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Abstract— Among the methods that have been proposed for a
Multiple-Input Multiple-Output (MIMO) receiver, the V-BLAST
algorithm provides a good compromise between transmission
rate, achievable diversity, and decoding complexity. In this
paper, we derive a new adaptive V-BLAST type equalization
scheme for fast time varying, flat fading MIMO channels. The
proposed equalizer stems from the Cholesky factorization of
MIMO system’s output data autocorrelation matrix and the
equalizer’s filters are updated in time using numerically robust
unitary Givens rotations. The new square-root algorithm exhibits
identical performance to a recently proposed V-BLAST adaptive
algorithm, offering at the same time substantially reduced com-
putational complexity. Moreover, as expected due to its square-
root form and verified by simulations, the algorithm exhibits
particularly favourable numerical behaviour.

I. INTRODUCTION

Multiple-Input Multiple-Output (MIMO) wireless commu-
nications technology has gained considerable attention in
recent years due to its potential for significant increase in
effective data rate compared to traditional Single-Input Single-
Output (SISO) technology. A widely used architecture for
reliable symbol detection in flat fading MIMO systems is
the V-BLAST architecture [1]. In a V-BLAST receiver the
symbol corresponding to the stream with the highest Signal-
to-Noise Ratio (SNR), is detected first. Then the contribution
of the detected symbol is subtracted from the output vector.
This procedure is repeated for the remaining symbols by
always selecting the strongest signal among the undetected
ones. Assuming a known MIMO channel, computationally
efficient implementations of the V-BLAST technique have
been proposed in [2], [3], [4], and [5]. In a fast time
varying environment, however, the MIMO channel must be
estimated quite frequently before the V-BLAST method is
applied, resulting in undesirable increase of the computational
complexity.

By taking advantage of the equivalence between the V-
BLAST receiver and the Generalized Decision Feedback
Equalizer (GDFE) [6], an architecture appropriate for adaptive
equalization of flat fading MIMO channels has been presented
in [7]. To the best of our knowledge, the algorithm proposed
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in [7] is the only V-BLAST type scheme in which not only the
equalizer taps, but also the symbol detection order are updated
recursively in time. As a result a significant reduction in
computational complexity is achieved compared to previously
derived V-BLAST schemes.

Motivated by the work in [7], we have developed a new
adaptive V-BLAST algorithm for flat, time varying MIMO
channels. In the proposed algorithm, a suitable transformation
of the equalizer filters used in [7] is employed, which stems
from the Cholesky factorization of the equalizer’s input auto-
correlation matrix. It turns out that the proposed algorithm
offers considerable computational savings compared to the
method described in [7] with no loss in performance. More-
over, the numerical behaviour of the algorithm is expected
to be quite robust, since it is based on a square root of the
system’s autocorrelation matrix.

The outline of this paper is as follows. In Section II,
the problem is formulated and the V-BLAST equalization
architecture of [7] is revisited. In Section III, the new algorithm
is derived and computational complexity issues are addressed.
The performance of the proposed algorithm is evaluated
through simulations in Section IV, while Section V concludes
this work.

II. PROBLEM FORMULATION AND PRELIMINARIES

Let us consider a MIMO flat fading system with M transmit
and N receive antennas, and M ≤ N . The N × 1 received
vector y(n) at time n is expressed as follows:

y(n) = H(n)d(n) + v(n) (1)

where H(n) is the N × M channel matrix with entries the
complex coefficients of the corresponding N×M subchannels,
d(n) stands for the M × 1 vector of symbols that are simul-
taneously transmitted by the M antennas, and v(n) denotes
white Gaussian noise. Adaptive V-BLAST type equalization
of the system described in (1) can be performed using the
architecture shown in Fig. 1 [7]. In Fig. 1, it is assumed
that the symbol detection order is known a priori and is
denoted as {k1, k2, . . . , kM}, where ki ∈ {1, 2, . . . ,M}.
The equalizer comprises M serially connected conventional
Decision Feedback Equalizer (DFE) structures. As far as the
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Fig. 1. Adaptive V-BLAST type equalization architecture.

