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BER Performance Analysis of
Cooperative DaF Relay Networks and a New Optimal DaF Strategy

George A. Ropokis, Athanasios A. Rontogiannis, Member, IEEE, and Kostas Berberidis, Senior Member, IEEE

Abstract—An analytical bit error rate (BER) performance
study of three detect-and-forward (DaF) policies under a common
framework is presented in this paper. More specifically, the direct,
thresholded [1] and link-adaptive [2] schemes are studied, which
differ in the way the decision on the transmitted symbol is for-
warded from the relay to the destination. The analysis is carried
out for a single relay DaF transmission protocol and takes into
account the symbol decision errors that may occur at the relay.
Simple closed-form analytical BER expressions are derived for
all three schemes, which are completely verified by simulations.
Moreover, by minimizing a properly selected conditional BER
expression, a novel optimal DaF strategy is proposed, which
outperforms all previously known related methods.

Index Terms—Cooperative networks, regenerative relays,
detect-and-forward, BER performance.

I. INTRODUCTION

THE design of cooperative diversity communication
schemes and the analysis of their performance have

attracted considerable attention recently. In relevant literature,
most works are devoted to cooperative systems employing
non-regenerative relays, i.e., using an amplify-and-forward
(AaF) strategy. This is mainly due to the fact that AaF
schemes offer full diversity gains for large values of signal-
to-noise ratio (SNR) [3], [4]. Nevertheless, their practical
implementation requires expensive RF chains [5], as opposed
to detect-and-forward (DaF) transmission schemes, in which
the relays regenerate the received signals with only sim-
ple additional digital processing. In [6] a DaF cooperative
method is described based on a distributed version of the
well known Alamouti code and a suboptimum, as compared
to the maximum likelihood (ML), receiver is proposed. In [7]
and [5] two different maximal ratio combining (MRC) based
cooperative schemes are developed and suboptimum, low
complexity detection criteria are proposed. For all the above
schemes, derivation of analytical closed-form expressions for
the bit error rate (BER) is rather complicated. Recently in [1],
a detailed BER analysis of a single relay DaF network has
been presented for BPSK signaling, MRC at the destination-
receiver, and threshold-based retransmission at the relay. Four
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Fig. 1. Block diagram of a single-relay network.

different scenaria have been considered in [1], depending on
whether instantaneous or average SNR information of the
various channels, is available at the relay. For all four scenaria,
the optimum thresholds have been derived, that result in the
minimum end-to-end BER performance.

In this paper, we consider the first scenario of [1] and
analyze the BER performance of three different DaF schemes,
namely simple MRC, thresholded MRC with a fixed threshold
and link adaptive MRC [2]. A unified analysis framework
is developed and a novel approach is utilized based on the
manipulation of the decision variable at the destination as a
quadratic form in normal random variables. Analytical closed-
form BER expressions are derived for all three schemes, which
are completely verified via simulations. Moreover, by min-
imizing a properly selected conditional bit error probability
at the destination, the optimal weighting of the symbols-
decisions forwarded by the relay is derived. As verified by
simulations, the proposed method outperforms all previously
known schemes in terms of BER for all SNR values.

The rest of the paper is organized as follows. In Section
II, the system model adopted in the paper is presented and
three cooperative strategies are defined in a unified way.
BER performance analysis of these cooperative schemes is
presented in Section III. A new minimum BER combining
scheme is proposed in Section IV. Simulation results are given
in Section V and the basic conclusions of this work are
summarized in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

The basic structure of the communication network studied
in this paper is shown in Fig. 1. We assume that a single BPSK
symbol 𝑠 with unit energy (𝑠 = ±1) is transmitted in two
consecutive time slots. During the first time slot, the source
(𝑆) transmits symbol 𝑠, which is received by both the relay
(𝑅) and the destination (𝐷). As a result, the signal received
at the destination at this time slot is

𝑦𝑆𝐷 =
√

𝑃𝑆ℎ𝑆𝐷𝑠+ 𝑛𝑆𝐷. (1)

𝑃𝑆 is the power transmitted by 𝑆, assuming a bandwidth
of 1𝐻𝑧, and 𝑛𝑆𝐷 stands for the complex additive white
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Gaussian noise (AWGN) on the 𝑆 → 𝐷 channel, whose real
and imaginary parts have variance equal to 𝜎2

𝐷/2. Assuming
Rayleigh fading, the channel ℎ𝑆𝐷, is also a zero mean
complex Gaussian random variable (RV) with variance 𝜎2

𝑆𝐷 .
Hence, by defining the SNR of the 𝑆 → 𝐷 channel as

𝛾𝑆𝐷 =
𝑃𝑆 ∣ℎ𝑆𝐷∣2

𝜎2
𝐷

(2)

the probability density function (PDF) of 𝛾𝑆𝐷 can be ex-
pressed as [8]

