
2862 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 46, NO. 11, NOVEMBER 1998

Multichannel Fast QRD-LS Adaptive
Filtering: New Technique and Algorithms

Athanasios A. Rontogiannis and Sergios Theodoridis

Abstract—In this paper, a direct, unified approach for deriving
fast multichannel QR decompostion (QRD) least squares (LS)
adaptive algorithms is introduced. The starting point of the new
methodology is the efficient update of the Cholesky factor of
the input data correlation matrix. Using the new technique, two
novel fast multichannel algorithms are developed. Both algo-
rithms comprise scalar operations only and are based exclusively
on numerically robust orthogonal Givens rotations. The first
algorithm assumes channels of equal orders and processes them
all simultaneously. It is highly modular and provides enhanced
pipelinability, with no increase in computational complexity,
when compared with other algorithms of the same category. The
second multichannel algorithm deals with the general case of
channels with different number of delay elements and processes
each channel separately. A modification of the algorithm leads
to a scheme that can be implemented on a very regular systolic
architecture. Moreover, both schemes offer substantially reduced
computational complexity compared not only with the first algo-
rithm but also with previously derived multichannel fast QRD
schemes. Experimental results in two specific application setups
as well as simulations in a finite precision environment are also
included.

Index Terms—Adaptive systems, multichannel LS algorithms,
numerical stability, QR decomposition.

I. INTRODUCTION

M ULTICHANNEL least squares adaptive algorithms
[1]–[3], [6]–[20], [27]–[29] are becoming increasingly

popular due to their fast converging properties, and they find
wide applications in diverse areas such as channel equalization,
stereophonic echo cancellation, multidimentional signal
processing, and Volterra-type nonlinear system identification,
to name but a few. Among the various efficiency issues,
characterizing the performance of an algorithm, those of com-
putational complexity, parallelism, and numerical robustness
are of particular importance, especially in applications where
medium to long filter lengths are required. The general LS
multichannel problem leads to adaptive algorithms of
computational complexity, where is the sum of the channel
orders. However, for the time series case, exploitation of
the underlying shift-invariant property results in reduction
of the computational complexity. Block-type multichannel
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schemes, which process all channels simultaneously, were
the first to be derived. These algorithms encompass matrix
operations, such as matrix inversions, and numerical problems
associated with those operations are usually encountered.
Multichannel algorithms involving scalar-only operations
have recently become very popular. In these algorithms, a
proper channel decomposition technique is performed, and
each channel is processed separately. This results in further
reduction of computational complexity and improvement of
the numerical properties of the algorithms. The need for
numerically robust schemes has also led to the development
of a class of algorithms based on the QR decomposition of
the input data matrix via the Givens rotations approach.

Following the development of single channel schemes [1],
[2], [5], multichannel least squares lattice [6]–[14], [18]–[20],
and transversal [14]–[17] algorithms were originally derived.
These include block as well as scalar-type schemes and
can handle channels with different number of associated
parameters [9], [11], [14]–[20]. Transversal-type algorithms
are of lower complexity and directly provide the channels’
coefficients. Lattice algorithms, on the other hand, are highly
modular and produce the LS estimation error, order recur-
sively, in a pipelined fashion.

Another class of multichannel algorithms springs from the
single channel fast QRD schemes [21]–[25], which are known
to be numerically well behaved. Both the block- and the
channel decomposition-based cases have been treated for chan-
nels of equal [27]–[28] or unequal [29] orders. Especially in
[29], a novel channel decomposition technique is introduced,
which makes possible the manipulation of channels of different
orders. This channel decomposition procedure leads to a
multichannel fast QRD algorithm consisting ofsingle channel
fast QRD algorithms of length , where is the number of
channels. Thesesingle-channel algorithms are interdependent
and are executed sequentially, one after the other. The resulting
algorithm is of computational complexity.

In this paper, a novel, unified approach for deriving multi-
channel fast QRD algorithms is introduced. The new technique
is based on the efficient time update of a particular vector
quantity, which provides all the necessary for the LS error
update rotation parameters. This vector quantity is basically
the state vector of the equivalent state space description of the
algorithmic process. It is directly related to the upper triangular

factor of the input data matrix in a QR factorizarion.
In contrast, all previously derived QRD algorithms exploit
quantities related to the factor. A direct consequence of the
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new technique is that explicit backward steps are essentially
alleviated. This fact has a twofold advantage. First, derivations
are simplified, and all existing fast QRD algorithms can
be obtained in a simplified way. Second, it paves the way
for the derivation of new more efficient algorithms. The
proposed methodology is also direct and insightful in that all
algorithmic quantities involved have an obvious LS meaning
and interpretation.