i-th DFE is concerned, the feedforward filter input coincides
with the received vector y(n), while the feedback filter input
is the vector of already detected symbols from the previous
DFEs. Thus, the output of the i-th DFE is given as follows:

d̃ki
(n) = wH

i (n)yi(n) (2)

where

wi(n) =

{
wf,i(n) , i = 1[
wT

f,i(n),wT
b,i(n)

]T

, i = 2, . . . , M
(3)

yi(n) =

{
y(n) , i = 1[
yT (n), d̂T

ki−1
(n)

]T

, i = 2, . . . ,M
(4)

d̂ki−1(n) = [d̂k1(n), d̂k2(n), . . . , d̂ki−1(n)]T is the vector of
already detected symbols, i.e., d̂ki

(n) = f{d̃ki
(n)}, where

f{·} is the decision device function, and (·)T stands for simple
transposition, while (·)H for complex conjugate transposition.

Under fast fading conditions, not only the equalizer filters
but also the detection order need to be adapted at each
time instant. An efficient Recursive Least Squares (RLS)
approach, which takes into consideration both requirements,
has been introduced in [7]. More specifically, let us as-
sume that i − 1 symbols have been detected, i.e., symbols
d̂k1(n), d̂k2(n), . . . , d̂ki−1(n). In order to determine index ki

of the next symbol to be detected, as well as to update the
corresponding DFE filters, a double minimization procedure
is followed. First, each of the i-th order1 LS cost functions:

Ei,j(n) =
n∑

l=1

λn−l|d̂j(l) − wH
i,j(n)yi(l)|2 (5)

is minimized with respect to wi,j(n) for j ∈ Si =
{1, 2, . . . ,M} �{k1, k2, . . . , ki−1}, where λ is the usual for-
getting factor. Then, the lowest of the resulting LS energies is

1The i-th order problem is defined as the one, which corresponds to the
(N + i − 1) × 1 input data vector yi(n).

obtained, and is denoted as Ei(n). The corresponding index j
determines the order of the next symbol to be detected, i.e. ki.
Finally, the filter that gives the lowest LS energy is selected
as the i-th DFE at time n, and is denoted as wi(n). It can
be easily shown that the order selection criterion described
above is equivalent to the criterion used in V-BLAST with
the expectation operation replaced by exponentially weighted
time averaging. By employing an alternative but equivalent
parameterization of the equalizer filters, we describe in the
next section a numerically robust, computationally efficient
method for both detection order, and DFE filters adaptation.

III. DERIVATION OF THE NEW ALGORITHM

It is well known that minimization of Ei,j(n) in (5) with
respect to wi,j(n) leads to the following solution:

wi,j(n) = Φ−1
i (n)zi,j(n) (6)

where Φi(n) stands for the (N + i − 1) × (N + i − 1) time-
averaged input data autocorrelation matrix, and zi,j(n) is the
(N + i − 1) × 1 time-averaged input-output crosscorrelation
vector given by [8]

zi,j(n) =
n∑

l=1

λn−lyi(l)d̂∗j (l) (7)

where (·)∗ stands for complex conjugation. Let Ri(n) denote
the upper triangular Cholesky factor of Φi(n), i.e., Φi(n) =
RH

i (n)Ri(n). Then the LS solution given in (6) can alterna-
tively be expressed as follows:

wi,j(n) = R−1
i (n)pi,j(n) (8)

and pi,j(n) is defined as

pi,j(n) = R−H
i (n)zi,j(n). (9)

By substituting (6) in (5), we obtain the following expression
of the minimum LS error energy for symbol stream j and
order i:

Ei,j(n) = αj(n) − wH
i,j(n)zi,j(n) (10)
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where αj(n) =
∑n

l=1 λn−l|d̂j(l)|2. Moreover, from (8) and
(9), equation (10) is rewritten as

Ei,j(n) = αj(n) − |pi,j(n)|2. (11)

Let us now define the matrix

Q(n) =
n∑

l=1

λn−ld̂(l)d̂H(l) = λQ(n−1)+d̂(n)d̂H(n) (12)

where d̂(n) = [d̂1(n), d̂2(n), . . . , d̂M (n)]T . It is straightfor-
ward to show that

Ei,j(n) = qj,j(n) − |pi,j(n)|2 (13)

where qj,j(n) stands for the (j, j)-th entry of Q(n). Further-
more, from (7) and (12) it is easily verified that

zT
i,j(n) = [zT

i−1,j(n), qki−1,j(n)] (14)

In order to compute the minimum LS error energies from
(13), vector pi,j(n) must be obtained first. In the following,
we show that pi,j(n) can be order updated very efficiently
resulting in significant computational savings of the proposed
scheme.