𝑝𝛾𝑆𝐷 (𝛾) =
exp

(
− 𝛾

𝛾𝑆𝐷

)
𝛾𝑆𝐷

with 𝛾𝑆𝐷 =
𝑃𝑆𝜎

2
𝑆𝐷

𝜎2
𝐷

. (3)

The signal received at the relay in the same time slot is written
as

𝑦𝑆𝑅 =
√

𝑃𝑆ℎ𝑆𝑅𝑠+ 𝑛𝑆𝑅 (4)

where ∣ℎ𝑆𝑅∣ is a Rayleigh RV, that is, ℎ𝑆𝑅 is zero mean
complex Gaussian distributed with variance 𝜎2

𝑆𝑅 and 𝑛𝑆𝑅 is
complex AWGN with variance 𝜎2

𝑅. Therefore, the PDF of the
SNR at the relay will be given by

𝑝𝛾𝑆𝑅 (𝛾) =
exp

(
− 𝛾

𝛾𝑆𝑅

)
𝛾𝑆𝑅

with 𝛾𝑆𝑅 =
𝑃𝑆𝜎

2
𝑆𝑅

𝜎2
𝑅

. (5)

At the relay, a decision 𝑠 for the transmitted symbol 𝑠 is
taken. A weighted version of this decision is transmitted to
the destination during the second time slot, while the source
remains idle. Hence, the signal received at the destination in
the second time slot is written as

𝑦𝑅𝐷 =
√

𝑤𝑃𝑅ℎ𝑅𝐷𝑠+ 𝑛𝑅𝐷 (6)

where 𝑃𝑅 is the power factor at the relay and 𝑤 is a weighting
factor quantifying the reliability of the decision at the relay.
The channel ℎ𝑅𝐷 and the noise 𝑛𝑅𝐷 are also assumed zero
mean complex Gaussian RVs with variances 𝜎2

𝑅𝐷 and 𝜎2
𝐷 ,

respectively. The PDF of 𝛾𝑅𝐷 given the weighting factor 𝑤
is then written as

𝑝𝛾𝑅𝐷∣𝑤 (𝛾) =
exp

(
− 𝛾

𝑤𝛾𝑅𝐷

)
𝑤𝛾𝑅𝐷

with 𝛾𝑅𝐷 =
𝑃𝑅𝜎

2
𝑅𝐷

𝜎2
𝐷

.

(7)
For the transmission scheme described above, a maximum
likelihood (ML) detection at the destination would require
knowledge of the instantaneous probability of error at the relay
[7]. Such a requirement renders the practical implementation
of the ML detector extremely complex. In this work, as in [1],
we consider a suboptimum receiver defined as

𝑠 = 𝑠𝑖𝑔𝑛 {𝑑} (8)

where the decision variable 𝑑 is the output of a maximal
ratio combiner (MRC), which combines at the destination the
signals received by the source and the relay as follows

𝑑 = ℜ
{√

𝑃𝑆ℎ
∗
𝑆𝐷𝑦𝑆𝐷 +

√
𝑤𝑃𝑅ℎ

∗
𝑅𝐷𝑦𝑅𝐷

}

= ℜ
{
𝑃𝑆 ∣ℎ𝑆𝐷∣2 𝑠+

√
𝑃𝑆ℎ

∗
𝑆𝐷𝑛𝑆𝐷

+𝑤𝑃𝑅 ∣ℎ𝑅𝐷∣2 𝑠+
√

𝑤𝑃𝑅ℎ
∗
𝑅𝐷𝑛𝑅𝐷

} (9)

where ℜ{𝑥} stands for the real part of 𝑥.
In the analysis presented below, the following three relay

strategies are studied, which differ in the way the weighting
factort 𝑤 is chosen.

∙ Simple MRC: In this case 𝑤 is always chosen equal to 1.
In other words, the relay always forwards its decisions,
assuming that they are correct.

∙ Thresholded MRC: In thresholded MRC the relay is
employed only if the condition 𝛾𝑆𝑅 ≥ 𝛾0 is satisfied,
where 𝛾0 is a predefined threshold. That is, the weight 𝑤
is determined by the rule

𝑤 =

{
0, if 𝛾𝑆𝑅 < 𝛾0
1, if 𝛾𝑆𝑅 ≥ 𝛾0

(10)

∙ Link-adaptive MRC: In link-adaptive MRC the desicion at
the relay is properly weighted depending on the relation
between the instantaneous SNR of the 𝑆 → 𝑅 link
and the average SNR of the 𝑅 → 𝐷 link [2]. More
specifically, 𝑤 is selected according to the rule

𝑤 =

{ 𝛾𝑆𝑅

𝛾𝑅𝐷
, if 𝛾𝑆𝑅 < 𝛾𝑅𝐷

1, if 𝛾𝑆𝑅 ≥ 𝛾𝑅𝐷
(11)

Note that thresholded MRC has also been studied in [1]. While
here a fixed threshold is considered, in [1] the emphasis has
been given to the derivation of the optimum threshold, which
minimizes the end-to-end BER. In the next section closed-
form BER expressions are derived for the above transmission
strategies based on the theory of quadratic forms in normal
RVs. Then a new approach is proposed for selecting the
weight 𝑤, whose BER performance is superior compared to
all previously presented methods.