Two new multichannel algorithms are presented in this
paper. Both algorithms are based exclusively on numerically
robust orthogonal Givens rotations. The first algorithm is
a block-type scheme, which processes all channels jointly.
The channel orders are assumed to be equal. In spite of its
block nature, the new algorithm comprises scalar operations
only, which in conjuction with the use of orthogonal Givens
rotations guarantees the numerical robustness of the proposed
scheme. In contrast with previously derived fast QRD algo-
rithms of the same category [27], [28], the new algorithm is
highly modular and pipelinable and generates the solutions of
all lower order problems. The second algorithm deals with
the general case of unequal channel lengths. The channel
partitioning used in [29], in the context of Volterra filtering, is
also adopted here, and the new algorithm consists ofsingle-
channel algorithms of the type of [26], which are excecuted
sequentially. A slight modification leads to an alternative form
of the algorithm, which can be implemented on a circular
systolic architecture where the single channel algorithms are
executed in a pipelined fashion. In contrast, the channel
decomposition-based algorithms of [27]–[29] are strictly se-
quential for each time iteration. Moreover, compared with [29],
the new algorithms offer reduced computational complexity
in terms of both multiplications/divisions and square roots.
This fact becomes apparent from the methodology adopted
and is demonstrated with a specific example that concerns
Volterra-type nonlinear filtering.

The paper is organized as follows. An introductory frame-
work for general LS adaptive filtering schemes is described
in Section II. The new multichannel fast QRD algorithms are
then presented in Sections III and IV. Experimental results
of the use of the channel decomposition-based algorithm in
two specific applications are provided in Section V. Some
numerical simulations are also included. Section VI concludes
this work. For clarity of presentation, real-valued signals are
considered throughout the paper.

II. THE GENERAL LEAST SQUARES PROBLEM

The standard exponentially weighted least squares (LS)
problem is that of selecting a coefficients’ matrix
to satisfy the optimization scheme

(1)
where

usual forgetting factor with ;
input data vector;

desired response vector at time

The input–output information can be used to form the data
matrix

...
...

(2)

where diag
According to the projection theorem [1], the solution of the

LS problem requires the minimization of the Frobenius norm
[4] of the error matrix , which is achieved after the
orthogonal projection of the column space of
onto the column space of then contains the
coefficients of this projection. This is compactly written as

(3)

If now stands for the orthogonal matrix that converts
into the upper triangular form , then

(4)

where , and Since
multiplication with an orthogonal matrix is norm preserving,
it is straightforward from (3) and (4) that is given by

(5)

In a time-varying environment, the time update of
and is required, as new information becomes available.
It turns out that all necessary quantities for the update of these
matrices can be obtained from the manipulation of a single
vector term. Specifically, let us define the vector

(6)

and assume that

(7)

is satisfied. is a sequence of elementary Givens
rotations [4], [30] that successively annul the elements of

by rotating them against the last element (initially
1), starting from the first element of and moving
downwards. It has been shown [1], [30], [31] that this

also updates and of (5) according to

(8)

From (6), (7), and the orthogonality of , it can be
shown that equals the inverse of the square root of
the angle variable [3]. Therefore, the angle normalized error
vector will be related to thea priori error vector

as [1], [26]

(9)
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The efficient update of is at the heart of our
problem. It is defined as [1]

(10)

Finally, note that if stands for the error covariance
matrix, it will be given by

(11)

The update of is possible by employing [3]

(12)

In the following sections, two new multichannel LS fast
adaptive algorithms based on Givens rotations are presented.
It is shown that each step of these algorithms can be treated
as an LS problem of the type described in this section. Such
an approach unifies the derivation and provides a clear LS
interpretation of all algorithmic quantities involved.

III. B LOCK MULTICHANNEL FAST QRD ALGORITHM

Let us consider a system consisting ofinput channels, each
of length , and an output channel. The more general
case of output channels essentially corresponds to
single-channel output problems and thus will not be further
treated. Using input information up to time, we can form
the matrix1

...

...
...

