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ABSTRACT

In this paper a new algorithm suitable for hyperspectral im-
age clustering, called L-SAPCM, is proposed. The algo-
rithm works in layers where at each layer, after suitable
pre-processing, the SAPCM clustering algorithm ([1]) is ap-
plied. Preliminary results on real hyperspectral images show
enhanced performance compared to other related methods.

Index Terms— layered clustering, sparsity, hyperspectral

1. INTRODUCTION

One of problems that have attracted considerable attention in
hyperspectral image (HSI) processing is that of the classifica-
tion of the various types of land cover/use. In addition, when
ground truth information is not available, classification can
only be unsupervised, which in this case is called clustering.
Various clustering techniques such as the k-means and fuzzy
c-means (FCM) have been applied to this problem.

In this paper, a new clustering technique called Layered-
SAPCM (L-SAPCM) is proposed for HSI clustering. This
performs a layered processing, where at each layer it uses as
structural element a recently proposed clustering algorithm,
called SAPCM [1], which belongs to the family of the pos-
sibilistic c-means (PCM) clustering algorithms. The two key
features of SAPCM are that a) certain critical parameters are
dynamically adapted, and b) sparsity is induced in the sense
that each data point is forced to belong to only a few (or even
none) of the clusters. These features make SAPCM flexible
in tracking the underlying clustering structure.

Applying clustering to HSIs becomes much more chal-
lenging, due to a) their high dimensionality and b) the ten-
dency of HSI pixels to form not clearly distinguishable clus-
ters. To cope with the peculiarities of HSIs, the L-SAPCM
algorithm is employed. Simulations on real HSI data show
that the proposed algorithm outperforms other related state-
of-the-art clustering techniques.
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2. THE SPARSE ADAPTIVE PCM (SAPCM)

Here, we briefly present an enhanced version of the SAPCM
algorithm ([1]), which is “at the heart” of the proposed HSI
clustering method, described in the next section. Let X =
{xi ∈ <`, i = 1, ..., N} be a set of N , l-dimensional data
vectors. Let also Θ = {θj ∈ <`, j = 1, ...,m} be the set
of m cluster representatives. In what follows, ‖.‖ denotes the
Euclidean norm. Let U = [uij ] be an N ×m matrix whose
(i, j) element stands for the, so called, degree of compatibil-
ity of xi to the jth cluster, denoted by Cj and represented by
the vector θj . Let also ui

T = [ui1, ..., uim] be the vector
containing the elements of the ith row of U with uij ∈ [0, 1].
Sparsity is imposed on ui’s via penalization of the PCM cost
function with the lp norm with 0 < p < 1, i.e., J(Θ, U) =∑N

i=1[
∑m

j=1 uij‖xi − θj‖2 +
∑m

j=1 ηj(uij lnuij − uij)] +

λ
∑N

i=1

∑m
j=1 u

p
ij , where λ is a user-defined penalizing fac-

tor controlling sparsity and ηj , loosely speaking, is a measure
of how much the influence of cluster Cj is spread around its
respective representative θj . SAPCM described in Alg. 1, is
derived via the minimization of J(Θ, U) w.r.t. θj’s and uij’s.
Solving ∂J

∂θj
= 0 w.r.t. θj , we obtain the updating equation

for θj shown in Alg. 1. The updating for uij’s results from
the solution of ∂J

∂uij
= 0. It turns out that this equation has

at most two solutions lying in [0, 1] and the solution that min-
imizes J is either 0 (implying sparsity) or the largest of the
two solutions ([1]). Thus uij is set to that value.

In SAPCM the initialization of an overestimated number
of θj’s and their corresponding ηj’s comes after a proper nor-
malization of X and it is based on a fast approximate varia-
tion of the Max-Min algorithm (see Alg. 1). This increases
the probability to place each θj close to a “dense in data” re-
gion. In Cluster elimination part of Alg. 1, the reduction of
the number of clusters m down to its actual value is achieved
by examining if there is even one data point that is most com-
patible with the cluster Cj . If this is the case, Cj is preserved.
Otherwise,Cj is eliminated. In Adaptation of ηj’s part of Alg.
1, the parameter ηj ofCj is estimated as the mean value of the
Euclidean distances of the most compatible toCj data vectors
(of plurality nj) from their mean vector µj . SAPCM returns
the clusters Cj’s of the underlying clustering structure.
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Algorithm 1 [C1, ..., CM ] = SAPCM(X,λ,m)

t = 0
Compute θ′j , j = 1, ...,m: via the Max-Min Algorithm
Compute η′j : Set: η′j = minθ′

s 6=θ′
j
‖θ′j−θ′s‖/2, j = 1, ...,m

Initialization: Normalize: X = X/γ, θj(0) ≡ θj = θ′j/γ,
ηj(0) ≡ ηj = η′j/γ, j = 1, ...,m, where γ = mink=1,...,m η′k

