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Abstract—An accurate model for analyzing the performance
of wireless land mobile satellite (LMS) communication systems
is the shadowed-Rice (SR) fading model. In this paper, new
simple expressions for the probability density function (PDF)
and the cumulative distribution function (CDF) of the sum
of possibly correlated non identically distributed squared SR
random variables are derived. To this end, a novel approach is
introduced for Laplace inverting the moment generating function
(MGF) of the sum. Based on this approach the PDF is expressed
in a simple in�nite chi-squared series form, from which the CDF
is also easily obtained. The derived statistics are used to analyze
the performance of maximal ratio combining (MRC) over SR
fading channels and novel closed-form expressions for various
performance criteria such as the outage probability, the ergodic
capacity and the bit error probability (BEP) are developed. The
results of extensive Monte Carlo simulations are presented, which
corroborate our theoretical analysis.

I. INTRODUCTION

Diversity combining techniques such as orthogonal space-
time block coding (OSTBC) and maximal ratio combining
(MRC) have gained considerable attention recently, due to their
ability to combat fading in wireless communication systems.
When OSTBC or MRC is employed the signal to noise ratio
(SNR) of the system is expressed as the sum of squared random
variables (RVs). Hence to analyze the performance of such
systems the probability density function (PDF) and cumulative
distribution function (CDF) of the sum of squared RVs must
be obtained in the simplest possible form, so as to facilitate
the calculation of several performance metrics.

A simple representation for the PDF of the sum of squared
RVs is based on in�nite series expansions of chi-squared or
Gamma PDFs and has been widely used both in statistics
and in the analysis of wireless communications systems.
More speci�cally, in [1],[2] and [3] the distribution of the
sum of squared Gaussian RVs is studied and several series
expansions for the PDF are proposed. Using a Gamma series
representation the PDF and CDF of the sum of independent
Gamma, i.e., squared Nakagami RVs are derived in [4] and
[5]. Based on these expressions the performance of MRC over
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Nakagami fading channels is studied in [6]. In [7] the chi-
squared series representation is adopted for the performance
analysis of OSTBC over Hoyt fading channels, while in [8]
the same series expression is applied for computing matched
�lter bounds for BPSK over multipath Rician fading channels.

Yet another fading model that has attracted increasing
interest lately is the so-called shadowed-Rice (SR) model [9].
One such mathematically versatile model has been recently
proposed in [10]. It has been shown in [10] that this model
describes very accurately the land mobile satellite (LMS) chan-
nel, which is expected to play a prominent role in future third
and fourth generation communication systems. Nevertheless,
to the best of our knowledge very few results related to the
SR distribution exist in the open technical literature. Only
recently in [11], an analysis for the sum of squared SR RVs
has been presented and the outage probability and capacity of
MRC over SR fading channels have been studied. However,
the closed-form expression for the PDF proposed in [11] is
extremely complex, thus leading to expressions for the various
performance metrics, which are quite complicated and dif�cult
to use in practice.

Motivated by the above, in this paper, new simple expres-
sions for the PDF and the CDF of the sum of squared SR
RVs are introduced, following a novel analytical approach. Our
approach is based on a proper manipulation of the Laplace
transform of the PDF, which was �rst used in [1] and [2] for
the case of squared Gaussian RVs. The PDF is expressed in
a simple chi-squared series form, which is proven to converge
uniformly. Then, the resulting PDF and CDF formulas are used
to analyze the performance of MRC over SR fading channels in
terms of the outage probability, the ergodic capacity and the bit
error probability (BEP). It should be emphasized that not only
the expressions for the PDF, CDF and the various performance
criteria are much simpler than those in [11], but also the fading
model considered in this work is more general too. Moreover,
the proposed analytical method can be generalized to other
practical fading distributions, an issue, which due to space
limitations will not be elaborated any further.

The outline of the paper is as follows. In Section II the
distribution of the sum of squared SR RVs is analyzed and
closed-form expressions for the PDF and CDF are provided.
New simple expressions of various performance metrics for
MRC over SR fading channels are described in Section III.
Simulation results are presented in Section IV and concluding
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remarks in Section V.