III. BER PERFORMANCE ANALYSIS

In order to analyze the performance of the model presented
in the previous section in terms of BER, the statistics of
the decision variable 𝑑 and the weighting factor 𝑤 need to
be studied. It can be noticed that in all previously presented
cooperation strategies, 𝑤 is either a constant, or a RV related
to the instantaneous SNR value of the 𝑆 → 𝑅 link, 𝛾𝑆𝑅, and
the mean value of the SNR at the 𝑅 → 𝐷 link. Therefore,
assuming an equiprobable source and a transmitted symbol
𝑠 = 1, the average BER is given by the following general
expression

𝑃𝑒 =

∫ ∞

0

𝑃𝑅
𝑒∣𝛾 Pr (𝑑 < 0∣𝑠 = 1, 𝑠 = −1, 𝑤 (𝛾)) 𝑝𝛾𝑆𝑅 (𝛾) 𝑑𝛾+

∫ ∞

0

(
1− 𝑃𝑅

𝑒∣𝛾
)
Pr (𝑑 < 0∣𝑠 = 1, 𝑠 = 1, 𝑤 (𝛾)) 𝑝𝛾𝑆𝑅 (𝛾) 𝑑𝛾

(12)

where 𝑃𝑅
𝑒∣𝛾 is the probability of error at the relay conditioned

on the instantaneous SNR 𝛾𝑆𝑅 = 𝛾. This probability is given
by 𝑃𝑅

𝑒∣𝛾 = 𝑄(
√
2𝛾) [8], where 𝑄(⋅) is the Q-function. By

inspecting (12), it can be seen that in order to express the BER
in closed form, the cumulative distribution function (CDF) of
𝑑 at zero conditioned on 𝑠, 𝑠 and 𝑤, is required. Let us start
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by expressing 𝑑 in the following analytical form

𝑑 =
(
𝑃𝑆𝑠ℜ{ℎ𝑆𝐷}+

√
𝑃𝑆ℜ{𝑛𝑆𝐷}

)
ℜ{ℎ𝑆𝐷}

+
(
𝑃𝑆𝑠ℑ{ℎ𝑆𝐷}+

√
𝑃𝑆ℑ{𝑛𝑆𝐷}

)
ℑ{ℎ𝑆𝐷} (13)

+
(
𝑤𝑃𝑅𝑠ℜ{ℎ𝑅𝐷}+

√
𝑤𝑃𝑅ℜ{𝑛𝑅𝐷}

)
ℜ{ℎ𝑅𝐷}

+
(
𝑤𝑃𝑅𝑠ℑ{ℎ𝑅𝐷}+

√
𝑤𝑃𝑅ℑ{𝑛𝑅𝐷}

)
ℑ{ℎ𝑅𝐷} .

where ℑ{𝑥} stands for the imaginary part of 𝑥. Then, by
defining the 8× 1 Gaussian vector

v =
[
𝑃𝑆𝑠ℜ{ℎ𝑆𝐷}+

√
𝑃𝑆ℜ{𝑛𝑆𝐷} ,ℜ{ℎ𝑆𝐷} ,

𝑃𝑆𝑠ℑ{ℎ𝑆𝐷}+
√

𝑃𝑆ℑ{𝑛𝑆𝐷} ,ℑ{ℎ𝑆𝐷} ,
𝑤𝑃𝑅𝑠ℜ{ℎ𝑅𝐷}+

√
𝑤𝑃𝑅ℜ{𝑛𝑅𝐷} ,ℜ{ℎ𝑅𝐷} ,

𝑤𝑃𝑅𝑠ℑ{ℎ𝑅𝐷}+
√

𝑤𝑃𝑅ℑ{𝑛𝑅𝐷} ,ℑ{ℎ𝑅𝐷}
]