...
(13)

where vector contains the inputs to the system at time
Note from (13) that

the prewindowed assumption is adopted for each channel.
Using the input data matrix given in (13) and the vector of
the scalar desired responses (up to time), we can form a LS
problem similar to that presented in the previous section. As
it has already been explained, the vector quantity of interest is

(14)

1The subscriptsp; p + 1; i or i � 1 used in this section mean that the
respective quantities correspond to thepth, (p + 1)th, ith, or (i � 1)th-
order problem in which all channels havep; p + 1; i; or i � 1 delay
elements, respectively. Any exception to this rule will be explicitly stated.
The dimensions of the respective quantities will be also explicitly given or
will be easily inferred from the text.

where is the Cholesky factor of
It is clear from (14) that the time update of requires
the time update of The latter is achieved by
employing (for a proof see Appendix A)

(15)
and (16), shown at the bottom of the page, where

and are quantities related to
the backward and forward problems, respectively (Appendix
A). According to (56) of Appendix A, the orthogonal matrix

satisfies the equation

(17)

Matrix can be split up into blocks as

...

It is clear from the discussion in Appendix A that
if is the “part” of that annihilates

, then consists of
elementary Givens rotation matrices and satisfies

(18)

Furthermore, it is straightforward that

Combining, (14),
(15), and the input vector partition

, we get

(19)

where the vector corresponds to the lastelements
of and is expressed as

(20)

Clearly, is the th-order a priori backward
error vector, and consequently, can be interpreted
as the th-order normalizeda priori backward error vector.
In addition, the nesting of vectors in (19) indicates that
the th -element block of

(16)
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corresponds to theth-order normalizeda priori backward
error vector for From (14), (16), and the input
vector partition , we also
obtain

(21)

where

(22)

is the th-order a priori normalized forward error vector.
If now, in (21), we take into consideration the order-recursive
form of and the nesting property of

, then it can easily be deduced that matrix has the
following effect:

(23)

where is the th order normalizeda priori forward
error vector. Equations (21) and (19) provide the time update
of through the application of a sequence of orthogonal
Givens rotations The time update of is also
possible if (17) [or equivalently (18)] is written at time
As a consequence, expressions providing and

for are necessary.
can be obtained by employing a second set of orthogonal
Givens rotations. Specifically, this set of rotations corresponds
to , which originates from the annuling of with
respect to 1 [see (7)] and is also used in the time update of
the scalara priori error Indeed, if we identify
the general problem presented in the previous section with
the forward prediction problem considered in Appendix A, we
conclude [see (4), (8), and (54)] that updates
according to

(24)

stands for the angle normalized forward error
vector. Since the upper block of coincides with

, the first rotations of will be
the rotations of theth-order problem. This, in conjuction with
the fact that the upper block of is equal to
(Appendix A), shows that the angle normalized error vectors

are successively computed in (24).
These error vectors are related to thea priori forward error
vectors as

(25)

where is obtained after nullifying

The presentation of the new algorithm is completed with
the derivation of an expression for
Specifically, if we write (12) for theth-order forward predic-
tion problem, we obtain

or

From the last equation, the Cholesky factor can
be calculated as

(26)

The Givens rotations matrix successively an-
nihilates the elements of against the diagonal
elements of , retaining the positive definiteness of
the resulting factor.

The algorithm described so far is shown in Table I. The
quantity is the part of that zeroes
with respect to stands for the th
part of the vector (corresponding to
of (4) for the single output, equal channel orders case).
Note that the use of equations of the type of (22) for the
calculation of ’s have been avoided. Such expressions in-
volve matrix inversions and could be a source of numerical
instabilities. Equation (22) has been bypassed by observ-
ing that , which updates , also zeroes

against 1. Indeed, it suffices to notice
the duality between
and Therefore, the rotation
parameters of obtained from (26) can be also
used for the calculation of the elements of As
depicted in Table I, the new algorithm is based exclusively
on orthogonal Givens rotations. It also involves scalar-only
operations, although it treats all channels simultaneously.
Therefore, it is expected that the new scheme will exhibit
very nice numerical features and will be implementable on
CORDIC-based architectures.

