other words,
the upper block of such a matrix has exactly
the same form as the upper left block of the
matrix that results after the application of in (15).
Consequently, the top left element of this last matrix must
be Moreover, due to the relation between and

, the rotation matrix of the th-order problem
is expressed as

From (15), we can formulate an alternative to (12) expression
for the inverse of as

(18)

We now have available all necessary relations to obtain the
time update of in

1) Step Down:From (9), (12), and the input vector par-
tition

we have (19), shown at the bottom of the page, where
is the last element of , assuming that

the numbering of the elements of starts from 0.
More specifically, we have

(20)

According to (1), however, stands for the
coefficients vector of the backward problem at time This,
combined with (6) and (20), gives

where corresponds to thea priori backward error
of order at time

From (19), we conclude that the vector is identical
to the first elements of Straightforward
extension of this nesting property results in the expression
for the elements of as

(21)

(19)
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2) Step Up: Combining (9), (18), and the input vector
partition

we obtain the expression at the top of the page or

(22)

where

Since stands for the forward coefficients
vector at time is related to thea priori forward
error as

Due to the (order recursive) form of and the nesting
property of and , the following quantities
appear at the top of the vector in the right-hand side of (22),
after the application of the rotation matrices

1

(23)

Note, however, that the first element of
is known at time

Furthermore, given the rotation angles of and the
vector , we can calculate from (22) the lastelements
of in For example, when the first rotation
matrix multiplies the vector , we get

1This outcome becomes more evident by describing the effect ofQ̂
f
p(N) as

in (22). Note that the errorsri(N+1) could also be generated in a backward
manner by lettingQ̂f

p(N) premultiply the vector on the left-hand side of (22).
This would lead to an alternative form for this step of the algorithm.

However, being the first
element of This is the case because does
not change after the application of the remaining rotations. We
can therefore rewrite the above equations as

Proceeding in the same way, we obtain the general expressions

for Thus, combining (22) and (19), we achieve
the time update of in , which was our initial
purpose.

B. Rotation Angles Update

Having completed the time update of in , we
have all information necessary to obtain the rotation angle
parameters that provide thea priori error Indeed,
by considering the effect of on the first column of

[see (15)], we have

(24)

The rotation parameters of can be produced from
(24) as

for is the th element of
, and the square roots of the lower order forward

prediction energies are calculated according to
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TABLE I
NEW FIXED-ORDER FAST QRD ALGORITHM

However, in order to use (24), we must know the forward
rotated reference vector and the square root of the
forward prediction energy at time The vector

can be obtained by applying (5) to the forward
prediction problem at time Indeed

(25)

where is the angle-normalized forward error of the
th order at time can then be computed

from the well-known formula [1]

(26)

TABLE I (Continued)

Note from (3) and (4) that when the rotation matrix
is applied in (25), the th-order

angle normalized forward error appears at the bottom of
the resulting vector.

Matrix includes the second set of rotation param-
eters, which are used in the algorithm. Therefore, in order
to complete our derivation, we need a formula for updating
these rotation parameters. In the following, it will be shown
that such a formula employs the vector , which is
obtained by (22) and (19).

It is already known [22] that the orthogonal matrix, which
updates , also time updates More
specifically, from [22, Th. 4 and Lemma 5] and taking into
account the results of [11] (where a forgetting factor is
considered), we can write

(27)

(28)

where

(29)

and

(30)

Note that is a scaled version of the Kalman gain vector.
To be more precise, if stands for the Kalman gain,
then [22]

(31)

Moreover, from (30) and (9), we get
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TABLE II
COMPARISON OFCOMPLEXITIES OF FAST ROTATION-BASED ALGORITHMS

Fig. 2. ith stage of the prediction section of the lattice type algorithm.

or from (8)

(32)

that is, equals the inverse of the angle normalized
variable.

The rotation angles of can be calculated by
rewriting (28) at time Indeed

(33)

Each rotation matrix of annihilates one element
of by rotating it against the last element of
the vector in (33), which is initially 1. The procedure starts
from the first element and proceeds downwards. This is so
because the rotations of are also used in the time
update of [(2) written for time ]. As a result,
the corresponding rotation matrices must be of the form given
in (3) and (4). Due to the nesting property of , it
is clear that during the rotation process described in (33), we
generate for Thus, according to
(32), we essentially obtain the angle normalized variables for
all orders at time

Equations (19), (22), (24)–(26), and (33) compose the
prediction part of our algorithm. However, thea priori error
at time must be calculated. This is accomplished in

TABLE III
NEW LATTICE TYPE ALGORITHM

the filtering part of the algorithm. Indeed, (5) at time
takes the form

(34)

The a priori error is then given according to (7) and (32) as

(35)

Note that having available for , we
can similarly calculate thea priori errors of all orders.

The algorithm described so far is summarized in Table I.
The complexity of the algorithm is shown in Table II. Its
complexity is similar to that of the fast QRD algorithm of
[1] and [18]–[21] (see Table II). However, there is a distinct
advantage. Note that steps 1 and 2 of Table I can be performed
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Fig. 3. Initial convergence curves.

concurrently. The same holds for steps 3 and 4 of Table I.
Thus, by using two sets of DSP’s, the execution time is almost
halved. This is not possible with the algorithms of [17]–[21],
which are sequential for each time iteration.