(14)

the decision variable 𝑑 can equivalently be written as

𝑑 = 𝑣1𝑣2 + 𝑣3𝑣4 + 𝑣5𝑣6 + 𝑣7𝑣8 (15)

where 𝑣𝑖 stands for the 𝑖-th element of vector v.
Clearly, v has zero mean. Furthermore, it can be shown that

its covariance matrix Cv is expressed as

Cv =

[
C
(
𝑃𝑆 , 𝑠, 𝜎

2
𝑆𝐷, 𝜎2

𝐷

)
04×4

04×4 C
(
𝑤𝑃𝑅, 𝑠, 𝜎

2
𝑅𝐷, 𝜎2

𝐷

) ]
(16)

where C (⋅, ⋅, ⋅, ⋅) is the parametric matrix

C (𝑎, 𝑏, 𝑐, 𝑑) = I2×2 ⊗
[

𝑎2𝑏2𝑐+ 𝑎𝑑 𝑎𝑏𝑐
𝑎𝑏𝑐 𝑐

]
(17)

with I𝑚×𝑚 denoting the 𝑚 × 𝑚 identity matrix and ⊗
the Kronecker product operator. We can therefore write the
decision variable as a quadratic form in normal RVs [9]

𝑑 = v𝑇Av (18)

where A is a symmetric matrix given by1

A = I4×4 ⊗
[

0 1/2
1/2 0

]
. (19)

Using the representation of 𝑑 as a quadratic form in normal
RVs, as in (18), it is shown in the Appendix that the CDF of
𝑑 at zero for 𝑠 = 1 and 𝑠 = ±1 is written as in Eqs. (20) and
(21) given at the top of next page. Based on (20) and (21) the
error probability for the three DaF schemes presented in the
previous section, can be obtained in closed form, as explained
below.
Simple MRC: Since for simple MRC 𝑤 is always independent
of 𝛾𝑆𝑅 and equal to 1, (12) can be expressed as

𝑃𝑒 =

(∫ ∞

0

𝑃𝑅
𝑒∣𝛾𝑝𝛾𝑆𝑅 (𝛾) 𝑑𝛾

)

× Pr (𝑑 ≤ 0∣𝑠 = 1, 𝑠 = −1, 𝑤 = 1)

+

(∫ ∞

0

(1 − 𝑃𝑅
𝑒∣𝛾)𝑝𝛾𝑆𝑅 (𝛾)𝑑𝛾

)

× Pr (𝑑 ≤ 0∣𝑠 = 1, 𝑠 = 1, 𝑤 = 1)

(22)

1Note that matrix A as given in (19) is the only symmetric matrix that
satifies (18).

The average BER 𝑃𝑒 in (22) is written in a simple analytical
formula by employing (20), (21) with 𝑤 = 1 and the following
[8]

𝑃𝑅
𝑒,𝛾𝑆𝑅

=

∫ ∞

0

𝑃𝑅
𝑒∣𝛾𝑝𝛾𝑆𝑅 (𝛾) 𝑑𝛾

=
1

𝛾𝑆𝑅

∫ ∞

0

𝑄
(√

2𝛾
)
exp

(
− 𝛾

𝛾𝑆𝑅

)
𝑑𝛾

=
1

2

(
1−

√
𝛾𝑆𝑅

1 + 𝛾𝑆𝑅

)
(23)

Thresholded MRC: In the case of thresholded MRC, (12) takes
the form

𝑃𝑒 = Pr (𝛾𝑆𝑅 < 𝛾0) Pr (𝑑 ≤ 0)

+ 𝑃𝑅
𝑒,𝛾𝑆𝑅≥𝛾0

Pr (𝑑 ≤ 0∣𝑠 = 1, 𝑠 = −1, 𝑤 = 1)

+
(
Pr (𝛾𝑆𝑅 ≥ 𝛾0)− 𝑃𝑅

𝑒,𝛾𝑆𝑅≥𝛾0

)
× Pr (𝑑 ≤ 0∣𝑠 = 1, 𝑠 = 1, 𝑤 = 1).

(24)

Note that the first term in the RHS of (24) is not related to
the probability of error at the relay, because the relay is not
employed for 𝛾𝑆𝑅 < 𝛾0. In the same term, the probability of
error at 𝐷, Pr(𝑑 ≤ 0), can be computed as the probability of
error of the 𝑆 → 𝐷 link, i.e.,

Pr (𝑑 ≤ 0) =

∫ ∞

0

𝑄
(√

2𝛾
)
𝑝𝛾𝑆𝐷 (𝛾)𝑑𝛾

=
1

2

(
1−

√
𝛾𝑆𝐷

1 + 𝛾𝑆𝐷

)
. (25)