II. DISTRIBUTION OF THE SUM OF SQUARED SR RVS

The SR fading model can be de�ned as a Rice fading
model, whose line-of-sight (LOS) component is random. In
this work we adopt the SR model proposed in [10], in which
the amplitude of the LOS component is Nakagami distributed.
More speci�cally, the complex baseband representation of this
SR fading channel model is given as follows [10]

aF = aR exp (jφ) + aN exp (jζ) (1)

where aR is a Rayleigh RV with average power 2b, φ is
uniformly distributed in [0, 2π), aN is Nakagami distributed
with parameters Ω and m, and ζ is the nonrandom phase of
the LOS component of the channel. Then, the power r = |aF |2
of the fading process follows a squared SR distribution, whose
PDF is given by [10]

pr (r) =
(

2bm
2bm+Ω

)m 1
2b
exp

(
− r

2b

)

× 1F1

(
m, 1;

Ωr

2b (2bm+Ω)

) (2)

where 1F1 (·, ·; ·) is the con�uent hypergeometric function
[12]. It can then be shown that the moment generating function
(MGF) of r, is expressed as [10]

Mr (s) =
(1− 2bs)m−1(

1− (
2b+ Ω

m

)
s
)m . (3)

Using this form of the MGF, the PDF and CDF of the sum of
independent and correlated squared SR RVs will be derived in
the following sections.

A. Sum of independent squared SR RVs

Let us �rst de�ne the following RV

z =
n∑

i=1

ri (4)

where ri, i = 1, 2, . . . , n are independent non identically
distributed squared SR RVs with parameters {Ωi, bi,mi}. Then
by utilizing the relation between the MGF of a RV and the
Laplace transform of its PDF [9], the Laplace transform of the
PDF of z is directly written from (3) and (4) as

Lz (s) =
n∏

i=1

(1 + 2bis)
mi−1(

1 +
(
2bi + Ωi

mi

)
s
)mi

. (5)

Apparently, the PDF of z can be obtained by calculating the
inverse Laplace transform of Lz(s) . Here, we follow a method
similar to that originally used in [1] for the sum of squared
Gaussian RVs. We show that this method is easily extended for
the case of squared SR RVs. Indeed, let us de�ne the function

θ (s) =
1

1 + sβ
(6)

where β is an arbitrary positive parameter. Notice that for any
a > 0 the following identity holds

1+as = 1+ sβ
a

β
+

a

β
− a

β
=

a

βθ (s)

(
1−

(
1− β

a

)
θ (s)

)
.

(7)
From (5) and (7), Lz(s) is readily expressed as

Lz (s) = Aθn (s)
n∏

i=1

(1− γiθ (s))
mi−1

(1− δiθ (s))
mi

(8)

where

A = βn
n∏

i=1

(2bi)
mi−1(

2bi + Ωi

mi

)mi
(9)

and

γi = 1− β

2bi
, δi = 1− β

2bi + Ωi

mi

. (10)

The basic idea is to express Lz (s) given in (8) as a series
expansion so that, through Laplace inversion to derive a simple
formula for the PDF. To this end, let us �rst introduce the
function

L (θ) =
n∏

i=1

(1− γiθ)mi−1

(1− δiθ)
mi

(11)

whose logarithm is written as

lnL (θ) =
n∑

i=1

(mi − 1) ln (1− γiθ)−
n∑

i=1

mi ln (1− δiθ).

(12)
For θ satisfying θ < 1/max{max

i
{|γi|},max

i
{|δi|}}, a series

expansion for the logarithm of L (θ) exists and is given by

lnL (θ) =
∞∑

j=1

dj
θj

j
(13)

where

dj =
n∑

i=1

miδ
j
i −

n∑
i=1

(mi − 1) γj
i . (14)

Then according to [13, pp. 93], (11) can be rewritten as

L (θ) =
∞∑

i=0

ciθ
i (15)

where the coef�cients of the series are computed according to
the following recursive formula

c0 = L(0) and ci =
1
i

i−1∑
l=0

di−lcl for i > 0. (16)

From (8) and (15), Lz(s) is expressed in a series expansion
form, i.e.,

Lz (s) = A
∞∑

i=0

ciθ
n+i (s). (17)

Recall that for integer v

L−1 {θv (s)} = zv−1 exp (−z/β)
βv (v − 1)!

(18)



where L−1 stands for the inverse Laplace transform. Thus,
from (17) and (18) the PDF of z is �nally given by the
following closed-form expression

pz (z) = A

∞∑
i=0

ci
zn+i−1 exp (−z/β)
βn+i (n+ i− 1)!

(19)

where A is given by (9) and ci are recursively computed from
(16). Observe that (19) has a very simple form avoiding the use
of complicated functions such as the con�uent hypergeometric
function, as is the case with the expression of the PDF
proposed in [11]. Moreover, the analysis has been made for
a more general model than that adopted in [11], where it is
assumed that b1 = b2 = . . . = bn.