A. Order update of pi,j(n)

Let pi−1(n) be the “optimum” vector of order i−1, which
is related to wi−1(n) via an expression similar to (8). Then, it
can be shown that the upper triangular factor Ri(n) is given
by the following order update expression [9]:

Ri(n) =


 Ri−1(n) pi−1(n)

0T
√Ei−1(n)


 (15)

where Ei−1(n) is the minimum LS error energy of order i−1.
The last expression is the result of the particular characteristics
of the LS problems defined in Section II. More specifically, it
is easily verified from (4) and (5), that the first (N + i − 2)
elements of the input data vector of the i-th order problem
are identical to the input data vector of the (i − 1)-th order
problem, while its last element coincides with d̂ki−1(n). Since
Ri(n) is the upper triangular factor in a QR decomposition of
the i-th order input data matrix, the expression given in (15)
is easily derived. From (9), (14), and (15), we get

pi,j(n)=




R−H
i−1(n) 0

− 1√
Ei−1(n)

pH
i−1(n)R−H

i−1(n) 1√
Ei−1(n)





 zi−1,j(n)

qki−1,j(n)




or

pi,j(n) =




pi−1,j(n)

qki−1,j(n)−pH
i−1(n)pi−1,j(n)√

Ei−1(n)


 . (16)

Having computed matrix Q(n) from (12), and pi,j(n) from
(16) for all j ∈ Si, the LS error energies Ei,j(n), j ∈ Si given
in (13) can be very efficiently obtained from

Ei,j(n) = Ei−1,j(n) − |[pi,j(n)]N+i−1|2 (17)

where [pi,j(n)]N+i−1 is the last element of pi,j(n). The
minimum of these energies is denoted as Ei(n) and the
corresponding vector as pi(n).

B. Computation of d̂ki
(n)

So far in our analysis, we have assumed that the detected
symbols at time n are available. However, we see from (2) that
this requires knowledge of the optimum filter at time n. To
overcome this problem, we assume, as in [7], that the detected
symbols at time n are computed using the optimum vector and
detection order at time n − 1, i.e.,

d̄ki
(n) = wH

i (n − 1)yi(n), d̂ki
(n) = f{d̄ki

(n)} (18)

for i = 1, . . . ,M , where ki refers to the detection order at
time n − 1. Using the proposed alternative parameterization
and (2), (8), the detected symbol is expressed as

d̂ki
(n) = f{d̄ki

(n)} = f{pH
i (n − 1)gi(n)} (19)

where gi(n) is defined as

gi(n) = R−H
i (n − 1)yi(n). (20)

Substituting the inverse Cholesky factor in the last equation as
in (16), and using the relation yi(n) = [yT

i−1(n), d̂ki−1(n)]T ,
it is easily shown that

gi(n) =




gi−1(n)

d̂ki−1 (n)−pH
i−1(n−1)gi−1(n)√

Ei−1(n−1)


 (21)

or

gi(n) =




gi−1(n)

d̂ki−1 (n)−d̄ki−1 (n)√
Ei−1(n−1)


 . (22)

Thus, gi(n) can be very efficiently order updated, provided
that g1(n) is available.

C. Initial time-update recursions

To complete the proposed algorithm, first order quantities
must be computed, and more specifically vectors p1,j(n) for
j = 1, 2, . . . ,M . This is accomplished through the time update
recursions described below. Let us assume that R−1

1 (n − 1)
has been calculated in the previous time instant. Then

g1(n) = R−H
1 (n − 1)y(n). (23)

Next, we produce a sequence of N elementary complex
Givens rotation matrices, whose product is denoted by T(n),
according to the following expression:

T(n)


 −g1(n)√

λ

1


 =


 0

�


 (24)

where � denotes a ‘don’t care’ element. The k-th elementary
matrix, k = 1, 2, . . . , N , annihilates the k-th element of
−g1(n)√

λ
with respect to the last element of the whole vector,
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TABLE I