Repeat:
Update U : As described in the text
t = t+ 1

Update Θ: θj(t) =
∑N

i=1 uij(t−1)xi∑N
i=1 uij(t−1)

, j = 1, ...,m

Cluster elimination:
Determine: uir = maxj=1,...,m uij , i = 1, ..., N
If there is no xi that is most compatible with Cj

then Remove Cj end
Data labeling: If uir 6= 0 then Set: label(i) = r

else Set: label(i) = 0 end
Adaptation of ηj’s:
ηj(t) = 1

nj(t)

∑
xi:uij(t)=maxr=1,...,m uir(t)

‖xi−µj(t)‖
Until: a termination criterion is met
Assign each unassigned point1 to its closest among the m
formed clusters (C1, ..., Cm)
Cj = {xi ∈ X : label(i) = j, i = 1, ..., N}, j = 1, ...,m,
where m is now the final number of clusters

3. LAYERED SAPCM FOR HSI CLUSTERING

In HSIs, the number of image pixels,N , as well as the number
of spectral bands, l, are usually very large. This increases dra-
matically both processing complexity and memory require-
ments. Taking into account, however, that contiguous HSI
bands are usually highly correlated [2], computational com-
plexity can be reduced by removing the redundancy intro-
duced by the spectral information. To this end, we apply prin-
cipal component analysis (PCA) as a first pre-processing step.
As a result, the dimension l is dramatically reduced.

Algorithm 2 [X cleared] = data purifying(X)

Determine: dmin(i) = minxs∈X−{xi} ‖xi − xs‖2,
i = 1, ..., N

Compute: µ = 1
N

∑N
i=1 dmin(i)

Set: X cleared = {xi ∈ X : dmin(i) < µ, i = 1, ..., N}

Another serious problem, frequently met in HSIs, is
that the pixels are grouped to not very well distinguished
“clouds”. Thus, direct application of density-based clustering
algorithms (such as SAPCM), could lead to poor clustering
results. To face this problem, a pre-processing step, which
removes the pixels that are not “too close” to the physical
cluster centers, unravels the “cores” of the clusters, which are
expected to be better distinguished. This can be achieved by

1A data vector xi is considered unassigned if uij = 0, for j = 1, ...,m.
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Fig. 1. (a) Initial data, (b) Data after removing “noisy” points

first determining the mean of the distances of all pixels from
their nearest neighbor and then removing those pixels whose
distance from their nearest neighbor is larger than the mean
(Alg. 2). As shown in Fig. 1, this pre-processing step allows
clusters to be better distinguished, assisting density-based
algorithms in unraveling the underlying clustering structure.

Algorithm 3 [clusters] = L− SAPCM(X)

X = PCA(X) and keep the l first components of PCA
pending sets = {X}
clusters = {}
While pending sets 6= ∅ do

Take an element C of pending sets
[C] = data purifying(C)
{C1, ..., Cm} = SAPCM(C, λ,m), where m is the final

number of clusters that SAPCM returns
If m > 1
pending sets = (pending sets−{C})∪{C1, ..., Cm}

else if m = 1
pending sets = pending sets− {C}
clusters = clusters ∪ {C}

End if
End
Assign each xi ∈ X that has been removed from the
data purifying scheme to its closest among clusters

We describe now the proposed Layered SAPCM (L-
SAPCM) algorithm suitable for HSI clustering (Alg. 3).
The algorithm first performs PCA on the data set and then
executes the SAPCM algorithm in a layered form. Before
each execution of SAPCM, data purifying (Alg. 2) is per-
formed, as described above. Initially, SAPCM is applied on
the whole data set producing some subsets (clusters) that con-
stitute the first layer clustering. Then, for each subset of the
first layer the SAPCM is recursively applied. The procedure
continues for each one of the resulting data subsets and ter-
minates when SAPCM returns a single subset (which means
that the currently processed data subset does not possess a
clustering structure). Such a data subset is considered as a
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(a) The first PC component
 

 

 

(b) Mean signatures of the clusters
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Fig. 2. Clustering results for Salinas image with the corresponding classification accuracy

cluster2. The whole procedure is given in Alg. 3.