The algorithm of Table I is a fixed-order algorithm. As we
can easily observe from Table I, the execution of step 3 starts
after step 2 has been completed and has been
calculated. Then, the loop of step 3 goes backward in order,
and this does not comply with the basic “pipeline” concept of
a lattice structure. However, steps 2 and 3 of the algorithm
can be combined if (26) is adopted for the calculation of the
forward energies of all orders. Such a modification leads to
a new lattice-type algorithm with the same complexity as our
fixed-order scheme. Furthermore, the new lattice-type scheme
includes orthogonal rotations only. The new lattice algorithm
is shown in Table III. Compared with its previously derived
counterparts [13], [14], [16], the new lattice algorithm has a
substantially lower complexity (Table II). One lattice stage is
depicted in Fig. 2.

The initialization of the new algorithms is based on the soft-
constraint approach. More specifically, we make the following
assumption concerning the input signal

where is a small positive scalar. Under this assumption, all
initial conditions that appear at the bottom of Tables I and III
are easily obtained.

IV. RELATION TO OTHER FAST QRD ALGORITHMS

In this section, we exploit the connection of the new
algorithms with previously derived fast QRD algorithms [1],
[17]–[21]. We further show that the methodology developed
in Section III can be applied for deriving both classes of fast

QRD schemes. Let us consider the rotation matrix
written in block form [1]

where is the angle-normalized variable, and
stands for the upper left part of From (2),
(27), and the orthogonality of , the remaining blocks
of can be expressed as

(36)

(37)

(38)

Note that the new algorithms presented in Section III are based
on the update of , which is a scaled version of It
is really interesting that the already existing fast QRD schemes
[17]–[21] essentially stem from the time update of
Due to the form of (37), the approach introduced in
Section III can also be applied, and expressions similar to
(19) and (22) can be obtained for the update of In
addition to this, formulae equivalent to (21) and (23) can be
directly derived, which now involve thea posterioribackward
and forward errors, in contrast with (21) and (23), which
involve the a priori quantities. Specifically, the elements of

can be expressed as

whereas the new quantities corresponding to
satisfy
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The fast QRD algorithms that appear in [1] and [18]–[21]
include steps 2 and 3 [see (24) and (25)], whereas the rotation
parameters of can also be obtained from
(although in a backward manner). It must be emphasized
that the methodology that appears so far in the literature
([1], [17]–[20]) is quite different. Time and order update
formulas of the factor are initially derived. Since the vector

is contained in the last row of [1], pinning vectors
are then applied in order to extract the

update expressions for

V. SIMULATIONS

In order to verify the validity of the derived algorithms, a
system identification problem was considered. The unknown
FIR system was of order 10, the SNR dB, the forgetting
factor , and the initialization parameter
Fig. 3 shows the obtained error convergence curves. Three
curves are overlaid, although they are not distinguished. Two
correspond to the novel algorithms developed in Section III
and the third to the fast QRD algorithm of [21]. The curves
are the average of 200 realizations. Note that experiments with
up to 500 000 iterations were run with no indication of nu-
merical stability problems for the new direct error computing
algorithms.

VI. CONCLUSIONS

In this paper, two new fast QRD algorithms are derived
following a novel approach. The new approach is based on the
efficient time and order updates of a particular vector quantity
that is basically the state vector of the equivalent state space
description of the algorithmic process. The first algorithm is
a fixed-order QRD scheme for direct error computation with
enhanced parallelism. A modification of the scheme leads
to an order recursive lattice-type QR algorithm with lower
complexity compared with previously derived QRD lattice
algorithms. It is shown that the methodology proposed in this
paper can easily be adopted for the development of already
existing fast QRD schemes.

REFERENCES

[1] N. Kalouptsidis and S. Theodoridis, Eds.,Adaptive System Identification
and Signal Processing Algorithms. Engelwood Cliffs, NJ: Prentice-
Hall, 1993.

[2] S. Haykin, Adaptive Filter Theory. Engelwood Cliffs, NJ: Prentice-
Hall, 1991.

[3] L. Ljung, M. Morf, and D. Falconer, “Fast calculation of gain matrices
for recursive estimation sources,”Int. J. Contr., vol. 27, pp. 1–19, 1978.

[4] G. Carayiannis, D. G. Manolakis, and N. Kalouptsidis, “A fast sequential
algorithm for least squares filtering and prediction,”IEEE Trans. Acoust.,
Speech, Signal Processing, vol. ASSP-31, pp. 1394–1402, Dec. 1983.

[5] J. M. Cioffi and T. Kailath, “Fast RLS transversal filters for adaptive
filtering,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-
32, pp. 304–337, Apr. 1984.

[6] B. Friedlander, “Lattice filters for adaptive processing,”Proc. IEEE,
vol. 70, pp. 829–867, Aug. 1982.

[7] F. Ling, D. Manolakis, and J. G. Proakis, “Numerically robust least-
squares lattice-ladder algorithms with direct updating of the reflection
coefficients,” IEEE Trans. Acoust., Speech, Signal Processing, vol.
ASSP-34, pp. 837–845, Aug. 1986.