Applying term by term integration in (19), the CDF of the
sum of squared SR RVs is expressed as follows

Pz (z) = A

∞∑
i=0

ci
γ (n+ i, z/β)
(n+ i− 1)!

(20)

where γ(·, ·) is the lower incomplete Gamma function [12,
pp. 260]. Notice, that since n+ i is an integer, γ(n+ i, z/β)
can be written as a linear combination of elementary functions
leading to an extremely simple form for the CDF. To be able to
interchange integration and summation, so as to arrive in (20),
uniform convergence of the series in (19) is required. This
result is established in the Appendix, where also the range
of admissible values for parameter β is given. It should be
noted that β controls the convergence of the series, and thus
speci�es the number of series terms that should be retained
for a prescribed accuracy.

B. Correlated SR RVs

The previous analysis can easily be extended for correlated
SR RVs obeying the correlated fading scenario employed in
[11]. Let us consider the following RV

zC =
n∑

i=1

ri (21)

where ri = |aRi
exp(jφi) + aNi

exp(jζi)|2, i = 1, 2 . . . , n
are squared SR RVs with parameter set {Ωi, b,m}. Under
the above mentioned scenario the Rayleigh RVs aRi

are
independent, while the RVs a2

Ni
, i = 1, . . . , n are correlated.

Then, by de�ning the matrix C whose (i, j)-th element is the
square root of the correlation coef�cient of the RVs ri and rj

and the matrix D = diag
{

Ω1
m , . . . , Ωn

m

}
, it can be shown that

zC is equal in distribution with the following RV

zI =
n∑

i=1

r′i (22)

where r′i are independent squared SR RVs with parameters
{λim, b,m} with λi being the ith eigenvalue of the matrix
DC. Thus, instead of analyzing the initial RV zC , an equiva-
lent analysis can made for zI , as described above.

III. MRC OVER SR FADING

As it is known, in a communications system employing n
receive antennae and an MRC combiner, the SNR z at the
receiving end can be expressed as

z =
n∑

i=1

zt |hi|2 (23)

where zt is the SNR at the transmitter side, i.e., the ratio of
the average transmitted power over the noise power, and hi

the fading coef�cient of the i-th branch. Hence, assuming that
|hi|, i = 1, . . . n are independent SR distributed RVs, it is easy
to see that

z
d=

n∑
i=1

ri (24)

where
d= denotes equality with respect to distribution, and ri =

zt|hi|2. By denoting with {Ω|hi|, b|hi|,m|hi|} the parameters
of |hi| and with {Ωi, bi,mi} the parameters of ri it is easy to
show that

{Ωi, bi,mi} = {ztΩ|hi|, ztb|hi|,m|hi|}. (25)

Thus the PDF and CDF of z in (24) will be given by (19)
and (20) respectively with the coef�cients ci calculated as in
(16). Based on the expressions of the PDF and CDF already
derived, in the following an analysis of MRC over SR fading
channels in terms of outage probability, ergodic capacity and
BEP is presented.

A. Outage Probability

The outage probability Pout(z0) of a communication system
is de�ned as the probability that the SNR at the receiving end
drops under a prede�ned threshold z0. Hence, for a maximal
ratio combiner operating over SR fading, Pout(z0) can be
calculated from (20), i.e.,

Pout (z0) = A

∞∑
i=0

ci
γ (n+ i, z0/β)
(n+ i− 1)!

. (26)

It should be noticed that (26) is much simpler and easier
to calculate than the expression of the outage probability
proposed in [11], which involves a double in�nite series
expansion.

B. Ergodic Capacity

By de�nition, the capacity of an MRC system, expressed
in bits/sec/Hz is given by

C = log2 (1 + z) (27)

with z de�ned as in (23). Moreover, the ergodic capacity is
de�ned as the average value of the capacity with respect to the
SNR. Hence, from (19) in the case of SR fading the ergodic
capacity is expressed as

〈C〉 = A log2 (e)
∞∑

i=0

ci

βn+i (n+ i− 1)!
In+i (28)



with Iv de�ned as

Iv =
∫ ∞

0

zv−1 exp (−z/β) ln (1 + z) dz. (29)

Since v is integer, Iv takes the following closed form [14]

Iv = (v − 1)! exp (1/β)
v∑

k=1

βkΓ (−v + k, 1/β) (30)

where Γ(·, ·) is the upper incomplete Gamma function [12,
pp. 260]. Again, by comparing (28) with [11, eq. (16)], the
advantage of (28) in terms of simplicity is clear.