Moreover, for 𝛾𝑆𝑅 ≥ 𝛾0, the probability of error at the relay
𝑃𝑅
𝑒,𝛾𝑆𝑅≥𝛾0

can be expressed as

𝑃𝑅
𝑒,𝛾𝑆𝑅≥𝛾0

=
1

𝛾𝑆𝑅

∫ ∞

𝛾0

𝑄
(√

2𝛾
)
exp

(
− 𝛾

𝛾𝑆𝑅

)
𝑑𝛾

=
1

2

(
1−

√
𝛾𝑆𝑅

1 + 𝛾𝑆𝑅

)
− ℐ (26)

where ℐ is given by

ℐ =
1

2
−

𝑒𝑟𝑓𝑐
(√

𝛾0
)
exp

(
− 𝛾0

𝛾𝑆𝑅

)
2

− 1

2

√
𝛾𝑆𝑅

𝛾𝑆𝑅 + 1
𝑒𝑟𝑓

(√
𝛾0

𝛾𝑆𝑅 + 1

𝛾𝑆𝑅

) (27)

and 𝑒𝑟𝑓(𝑥), 𝑒𝑟𝑓𝑐(𝑥) are the error function and the com-
plementary error function, respectively. By substituting (20),
(21), (25) and (26) in (24) we get a simple closed form BER
expression for thresholded MRC. Note that here the desired
expression for the BER is an exact one, whereas in [1] the
respective expression is approximate.
Link-adaptive MRC: For this cooperative scheme, it is easy to
see that the BER in (12) is given by Eq. (28) shown at the
top of next page. The two integrals in the RHS of (28) can be
easily evaluated using Gauss quadrature rules, while the last
two terms can be effectively computed based on the relevant
expressions derived in the previous paragraph for thresholded
MRC.
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Pr (𝑑 ≤ 0∣𝑠 = 1, 𝑠 = 1, 𝑤) =
𝛾𝑆𝐷

2 (𝛾𝑆𝐷 − 𝑤𝛾𝑅𝐷)

(
1−

√
𝛾𝑆𝐷

1 + 𝛾𝑆𝐷

)
− 𝑤𝛾𝑅𝐷

2 (𝛾𝑆𝐷 − 𝑤𝛾𝑅𝐷)

(
1−

√
𝑤𝛾𝑅𝐷

1 + 𝑤𝛾𝑅𝐷

)
(20)

Pr (𝑑 ≤ 0∣𝑠 = 1, 𝑠 = −1, 𝑤) =
𝛾𝑆𝐷

(
2𝛾𝑆𝐷 + 1− 2

√
𝛾2
𝑆𝐷 + 𝛾𝑆𝐷

)

2 (𝛾𝑆𝐷 + 𝑤𝛾𝑅𝐷)
(
2𝛾𝑆𝐷 + 1− 2

√
𝛾2
𝑆𝐷 + 𝛾𝑆𝐷

)
− 4𝑤𝛾𝑅𝐷

(
1−

√
𝛾𝑆𝐷

1 + 𝛾𝑆𝐷

)

+
𝑤𝛾𝑅𝐷

(
2𝑤𝛾𝑅𝐷 + 1 + 2

√
𝑤2𝛾2

𝑅𝐷 + 𝑤𝛾𝑅𝐷

)

2 (𝛾𝑆𝐷 + 𝑤𝛾𝑅𝐷)
(
2𝑤𝛾𝑅𝐷 + 1+ 2

√
𝑤2𝛾2

𝑅𝐷 + 𝑤𝛾𝑅𝐷

)
− 4𝛾𝑆𝐷

(
1 +

√
𝑤𝛾𝑅𝐷

1 + 𝑤𝛾𝑅𝐷

) (21)

𝑃𝑒 =

∫ 𝛾𝑅𝐷

0

𝑃𝑅
𝑒∣𝛾𝑝𝛾𝑆𝑅 (𝛾) Pr (𝑑 ≤ 0∣𝑠 = 1, 𝑠 = −1, 𝑤 = 𝛾/𝛾𝑅𝐷) 𝑑𝛾

+

∫ 𝛾𝑅𝐷

0

(
1− 𝑃𝑅

𝑒∣𝛾
)
Pr (𝑑 ≤ 0∣𝑠 = 1, 𝑠 = 1, 𝑤 = 𝛾/𝛾𝑅𝐷) 𝑝𝛾𝑆𝑅 (𝛾) 𝑑𝛾

+ 𝑃𝑅
𝑒,𝛾𝑆𝑅≥𝛾𝑅𝐷

Pr (𝑑 ≤ 0∣𝑠 = 1, 𝑠 = −1, 𝑤 = 1) +
(
Pr (𝛾𝑆𝑅 ≥ 𝛾𝑅𝐷)− 𝑃𝑅

𝑒,𝛾𝑆𝑅≥𝛾𝑅𝐷

)
Pr (𝑑 ≤ 0∣𝑠 = 1, 𝑠 = 1, 𝑤 = 1)

(28)

A. Higher-Order Modulation Schemes

Although the above performance analysis results apply for
BPSK, a similar analysis can be carried out for higher-order
modulation schemes such as Pulse Amplitude Modulation
(PAM) and Quadrature Amplitude Modulation (QAM). For
that purpose, first the detector for PAM and QAM needs
to be defined. Building upon the form of the MRC receiver
described in [1] and [2], this detector decides in favor of the
symbol 𝑠 that satisfies the equation