The proposed algorithm is of computational com-
plexity, which is similar to the complexity of the other
block fast QRD multichannel schemes [27], [28]. The main
computational load comes from step 4, which involves
operations. The remaining steps of the algorithm require

operations. The distinct advantage of the new algo-
rithm, however, lies on its modularity and pipelinability. It
is clear from Table I that the new algorithm is pipelinable at
the order level, that is, the throughput offered is constant, re-
gardless of the channels’ length. Furthermore, the new scheme
can be implemented as the interconnection ofindependent,
identical modules and simultaneously provides the solutions
of all lower order problems. The above are not characteristics



2866 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 46, NO. 11, NOVEMBER 1998

TABLE I
NEW BLOCK MULTICHANNEL QRD ALGORITHM

of the corresponding block fast QRD multichannel algorithms
of [27], [28], which are sequential for each time iteration.

IV. CHANNEL DECOMPOSITION-BASED

MULTICHANNEL FAST QRD ALGORITHM

The algorithm of the previous section assumes channels of
equal orders and processes them all simultaneously. Such an
assumption, however, may be sometimes restrictive in practice.
In this section, we deal with the general case of channels with
different orders, and we present a new fast QR scheme that
treats each channel individually. The proposed algorithm is of
lower computational complexity compared not only with the
algorithm of the previous section (for equal channel lengths)
but also with the other channel decomposition-based fast QRD
algorithms of the same categoty.

Let us consider input channels of lengths ,
respectively, and Without loss of generality,
we assume that A critical point of our
methodology is the selection of an appropriate partitioning of
the input samples that appear in the input data vector
Specifically, we choose the most recent samples of
the first channel to be the leading elements of followed
by pairs of samples of the first and second channel,
followed by triples of samples of the first three channels

followed by -ples of samples of all channels. For
instance, in the three-channel case with , and

will have the form shown at the bottom of
the page.

It is now straightforward that the position of the first (most
recent) sample of theth channel is given by

Starting from , we define the input data vectors
and

for is a
permutation matrix that moves to the th position
after left shifting the first elements of It
can be easily verified that

, that is, the first elements of
provide the input vector of the next time instant.

The following input data matrices can now be defined:

...
(27)
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If stands for the Cholesky factor of , the
corresponding vectors can be expressed as

(28)

The vector will also be the critical quantity here.
From the discussion above and (28), it is not difficult to show
that

(29)

where consists of the lastelements of
The time update of can now be realized according to

This procedure involves “forward” steps, which will be
described below. It is clear that because of (29), explicit back-
ward steps are essentially avoided, and thus, our methodology
only requires forward steps.

A. Forward Step 1

From (27), the input data matrix can be written as

...
(30)

The last expression defines a (forward) LS problem [see (2)]
whose scalar desired response is the input of the first channel.
Proceeding similarly to the forward problem of the previous
algorithm (Appendix A), we easily deduce

(31)

where is the rotated reference vector, and
is the square root of the minimum squared error (energy)
corresponding to this LS problem. is a sequence
of Givens rotations that annihilate with respect to

as

(32)

Note that after the application of the th rotation matrix
in (32), the first element of the resulting vector will be equal to

, where is the energy
of the LS problem that corresponds to data matrix consisting of
the first columns of This “order-recursiveness”
leads to the pipelining of the algorithm.

Combining (28), (31), and the input vector partition
, we get

(33)

where

(34)

and where is the obviousa priori error. From
(33), the normalized errors

(35)

are computed, and would appear directly in (33)
if our initial data matrix consisted of the first columns
of

The time update of is realized according to

(36)

where is a sequence of Givens rotations that annul
with respect to 1 [see (7) and (8)]. During this pro-

cedure, the quantities are successively
generated. Furthermore, in (36), the “angle-normalized” errors

are calculated, which are related to as

(37)

From (12) we also have

(38)

Equations (38) and (36) provide the quantities required in
the update of the rotation parameters of [(32) written
at time ]. Finally, the annuling of obtained
from (33)

(39)

yields the rotation angles of as well as
, which are used in the second forward step

described as follows.
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Fig. 1. Construction of the upper triangular factor~Rk+i(N):

B. Forward Step for

The input data matrix is related to as

...
(40)

The derivation of an expression between and
is again necessary. Indeed, if

stands for the orthogonal factor in the QR decomposition
of , we have

(41)

After annuling against the first element of
the matrix with an appropriate orthogonal factor, the upper

part of the resulting matrix, say, ,
will have the form

(42)