SQUARE-ROOT ADAPTIVE V-BLAST ALGORITHM

1) Compute g1(n), T(n) and R−1
1 (n) from (23), (24) and (25)

respectively. ( 3M2, 3M2/2)

2) Compute decisions d̂ki(n), for i = 1, 2, . . . , M from (19),
and (22). ( 3M2/2, 3M2/2)

3) Time update Q(n) from (12). ( 2M2, 0)
4) For i = 1, 2, . . . , M

a) Compute pi,j(n), ∀j ∈ Si from (26) for i = 1 and from
(16) for i > 1. ( 2M3/3 + 9M2/2, 2M3/3 + M2)

b) Evaluate Ei,j(n), ∀j ∈ Si from (13) for i=1 and from
(17) for i>1. Set Ei(n) the minimum and pi(n) the
corresponding pi,j(n) vector. ( 3M2/2, 3M2/2)

5) Go to step 1.

Initialization: ki=i ∀i, R−1(0)=δ−1I, Q(0)=0, p1,j(0)=1,
for j=1, 2, . . . , M , pi(0) = δ1, Ei(0)=0, for i=1, 2, . . . , M . δ
is a small positive constant.

which initially equals 1.2 It can be shown [9] that the same
rotation matrices can be used for time updating the inverse
Cholesky factor as follows:3

T(n)


 λ−1/2R−H

1 (n − 1)

0T


 =


 R−H

1 (n)

�


 . (25)

Moreover, and most importantly, matrix T(n) also updates in
time p1,j(n) for j = 1, 2, . . . ,M , i.e., [9]

T(n)


 λ1/2p1,j(n − 1)

d̂∗j (n)


 =


 p1,j(n)

�


 (26)

Note that it is not necessary to compute matrix T(n) explicitly.
Only the rotation parameters are calculated from (24), and are
then used to update the respective quantities in (25) and (26).

D. Algorithm

The basic steps of the proposed equalization algorithm are
summarized in Table I. In the initial training phase, step 2 of
the algorithm is not executed and the respective decisions are
replaced by a known training sequence. After convergence, the
algorithm switches to the decision-directed mode, in which the
decisions are computed as described in step 2.

The new algorithm is mathematically equivalent to the
algorithm proposed in [7], offering at the same time significant
computational savings. Note that, to the best of our knowledge,
the algorithm described in [7] was the fastest V-BLAST type
equalization scheme. The required operations for each step
of the new algorithm are provided in brackets in Table I.
The overall computational complexity of the two equalization
schemes in terms of the number of complex multiplications

2In a vector rotation

[
c −s∗
s c

] [
b
a

]
=

[
0
d

]
, the rotation param-

eters are evaluated as c=
|a|√

|a|2+|b|2 and s= b∗√
|a|2+|b|2

a
|a| .

3Even though the analysis in [9] is done for real signals, it can be extended
to complex signals in a rather straightforward manner.

TABLE II

COMPARISON OF COMPLEXITIES

Complex Multiplications Complex Additions

Algorithm of [7] 2M3+ 19
2

M2+O(M) 4
3
M3+4M2+O(M)

Proposed Algorithm 2
3
M3+ 25

2
M2+O(M) 2

3
M3+ 11

2
M2+O(M)

TABLE III

PERCENTAGE REDUCTION IN COMPUTATIONAL COMPLEXITY

Complex Multiplications Complex Additions

M = 4 13.3% 12.5%

M = 8 30% 26.1%

M = 12 39% 32.5%

and additions4 is shown in Table II for the case M = N . The
reduction in computational complexity in favor of the proposed
scheme is increased as the number of transmit-receive antennas
increases. This reduction is clearly shown in Table III for
different values of M . Notice that the new algorithm also
requires the computation of M square roots in each iteration.