𝑠 = argmin
𝑠∈𝑆

∥∥∥√𝑤𝑃𝑅ℎ
∗
𝑅𝐷𝑦𝑅𝐷 +

√
𝑃𝑆ℎ

∗
𝑆𝐷𝑦𝑆𝐷

−
(
𝑤𝑃𝑅 ∣ℎ𝑅𝐷∣2 + 𝑃𝑆 ∣ℎ𝑆𝐷∣2

)
𝑠
∥∥∥2 (29)

where 𝑆 denotes the symbols’ alphabet.
With regard to PAM, the receiver in (29) is equivalent to a

quantizer for the decision variable as expressed in (9). Specif-
ically, assuming that symbol 𝑠 was transmitted, a detection
error occurs, whenever

𝑑 ≤
(
𝑤𝑃𝑅 ∣ℎ𝑅𝐷∣2 + 𝑃𝑆 ∣ℎ𝑆𝐷∣2

)
(𝑠− 𝑒0) or

𝑑 ≥
(
𝑤𝑃𝑅 ∣ℎ𝑅𝐷∣2 + 𝑃𝑆 ∣ℎ𝑆𝐷∣2

)
(𝑠+ 𝑒0)

(30)

where 𝑠−𝑒0 and 𝑠+𝑒0 are the quantization points. From (30),
the error probability for PAM is expressed as the probability
that a quadratic form in normal RVs is smaller or larger
than predefined thresholds. Hence, using again the statistics
of quadratic forms, closed-form expressions for the symbol
error rate (SER) and the BER of PAM can be derived.

As far as QAM is concerned, the detector in (29) can be
implemented as two separate quantizers, one for the in-phase
and the other for the quadrature signals respectively. As a
consequence, the performance analysis procedure followed for
PAM, can be also directly extended to QAM.

IV. MINIMUM BER WEIGHT SELECTION

In this section, by minimizing the BER at the destination
conditioned on the instantaneous SNR at the relay, 𝛾𝑆𝑅, an

optimal reliability factor 𝑤 is obtained. More specifically, this
conditional BER is expressed as

𝑃𝑒∣𝛾𝑆𝑅
(𝑤) = 𝑃𝑅

𝑒∣𝛾𝑆𝑅
Pr (𝑑 ≤ 0∣𝑠 = 1, 𝑠 = −1, 𝑤)

+
(
1− 𝑃𝑅

𝑒∣𝛾𝑆𝑅

)
Pr (𝑑 ≤ 0∣𝑠 = 1, 𝑠 = 1, 𝑤)

(31)

where 𝑃𝑅
𝑒∣𝛾𝑆𝑅

= 𝑄(
√
2𝛾𝑆𝑅) and Pr (𝑑 ≤ 0∣𝑠 = 1, 𝑠 = 1, 𝑤),

Pr (𝑑 ≤ 0∣𝑠 = 1, 𝑠 = −1, 𝑤) are given by (20) and (21) re-
spectively. Direct minimization of 𝑃𝑒∣𝛾𝑆𝑅

(𝑤) in (31) is rather
complicated and does not lead to a closed form solution for
𝑤. Thus, to simplify the expressions given in (20), and (21),
which appear in (31) the first order Taylor series approxima-
tion of

√
𝑥 around 1 has been utilized, i.e.,

√
𝑥 ≈ 1 +

1

2
(𝑥− 1) . (32)

It is easily verified that (32) is a very accurate approximation
for the square roots of the form

√
𝑎/(1 + 𝑎) appearing in (20)

and (21). For square roots of the form
√
𝑎2 + 𝑎, the following

approximation has been used
√

𝑎2 + 𝑎 = (1 + 𝑎)

√
𝑎

1 + 𝑎

≈ (1 + 𝑎)(1 +
1

2
(

𝑎

1 + 𝑎
− 1)) =

1

2
+ 𝑎 (33)

Based on these approximations the probabilities in (20) and
(21) are written as

Pr (𝑑 ≤ 0∣𝑠 = 1, 𝑠 = 1, 𝑤) ≈ 1

4 (1 + 𝛾𝑆𝐷) (1 + 𝑤𝛾𝑅𝐷)
(34)

and

Pr (𝑑 ≤ 0∣𝑠 = 1, 𝑠 = −1, 𝑤)

≈ (4𝑤𝛾𝑅𝐷 + 3) (1 + 2𝑤𝛾𝑅𝐷)

4 (1 + 𝑤𝛾𝑅𝐷) (2𝛾𝑆𝐷 + 2𝑤𝛾𝑅𝐷 + 1)
. (35)