Note that the existence of in (42) prevents the application
of the usual technique, that is, the zeroing of

against The procedure that transforms
into an upper triangular factor is illustrated in Fig. 1. We
initially premultiply with a sequence of
elementary Givens rotations , which nullify the

last elements of with respect to

in a bottom-up procedure. This step does not
affect the upper triangular structure of and creates

nonzero elements at the end of the first row of
the resulting matrix. The new matrix is then premultiplied by
a permutation factor that moves its first row to the position
after upshifting its next rows. Clearly, this permutation
factor coincides with It is not difficult to verify that the
above procedure leads to a upper triangular
positive definite factor under the condition that
and the diagonal elements of are positive. The

latter is valid in our case, which means that the final factor
equals , that is

(43)

Equation (43) establishes the connection between
and Combining (28), the inverted

form of the matrix in (43), and the input vector partition
, we obtain

(44)

From the definitions of and , we conclude
that the first elements of
are identical. Furthermore, the application of the rotations
of in (44) successively produces the normalized

errors If our
initial data matrix coincided with the first columns
of , then would appear directly
in an equation of the type of (44). In such an equation, the
corresponding factor would be identical to the product
of the last rotation matrices of ,
and the corresponding-vectors would be equal to the upper

and blocks of and
, respectively. Especially for ,

the orthogonal factor degenerates to the identity matrix,
and the action of indicates that is the th
element of In a similar way, we conclude that

the lower order energies
are successively produced in (43) through the application of
the rotation matrices of

The time update of is accomplished according to

(45)

In the last equation, except for , all lower
order angle normalized errors are calculated as well. The
rotations required in the next forward step are now computed
from

(46)
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It has been stated, however, that the first elements
of coincide with the corresponding elements of

Therefore, the first rotation parameters
of the th forward step have already been calculated in the
previous forward steps. Such an observation can lead to a
significant reduction of the computational complexity of the
proposed algorithm, depending on the channel orders, and will
be revisited later on. Especially the rotations produced at the
th forward step pass to the filtering part of the algorithm as

well as to the first forward step of the next time instant. Note
from (29) that only the first (out of rotation parameters,
which are produced in (46) for , are essentially necessary.
As a consequence, in all forward steps, we can deal with the
upper blocks of the corresponding vectors Based on
this observation, the initial angle normalized error in (44) will
be given by

while the update of is obtained as

The new channel decomposition based algorithm is shown
in Table II. In Table II, stand for

the first rotation angles of , whereas
are the last rotation

angles of is the th element of

, and denotes the th element of
stands for the th element of the

vector [corresponding to of (4) for the single
output, different channel orders case]. In order to maintain a
unified notation, the following conventions are adopted for
the th forward step:

and

C. Alternative Form of the Algorithm

We observe that the prediction section of the algorithm of
Table II consists of similar distinct parts, which correspond
to the input channels. The th part is excecuted after the
completion of the procedure for theth channel, from which
the necessary quantities and are collected. This
sequential procedure can be avoided if a slightly different
approach is adopted for the excecution of steps 2 and 3 of
Table II. This approach is based on an alternative computation
of the quantities and Indeed, if we
use the relations

(47)

and

(48)

TABLE II
NEW CHANNEL DECOMPOSITION-BASED QRD ALGORITHM

the “ascending” excecution of steps 2 and 3 of Table II is
achieved. In this way, we are led to the algorithm shown
in Table III. The main feature of this algorithm is that the

forward steps can be excecuted in a pipelined fashion: a fact
that favors its systolic implementation. A systolic architecture
for the implementation of the algorithm of Table III is shown
in Fig. 2. The architecture comprises identical sections,
and each section consists of blocks. The th section is
excited from the th channel and essentially implements the
th forward step. The blocks of theth section transfer the

necessary values of and to the corresponding
blocks of the th section. The last (th) section passes
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TABLE III
ALTERNATIVE FORM OF THE ALGORITHM OF TABLE II

these quantities to the first channel, leading to a circular
implementation. It also sends the angles to the filtering
section of the architecture (not shown in Fig. 2).

The proposed architecture is pipelinable at the order level,
that is, the throughput provided is constant and independent
of This is achieved if we let the inputs to be applied in
a skewed manner from top-to-bottom, i.e., is first
applied, then , etc. Thus, excites the first
section “clock cycles” after the application of This
is so because for , the rotations required
in the first forward step are produced in theth section at the
previous time instant The skewing of the inputs ensures the
synhronization of the different building blocks of the circular
architecture, which provides the output error every“clock
cycles.”