Moreover, the proposed algorithm is expected to have en-
hanced numerical robustness, since it stems from the Cholesky
factorization of the input data correlation matrix. An expla-
nation of this fact, which is also verified in the simulations,
is as follows. Assuming a time-invariant MIMO channel H
and symbol sequences {dj(n)}, j = 1, 2, . . . ,M , independent
between each other and with the noise sequence, it is easily
shown from (1) and (4) that the input autocorrelation matrix
of the i-th DFE is given as follows:

Φi = E[yi(n)yH
i (n)] = σ2

d

[
HHH + σ2

v

σ2
d
IN Hi−1

HH
i−1 Ii−1

]
(27)

where σ2
d, σ2

v stand for the symbol and noise variances re-
spectively, Ik is the k × k identity matrix, and Hi−1 is a
N × (i − 1) matrix, whose columns are the columns of H
that correspond to the i − 1 previously detected symbols. It
can be proven that in the absence of noise (i.e., σ2

v = 0), the
(N + i − 1) × (N + i − 1) autocorrelation matrix Φi is rank
deficient, with a rank equal to M for every i, i = 1, 2, . . . ,M .
As a result, for medium to high SNRs, Φi possesses in general
a high condition number, a fact which explains why numerical
problems appear in adaptive algorithms dealing directly with
Φi, as the one in [7]. When the Cholesky factor Ri is
used instead of Φi, the condition number of the problem
equals to the square-root of that of the original autocorrelation
matrix. Thus, the resulting square-root adaptive algorithms are
expected to be much more numerically robust.

IV. SIMULATIONS

In this section, the performance of the proposed equalizer
is evaluated through computer simulations. Initially, the nu-
merical robustness of the new algorithm is verified by the

4In Table I(a) of [7] the number of complex multiplications and additions
are calculated as 4

3
M3 + 7M2 and 4

3
M3 + 5M2 respectively. We believe,

however, that careful counting leads to the figures of Table II.
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squared error curves shown in Fig. 2, which correspond to
the instantaneous squared error at the output of the equalizers,
averaged over all DFEs. A MIMO system with M = N = 4
was used in our simulations, whose input independent streams
were taken from a QPSK sequence. A number of 30 symbol
periods was used for training, and the SNR was set to 16dB.
A single Rayleigh MIMO channel realization was generated
according to the Jakes model, having a normalized Doppler
frequency of fdTs = 5 ·10−4, where fd stands for the Doppler
frequency, and Ts was the symbol period. To track system
variations, a forgetting factor λ = 0.97 was employed.

We observe from Fig. 2 that both algorithms converge very
fast, and have identical performance for a number of iterations.
However, after about 500 iterations, the algorithm of [7] starts
diverging due to accumulation of numerical errors. On the
contrary, the proposed algorithm keeps tracking the underlying
system, and retains a numerically robust performance for
the whole simulation period. Notice that lower steady state
squared error could be achieved after convergence of both
algorithms by reducing parameter λ. In such a case, however,
divergence of the algorithm of [7] would occur earlier.

To study the effect of channel variations, the performance
of the new algorithm was evaluated in terms of uncoded bit
error rate (BER) for different fading rates. Again, a Rayleigh
4 × 4 MIMO channel was simulated for different values of
fdTs. Assuming a system operating at the 2.4GHz frequency
band and having a symbol period of 0.1 to 0.5µsec, then for
a mobile velocity of 60 to 100Km/h, a normalized Doppler
frequency in the range of 1·10−5 to 5·10−4 arises. Thus, four
distinct values of fdTs were tested, and BER measurements
were conducted over 15000 channel realizations. For each
channel realization, a packet of duration 512Ts was transmit-
ted, while the first 30 symbol periods were used for training.
As indicated by the BER curves of Fig. 3, the equalizer tracks
effectively channel variations. However, increase of the fading
rate inevitably affects system’s performance, and a degradation
of around 1dB can is observed for fast time varying channels.
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V. CONCLUSIONS

A new square-root adaptive V-BLAST receiver for flat and
fast fading MIMO channels has been proposed. Under fast
fading conditions, channel estimation should be performed
quite frequently to ensure V-BLAST receiver’s optimum per-
formance. An adaptive receiver, as the one described in this
paper, can avoid this computational load, reduce training
overhead, and keep tracking channel variations. The new adap-
tive algorithm stems from the Cholesky factorization of the
equalizer’s input autocorrelation matrix, and is mathematically
equivalent to a recently proposed adaptive V-BLAST scheme
[7]. To the best of our knowledge, these two algorithms
are the only V-BLAST schemes that update efficiently in
time both the equalizer taps and symbol detection order.
However, compared to [7], the proposed algorithm offers not
only substantially reduced computational complexity, but also
enhanced numerical robustness.
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