By substituting (34) and (35) in (31) and setting 𝑞 = 𝑃𝑅
𝑒∣𝛾𝑆𝑅

we get (36). Taking the derivative of (36) and equating it to
zero leads to the solutions for 𝑤 shown at the top of next page.
The solution which minimizes 𝑃𝑒∣𝛾𝑆𝑅

(𝑤) for 0 ≤ 𝑤 ≤ 1
is then used to weight the decision at the relay. If none
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𝑃𝑒∣𝛾𝑆𝑅
(𝑤) ≈ 8𝑞 (1 + 𝛾𝑆𝐷)𝑤2𝛾2

𝑅𝐷 + (2 + 8𝑞 + 10𝑞𝛾𝑆𝐷)𝑤𝛾𝑅𝐷 + 1 + 2𝑞 + 𝛾𝑆𝐷 (2 + 𝑞)

4 (1 + 𝛾𝑆𝐷) (2𝑤2𝛾2
𝑅𝐷 + (3 + 2𝛾𝑆𝐷)𝑤𝛾𝑅𝐷 + (1 + 2𝛾𝑆𝐷))

(36)

𝑤± =
− (

𝑞
(
2 + 11𝛾𝑆𝐷 + 8𝛾2

𝑆𝐷

)− 1− 2𝛾𝑆𝐷

)
2𝛾𝑅𝐷 (𝑞 (2 + 5𝛾𝑆𝐷 + 4𝛾2

𝑆𝐷)− 1)
±

√
2𝑞𝛾𝑆𝐷 (1− 5𝛾𝑆𝐷 + 2𝛾2

𝑆𝐷 + 8𝛾3
𝑆𝐷 − 𝑞 (2− 7𝛾𝑆𝐷 − 5𝛾2

𝑆𝐷 + 4𝛾3
𝑆𝐷))

2𝛾𝑅𝐷 (𝑞 (2 + 5𝛾𝑆𝐷 + 4𝛾2
𝑆𝐷)− 1)

(37)
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Fig. 2. Performance comparison of three cooperative diversity schemes for
various 𝛾𝑆𝐷 SNR values and 𝛾𝑆𝑅 = 𝛾𝑅𝐷 = 15dB. In thresholded MRC,
𝛾0 = 0dB.

of the solutions are in the interval [0, 1], this means that
𝑃𝑒∣𝛾𝑆𝑅

(𝑤) does not have any extrema in this interval. Thus, if
𝑃𝑒∣𝛾𝑆𝑅

(0) < 𝑃𝑒∣𝛾𝑆𝑅
(1), 𝑃𝑒∣𝛾𝑆𝑅

(0) will be the minimum value
of 𝑃𝑒∣𝛾𝑆𝑅

(𝑤) in [0, 1], and 𝑤 is set equal to 0. Similarly, if
𝑃𝑒∣𝛾𝑆𝑅

(1) < 𝑃𝑒∣𝛾𝑆𝑅
(0), 𝑤 is set equal to 1.

V. NUMERICAL RESULTS AND DISCUSSION

In this section, the theoretical analysis presented in the pa-
per is verified via Monte Carlo simulations. In all experiments,
we set 𝑃𝑆 = 𝑃𝑅 = 1 and let the noise variances determine the
SNR in the links of the relay network. In Fig. 2 theoretical and
simulation results for the BER performance of simple MRC,
thresholded MRC and link adaptive MRC are depicted for
various 𝛾𝑆𝐷 SNRs and 𝛾𝑆𝑅 = 𝛾𝑅𝐷 = 15dB. The theoretical
curves have been obtained based on the BER expressions
derived for the three schemes in Section III. We observe from
Fig. 2 that theoretical and simulation results almost coincide,
thus corroborating our analysis. Moreover, it can be noticed
that link adaptive MRC outperforms the other two schemes
for medium and high SNR values, while thresholded MRC is
superior in a low SNR regime. In Figs. 3 and 4, the method
proposed in Section IV is compared to link-adaptive MRC
and the optimal threshold selection method of [1]. In both
figures, 𝛾𝑅𝐷 was taken equal to 15dB, while 𝛾𝑆𝑅 = 5dB in
Fig. 3 and 𝛾𝑆𝑅 = 15dB in Fig. 4. Note that in [1], besides the
optimal threshold, an approximate BER expression has been
also derived. In our experiments the optimal threshold of [1]
has been incorporated in the exact BER expression obtained
for thresholded MRC in Section III. We see from Figs. 3 and
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Fig. 3. Performance comparison of three DaF schemes for 𝛾𝑆𝑅 = 5dB and
𝛾𝑅𝐷 = 15dB.
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Fig. 4. Performance comparison of three DaF schemes for 𝛾𝑆𝑅 = 15dB
and 𝛾𝑅𝐷 = 15dB.

4 that the proposed method for selecting the weighting factor
𝑤 outperforms the other two relaying strategies, for all SNR
values and for both low and medium reliability of the source-
to-relay link.