Fig. 2. Systolic architecture for the implementation of the algorithm of
Table III.

D. Remarks

It can be shown that the channel decomposition based
algorithm of [29] can be obtained if we adopt the vector

in place of Then, a similar methodology can also be fol-
lowed for the derivation of this algorithm.2 In other words, our
technique provides a unified framework for the development
of multichannel fast QRD algorithms. The proposed technique
is simple, direct, and insightful with respect to the internal
algorithmic quantities, which have a specific LS meaning and
interpretation. Moreover, explicit backward steps are avoided
[(19) and (29)], and our methodology essentialy comprises
forward steps. This is in contrast to other methodologies,
where the coexistence of forward and backward steps increases
the complexity of the derivation procedure.

The multichannel algorithms of Tables II and III are based
exclusively on orthogonal Givens rotations. As a result, their
numerical performance is expected to be favorable. For chan-
nels of equal orders , the new schemes are of
computational complexity, which is lower by an order of
magnitude compared with the complexity of the algorithm
of Section III and is similar to that of other known channel
decomposition-based fast QRD schemes [27], [28]. In the
general case of different channel orders, however, the pro-
posed algorithms are of lower computational complexity if
compared with the fast QRD scheme of [29] (which also treats
unequal channel lengths). This concerns not only the number
of multiplications/divisions but also, and more importantly,
the number of square roots, as shown in Table IV. The
complexity reduction is due to the fact that thevectors of
different forward problems have common blocks. Therefore,
some rotation parameters of ’s—produced in a forward
manner—are also common among the different channels and
need to be computed only once. There does not exist such a

2The same holds for the block and channel decomposition based algorithms
of [27] and [28], which are obtained if we follow the analysis of Sections III
and IV.



RONTOGIANNIS AND THEODORIDIS: MULTICHANNEL FAST QRD-LS ADAPTIVE FILTERING 2871

TABLE IV
COMPARISON OF COMPLEXITIES OF CHANNEL DECOMPOSITION-BASED MULTICHANNEL FAST QRD ALGORITHMS

Algorithm Mults/Divs Square roots

Algorithm of Table II 17kl � 12�l

i=1
mi + 12l+ 5k 2kl� 2�l

i=1
mi + 2l

Algorithm of Table III 18kl� 13�l

i=1
mi + 13l+ 5k 2kl� 2�l

i=1
mi + 2l

Algorithm of [29] 18kl� 8�l

i=1
mi + 8l+ 5k 2kl��l

i=1
mi + 2l

TABLE V
COMPARISON OF COMPLEXITIES FOR SECOND-ORDER VOLTERRA FILTERING

Algorithm Mults/Divs Square roots

Algorithm of Table II 6:5L3 + 21:5L2 +O(L) 2

3
L3 + 1:5L2 +O(L)

Algorithm of Table III 6:83L3 + 22:5L2+O(L) 2

3
L3 + 1:5L2 +O(L)

Algorithm of [29] 7:66L3 + 38:5L2+O(L) 5

6
L3 + 2:75L2 +O(L)

possibility for the algorithm of [29] because the corresponding
rotation parameters are produced from the-vectors in a
backward manner. As shown in Table IV, the reduction in
complexity, which is offered by the new algorithms, depends
on the channel lengths. A specific example is presented in
the next section. From Table IV, we also observe that the
computational complexity of the algorithm of Table III is
slightly higher if compared with the algorithm of Table II.
This is due to the use of (19) and (29) for the computation
of and , respectively. However, the
algorithm of Table III is pipelinable at the order level and
is implementable on a very regular systolic architecture. In
contrast, the algorithm of Table II, as well as the fast channel
decomposition-based QRD algorithms of [27]–[29], are strictly
sequential for each time iteration.

V. APPLICATIONS-EXPERIMENTAL RESULTS

In this section, two specific applications, which accept a
multichannel formulation, are discussed: Volterra-type nonlin-
ear adaptive filtering and decision feedback adaptive channel
equalization. Computer simulations demonstrate the validity
of the proposed channel decomposition based algorithms when
they are used as the necessary adaptive tool. Experiments in a
limited precision environment are also provided.