4. RESULTS AND CONCLUSIONS

Tests are performed to two specific datasets of 150x150 pixels
from a rural and an urban area. In the sequel, the results of
k-means, FCM and the proposed L-SAPCM are discussed.

1. Salinas, California: The dataset used is a subscene
of the flightline acquired by the AVIRIS sensor over Salinas
Valley, California (Fig. 2(a)). Salinas groundtruth contains
eight vegetation classes: “corn”, two types of “broccoli”, four
types of “lettuce” and “grapes” (Fig. 2(c)). The results of the
three clustering methods are shown in Fig. 2(d-f). L-SAPCM
distinguishes eleven vegetation clusters after a 3-layered data
processing with suitable values for λ at each layer. These
correspond to “grapes”, two subclasses of “corn” (“corn 1”
and “corn 2”), five subclasses of “lettuce” (“lettuce” 1,2,3,4,
and 5), two “broccoli” classes (“broccoli 1” and “broccoli 2”)
and a “soil/plant” class, (Fig. 2(f)). “Corn” is distinguished
into two subclasses, mainly due to their clear spectral differ-

2L-SAPCM can also be viewed as an in-depth processing algorithm.

entiation within the first forty bands of the dataset. However,
from band 40 and onward, the two subclasses present sim-
ilar spectra. The “grapes” spectral signature shows similar
characteristics with the previous “corn” classes, however the
“red edge” pattern in the near infrared (680 − 750nm), is
different (lower overall reflectance in the visible and higher
overall reflectance in the NIR) as shown in Fig. 2(b) (bands
30-40). All algorithms distinguish an additional class named
“soil/plant” appearing in linear stripes within the “broccoli 2”
area. This class seems to correspond to mixed vegetation/soil
pixels with higher spectral participation of soil in the overall
spectral signature of the pixel. L-SAPCM distinguishes two
subclusters for the class “lettuce 2”, namely “lettuce 2” and
“lettuce 5”. Their spectral pattern is different between bands
25-40, but, they present the same diagnostic absorption fea-
tures in position and depth at longer wavelengths, indicating
the same species over the same soil. Finally, compared to k-
means and FCM, L-SAPCM differentiates much better “corn
1” from “lettuce 1”, detects an additional “lettuce” subcluster
and shows less “corn 2” classified pixels in the “grapes” area.

2. Washington DC Mall: The dataset used is a section
of the HSI flightline acquired by HYDICE over Washington
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Fig. 3. Clustering results for Washington DC Mall image

DC Mall that includes the Lincoln Memorial (Fig. 3(a)). The
results of four analysis methods, namely the classification
method in [3], k-means, FCM and L-SAPCM are shown
in Fig. 3(c-f). L-SAPCM distinguishes five clusters: “wa-
ter/shade”, “grass”, “tree”, “shaded roof/road” and “bright
surface” (Fig. 3(f)) after a “single-layer” processing. This
slightly differs from the results in [3], where five main classes
are considered: “water/shade”, “grass”, “roof”, “tree” and
“road”. L-SAPCM distinguishes two new categories, “shaded
roof/road” and “bright surface”. Although, they show spec-
tral similarities (Fig. 3(b)), they are differentiated by the high
reflectance values of the latter. A visual interpretation of the
initial image reveals that the “bright surface” cluster includes
parts of the Memorial roof (the other part is categorized as
“shaded roof/road”), marble surfaces, narrow paved paths
and bare soil. The “water/shade” class is well distinguished
due to its characteristic low reflectance spectral signature
with characteristic water absorptions (Fig. 3(b)). Vegetation,
“grass” and “tree”, clusters are also very well distinguished
due to their characteristic “red edge” patterns. The different
“tree” and “grass” red edge positions distinguish the two cat-
egories (“tree” is slightly shifted to the left). Compared to

k-means and FCM, L-SAPCM delineates with high precision
the “grass” and “tree” clusters (i.e., left part of the image,
vegetated area at the right of the Memorial, upper right part
of the image), roads from shades (especially when compared
to k-means) and the Memorial’s roof consecutive inclined
planes (a detail not mapped by FCM).

Concluding, L-SAPCM outperforms both k-means and
FCM in the accurate detection of objects in HSIs. Improve-
ments will include structure detection and spatial information.
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