[8] W. M. Gentleman and H. T. Kung, “Matrix triangularization by systolic
arrays,”Proc. SPIE Int. Soc. Opt. Eng., vol. 298, 1981.

[9] J. G. McWhirter, “Recursive least squares minimization using a systolic
array,” Proc. SPIE Int. Soc. Opt. Eng., vol. 431, pp. 105–112, 1983.

[10] F. Ling, D. Manolakis, and J. G. Proakis, “A recursive modified Gram-
Schmidt algorithm for least-squares estimation,”IEEE Trans. Acoust.,
Speech, Signal Processing, vol. ASSP-34, pp. 829–836, Aug. 1986.

[11] S. T. Alexander and A. L. Ghirnikar, “A method for recursive least
squares adaptive filtering based upon an inverse QR decomposition,”
IEEE Trans. Signal Processing, vol. 41, pp. 20–30, Jan. 1993.

[12] A. L. Ghirnikar, S. T. Alexander, and R. J. Plemmons, “A parallel
implementation of the inverse QR adaptive filter,”Comput. Elec. Eng.,
vol. 18, no. 3/4, pp. 291–300, 1992.

[13] F. Ling, “Givens rotation based least squares lattice and related algo-
rithms,” IEEE Trans. Signal Processing, vol. 39, pp. 1541–1551, July
1991.

[14] I. K. Proudler, J. G. McWhirter, and T. J. Shepherd, “Computationally
efficient, QR decomposition approach to least squares adaptive filtering,”
Proc. Inst. Elect. Eng., vol. 138, pt. F, pp. 341–353, Aug. 1991.

[15] P. S. Lewis, “QR-based algorithms for multichannel adaptive least
squares lattice filters,”IEEE Trans. Acoust., Speech, Signal Processing,
vol. 38, pp. 421–432, Mar. 1990.

[16] B. Yang and J. F. Bohme, “Rotation-based RLS algorithms: Uni-
fied derivations, numerical properties, and parallel implications,”IEEE
Trans. Signal Processing, vol. 40, pp. 1151–1167, May 1992.

[17] J. M. Cioffi, “The fast adaptive ROTOR’s RLS algorithm,”IEEE Trans.
Acoust., Speech, Signal Processing, vol. 38, pp. 631–653, Apr. 1990.

[18] I. K. Proudler, J. G. McWhirter, and T. J. Shepherd, “Fast QRD-based
algorithms for least squares linear prediction,” inProc. IMA Conf. Math.
Signal Process., Warwick, U.K., Dec. 12–15, 1988.

[19] M. G. Bellanger, “The FLS-QR algorithm for adaptive filtering,”Signal
Process., vol. 17, pp. 291–304, 1989.

[20] , “A survey of QR based fast least squares adaptive filters: From
principles to realization,”Proc. IEEE Int. Conf. Acoust., Speech, Signal
Process., Toronto, Ont., Canada, 1991, pp. 1833–1836.

[21] P. A. Regalia and M. G. Bellanger, “On the duality between fast QR
methods and lattice methods in least squares adaptive filtering,”IEEE
Trans. Signal Processing, vol. 39, pp. 879–891, Apr. 1991.

[22] C. T. Pan and R. J. Plemmons, “Least squares modifications with inverse
factorizations: Parallel implications,”J. Comput. Appl. Math., vol. 27,
pp. 109–127, 1989.

[23] G. H. Golub and C. Van Loan,Matrix Computations, 2nd ed. Balti-
more, MD: Johns Hopkins Univ. Press, 1989.

Athanasios A. Rontogianniswas born in Athens,
Greece, on June 16, 1968. He received the diploma
in electrical and computer engineering from the
National Technical University of Athens in 1991,
the M.A.Sc degree in electrical and computer en-
gineering from the University of Victoria, Victoria,
B.C., Canada, in 1993, and the Ph.D degree in signal
processing from the Department of Informatics,
University of Athens, in 1997.

Since March 1997, he has been with the Greek
Air Force. From November 1994 to March 1997,

he was a recipient of a Scholarship from the State Scholarship Foundation
for the completion of his Ph.D. degree. His research interests are focused on
adaptive filtering algorithms and their application to channel equalization and
echo cancellation schemes.

Sergios Theodoridiswas born in Piraeus, Greece,
on December 17, 1951. He received the B.Sc.
degree with honors in physics from the University
of Athens, Athens, Greece, in 1973 and the M.Sc.
and Ph.D degrees in communications and signal pro-
cessing, both from the University of Birmingham,
Birmingham, U.K., in 1975 and 1978 respectively.

From 1978 to 1981, he was a Research Fellow
in the Department of Electronics and Electrical
Engineering, University of Birmingham. From 1981
to 1983, he was with the Greek Army. From 1984

to 1995, he was with the Department of Computer Engineering, University
of Patras, Patras, Greece. Since 1995, he has been with the Department
of Informatics, University of Athens. His current research interests are
focused on the fields of digital signal processing, communications, and pattern
recognition.