A. Second-Order Volterra Filtering

We assume that the input–output relation of our reference
model is described by the second-order triangular Volterra
representation [29], [32], [33]

(49)

where stand for the linear and quadratic
coefficients of the system at time , and represents
a noise term. The nonlinear filtering problem of (49) can
be transformed to an equivalent linear multichannel filtering
problem with channels of unequal orders [29], [32], [33]. This

is accomplished by considering channels, whose
inputs at time are expressed as

and their orders are

Clearly, the output of the nonlinear model (49) can be
adaptively estimated in the LS sense if a multichannel LS
algorithm that is capable of processing different channel
lengths is employed.

The computational requirements of the algorithms described
in Section IV for the above Volterra-type problem are shown
in Table V. Table V also includes the number of operations
for the corresponding scheme of [29], which is the only
known to the authors multichannel fast QRD algorithm treating
diferrent channel orders.3 We observe that the new algorithms
offer significant computational savings in terms of both the
number of multiplications/divisions (15% and 11% less) and
the number of square roots (20% less). This improvement can
be even greater for a different application (in the higher order
Volterra case, for instance).

We have implemented the algorithm of Table II for a
second-order Volterra system with The input and noise
terms are zero mean white Gaussian signals. The variance
of the input was taken equal to 1, and the forgetting factor

The squared error resulting from the application of
the new multichannel scheme is depicted in Fig. 3. The curves
of Fig. 3 are the average of 20 independent realizations of the
algorithm and correspond to noise variances and ,
respectively. The fast convergence rate that characterizes the
RLS type algorithms is clear from Fig. 3.

3In [29, Tab. III], the number of multiplications/divisions and the number
of square roots are calculated as9L3 + (69L2=2) + (57L=2) � 1 and
L3 + (7L2=2) + (7L=2), respectively. We believe, however, that careful
measuring leads to the figures of Table V.
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Fig. 3. Initial convergence curves of the Volterra filtering problem.

Fig. 4. Full decision feedback channel equalizer.

B. Decision Feedback Adaptive Channel Equalization

The basic decision feedback channel equalization problem
[1] is illustrated in Fig. 4. An input sequence taking
values from a binary alphabet excites a communication
channel with nonminimum phase characteristics. The channel
introduces both time dispersion in the form of intersymbol
interference and additive noise ( in the figure). The
reconstruction of the initial input sequence from the channel
output samples is at the heart of the channel equalization
problem.

A full decision feedback equalizer structure consists of a
feedforward (FF) adaptive filter and a feedback (FB) adaptive
filter [1]. The FF filter, which introduces a delay into the
equalizer, removes the precursor part of the channel’s impulse
response while the FB filter cancels the part following the
main peak of the channel’s impulse response. Therefore, either
two seperate single channel adaptive algorithms can be used
or, following a multichannel interpretation, a multichannel
algorithm with can be applied.

We have implemented a decision feedback equalizer using
the algorithm of Table III for a channel with the nonminimum

phase transfer function

The channel coefficients are properly chosen to assure that
the variance of the output signal equals 1. The noise term is
a zero mean white Gaussian process of variance , and
the forgetting factor The lengths of the FF and
the FB sections are taken equal to 5 and 2, respectively,
whereas a delay equal to 1 is sufficient. Fig. 5 shows the
equalizer output error with the equalizer operating in the initial
training period. The curve of Fig. 5 is the average of 40
independent realizations. We observe that the new algorithm
combines fast initial convergence with low complexity and
numerical robustness, which are highly desirable in a channel
equalization application.

C. Numerical Simulations

In order to compare the numerical behavior of channel
decomposition-based fast QRD algorithms, experiments have
been performed in a finite precision environment. Specifically,
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Fig. 5. Average output error of the equalizer in the training period.

the mantissa in the single precision floating-point representa-
tion is truncated in a specified position, whereas the exponent
remains unaffected. The outcome of each arithmetic operation
of the algorithms under study is immediately adjusted to the
predifined mantissa length. In the following experiments, we
consider that the desired signal obeys to a three-input
channel model of the form

The orders of are 6, 4, and 3, respectively, and
their elements are chosen randomly. The noise term is
a white Gaussian sequence with variance The input
signals are autoregressive sequences of orders 3, 2, and 2,
respectively, i.e.,