It should be mentioned that from experiments that follow
the simulation settings used in [2] (and not reported here due
to space limitations), it can be shown that the proposed relay
strategy has diveristy order two, similar to the link adaptive
MRC scheme described in [2].

VI. CONCLUSIONS

A unified BER performance analysis of three DaF coop-
erative policies has been developed in this paper. Closed-
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form analytical BER expressions have been derived under a
common framework. The main idea was to consider that the
decisions at the relay are properly weighted depending on the
reliability of the source-to-relay link. Based on this idea an
optimal weighting factor selection method has been proposed,
which, as verified by simulations, outperforms in terms of
BER all previously known related schemes.

APPENDIX

The PDF of 𝑑 given in (18) equals the PDF of the RV
8∑

𝑖=1

𝜆𝑖𝑢
2
𝑖 , where 𝜆𝑖, 𝑖 = 1, 2, . . . , 8 are the eigenvalues of the

matrix CvA and 𝑢𝑖 are independent, identically distributed
standard normal RVs [9]. It can be shown that matrix CvA
has four distinct eigenvalues each with multiplicity equal to
two. More specifically by denoting with 𝑙1, 𝑙2, 𝑙3, 𝑙4 the distinct
eigenvalues of CvA, it can be shown that

𝑙1 = 𝜆1 = 𝜆2 =
𝑃𝑆𝑠𝜎

2
𝑆𝐷 +

√
𝑃 2
𝑆𝑠

2𝜎4
𝑆𝐷 + 𝑃𝑆𝜎2

𝑆𝐷𝜎2
𝐷

2
(38)

𝑙2 = 𝜆3 = 𝜆4 =
𝑤𝑃𝑅𝑠𝜎

2
𝑅𝐷 +

√
𝑤2𝑃 2

𝑅𝑠
2𝜎4

𝑅𝐷 + 𝑤𝑃𝑅𝜎2
𝑅𝐷𝜎2

𝐷

2
(39)

𝑙3 = 𝜆5 = 𝜆6 =
𝑃𝑆𝑠𝜎

2
𝑆𝐷 −√

𝑃 2
𝑆𝑠

2𝜎4
𝑆𝐷 + 𝑃𝑆𝜎2

𝑆𝐷𝜎2
𝐷

2
(40)

and

𝑙4 = 𝜆7 = 𝜆8 =
𝑤𝑃𝑅𝑠𝜎

2
𝑅𝐷 −√

𝑤2𝑃 2
𝑅𝑠

2𝜎4
𝑅𝐷 + 𝑤𝑃𝑅𝜎2

𝑅𝐷𝜎2
𝐷

2
.

(41)
Thus, the decision variable 𝑑 is rewritten as

𝑑 =

2∑
𝑖=1

𝑙𝑖
(
𝑢2
2𝑖−1 + 𝑢2

2𝑖

)−
2∑

𝑖=1

∣𝑙𝑖+2∣
(
𝑢2
2(𝑖+2)−1 + 𝑢2

2(𝑖+2)

)
.

(42)
that is, 𝑑 is expressed as the difference of sums of weighted
independent chi-squared RVs with two degrees of freedom.
Thus, assuming that 𝑙1 ∕= 𝑙2 and 𝑙3 ∕= 𝑙4, it can be shown that
the PDF of 𝑑 given 𝑠, 𝑠 and 𝑤 is expressed as2 [10, p. 135]

𝑝𝑑∣𝑠,𝑠,𝑤 (𝑧) =
1

2 (∣𝑙3∣ − ∣𝑙4∣)
×
(
exp

(
𝑧

2 ∣𝑙3∣
)

𝑙23
(𝑙1 + ∣𝑙3∣) (𝑙2 + ∣𝑙3∣)

− exp

(
𝑧

2 ∣𝑙4∣
)

𝑙24
(𝑙1 + ∣𝑙4∣) (𝑙2 + ∣𝑙4∣)

)
(43)

for 𝑧 ≤ 0. Moreover, by integrating the PDF, the CDF of 𝑑 at
zero is written as

𝑃𝑟(𝑑 ≤ 0∣𝑠, 𝑠, 𝑤) = 1

(∣𝑙3∣ − ∣𝑙4∣)
( ∣𝑙3∣3
(𝑙1 + ∣𝑙3∣)(𝑙2 + ∣𝑙3∣)

− ∣𝑙4∣3
(𝑙1 + ∣𝑙4∣)(𝑙2 + ∣𝑙4∣)

)
(44)

After substituting 𝑙𝑖, 𝑖 = 1, 2, 3, 4 from (38)-(41), in (44), we
end up with (20) and (21).

2Note that using a similar approach BER expressions can also be derived
for the special cases 𝑙1 = 𝑙2 and/or 𝑙3 = 𝑙4.
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