The terms are white Gaussian sequences
of variance 1, and the coefficients of the above AR equations
were chosen so that the input signal variances are also equal to
1. In our experiments, the forgetting factorequals 0.99. The
a priori mean squared error of two-channel decomposition-
based fast QRD algorithms for different mantissa lengths is
shown in Fig. 6. For a specific number of mantissa bits, 50
different realizations of the algorithms were run, each of 3000
iterations. The last 1000 samples of thea priori mean squared
error are then used for the evaluation of a time average value.
Following this procedure, the value of each point in Fig. 6
is specified. We observe that the numerical accuracy of the

algorithm of [29] is slightly better for mantissa lengths 7, 8,
and 9. In contrast, for mantissa lengths greater than 9, the mean
squared error of the algorithm of Table II is slightly lower. In
general, the numerical accuracy of both algorithms seems to
be similar: a fact that has also been verified for a variety of
initial models and specifications. It is obvious from Fig. 6 that
for mantissa lengths 12 and 13, the mean squared error of
both algorithms is very close to the value , which is
expected for IEEE single precision floating-point arithmetic
(23-bit mantissa). It must be noted that the algorithms were
run for a high mumber of iterations with no
indication of round-off error accumulation, even for very small
mantissa lengths. Similar numerical results are also obtained
for the new algorithm of Table III.

However, the algorithm of [29] appears to have numerical
problems in the case of nonstationarities of the input signal
statistics [13]. Indeed, in Fig. 7, the algorithms are compared
when the input signal is disturbed as

for

Even for 7 bits in the mantissa representation, the mean
squared error of the new algorithm converges to its expected
value (from Fig. 6) following a sudden increase, which is due
to the above nonstationarity. In contrast, for mantissa lengths
less than 14 bits, at least one of the 50 realizations of the
algorithm of [29] stops at the point of the disturbance. This
problem relates to a numerically not well-behaved hyberbolic
rotation step that is included in the body of the algorithm
of [29]. Specifically, due to the low arithmetic precision, the
algorithm calls for the calculation of the square root of a
negative number, which halts the algorithmic procedure. Note
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Fig. 6. Mean squared error of two multichannel fast QRD algorithms for different mantissa lengths.

Fig. 7. Mean squared error of two multichannel fast QRD algorithms under a strong nonstationarity.

that the proposed algorithms do not include hyperbolic steps,
resulting in superior numerical behavior.

VI. CONCLUDING REMARKS

Least squares adaptive algorithms based on the QR de-
composition of the input data matrix are very promising

due to their numerically robust performance. In this paper,
following a novel technique, new multichannel fast QRD
algorithms were developed. The new technique is direct and
insightful and can easily be applied for the derivation of other,
already existing multichannel fast QRD schemes. Besides their
good numerical properties, the proposed algorithms exhibit
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some other nice features, such as fast convergence, low
complexity, and enhanced parallelism and pipelinability. As
a consequence, the new algorithms are amenable to efficient
implementations on systolic array architectures with short
wordlengths and fixed-point arithmetic. As the number of
applications that accept a multichannel formulation increases,
schemes of the type presented in this paper appear to be
appropriate algorithmic tools.

APPENDIX A

From (13), the input data matrix can be written as

(50)

where consist of the obvious desired responses
of the backward and forward problems, respectively. From the
definition of and (4), it is easy to see that

(51)

If now is an orthogonal matrix that converts
into an upper triangular form with positive diagonal
elements, then (51) gives

(52)

From (11) and the norm preserving property of , it
is clear that is the Cholesky factor of the backward
error covariance matrix. The relation between and

is readily established from (52) as

(53)

By using the second equation in (50), the connection be-
tween and can also be established.
Indeed, after noticing that is also the Cholesky factor
of any matrix of the form , we get

(54)

An orthogonal matrix can now be found that trans-
forms the matrix in (54) in the form

(55)

where stands for the Cholesky factor of the
forward error covariance matrix. After isolating the upper

block of the matrix in the right-hand side
of (55), we easily obtain

(56)

where is a sequence of orthogonal Givens rotations
that annihilate with respect to Specifically,
each row of is zeroed against the diagonal elements
of the upper triangular factor [initially ]. The
procedure starts from the last row of , moves upwards,
and guarantees the upper triangular structure and the positive-
definiteness of the resulting factor. It is now straightforward
that inversion of (53) and (56) leads to (15) and (16).

Note that if instead of we initially considered
in (50) for , then ,

and would appear in (56), where is identical
to the upper block of This observation, in
conjuction with the nesting property of the factors in (53),
justify the order recursiveness of the derived algorithm.
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