C. Bit Error Probability

In general, to calculate the BEP of a diversity scheme,
averaging of the BEP for the additive white Gaussian (AWGN)
channel with respect to the distribution of the instantaneous
SNR per bit at the receiver side, is required. Following this
procedure and assuming BPSK or Gray-coded QPSK, the bit
error probability takes the form1

Pe = A

∞∑
i=0

ciJn+i (31)

where ci’s are the coef�cients of the series in (19) that result
by setting zt = Eb/N0 in (23). Eb is the transmitted energy
per bit and N0 the noise density at each branch of the receiver.
The integral Jv is de�ned as

Jv =
∫ ∞

0

zv−1 exp (−z/β)
βv(v − 1)!

Q
(√

2z
)

dz (32)

where Q(·) denotes the Gaussian Q-function. For v integer this
integral is expressed in closed-form as [9, pp. 149-150]

Jv =
1
2

[
1− μ

v−1∑
k=0

(
2k
k

)(
1− μ2

4

)k
]

(33)

where

μ =

√
β

1 + β
. (34)

Notice that similar results can be obtained for the performance
of MRC over correlated SR fading according to the analysis of
section II.B. Additionally, due to the equivalence of OSTBC
with MRC, similar expressions for the outage probability,
ergodic capacity and BEP also hold for OSTBC over SR fading
[7].

IV. PERFORMANCE EVALUATION

In this section, extensive Monte Carlo computer simulated
results are used to verify the presented theoretical analysis
under various fading conditions. Two different fading schemes
are considered for maximal ratio combiners employing up
to three receive antennae. In Scheme 1 the values of the
channel parameters are selected from the sets (Ω1,Ω2,Ω3) =
(0.278, 0.27, 0.3), (m1,m2,m3) = (5.21, 5.2, 5.25) and

1As shown in [15], in case that Gray coding is employed, the BEP of M -
QAM coincides with the BEP of

√
M -PAM.
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Fig. 1. Outage Probability as a function of the average transmitted SNR for
the two fading schemes (z0 = 1).

(b1, b2, b3) = (0.251, 0.251, 0.251), as in [11]. In Scheme
2, the values of the channel parameters are taken from
the sets (Ω1,Ω2,Ω3) = (0.2, 0.3, 0.4), (m1,m2,m3) =
(5.21, 3.2, 1.5) and (b1, b2, b3) = (0.1, 0.2, 0.3). Note that the
parameters of Scheme 2 have a larger spread and also bi �= bj

for i �= j. For both fading schemes, n = 2 and n = 3
receive antennae are examined with the parameters of the i-th
fading channel selected as {Ωi, bi,mi}. For all the theoretical
results concerning Scheme 1, the parameter β was taken equal
to 0.5 and a number of 11 terms have been retained from
the respective series expansions. For Scheme 2 a parameter
β equal to 0.39 ensures a relatively fast convergence of the
series, which have been truncated at the 15-th term.

In Fig. 1 the outage probability for the two schemes and
z0 = 1 is plotted as a function of the transmit SNR zt, along
with Monte Carlo simulation results. It can be seen that for
both schemes the theoretical and simulations results almost
coincide thus verifying the validity of the derived expressions.
Additionally, in Fig. 2, the ergodic capacity versus the transmit
SNR for both fading schemes is plotted as calculated using
(28) along with simulation results. Again, the close match of
theoretical and simulations results can be veri�ed. Finally, the
agreement between theoretical and simulations results can also
be observed in Fig. 3 where the BEP of BPSK for the two
fading schemes is plotted.

V. CONCLUSION

By applying an effective method to manipulate the Laplace
transform of the PDF, new expressions for the PDF and CDF
of the sum of squared SR RVs have been derived. Without
setting any restriction to the parameters of the model, the
proposed expressions are much simpler compared to already
known ones. Based on these results, mathematically tractable
closed-form expressions for the outage probability, the ergodic
capacity and the BEP of MRC over SR fading have been
presented. The validity of our theoretical analysis has been
veri�ed through extensive Monte Carlo Simulations.
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Fig. 2. Ergodic capacity as a function of the average transmitted SNR for
the two different fading schemes.
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Fig. 3. BEP for BPSK for the two fading schemes.

APPENDIX

The uniform convergence of the series in (19) can be
proven by properly bounding the series truncation error. More
speci�cally, since ci’s are the coef�cients of the power series
expansion of L(θ) the following holds

ci =
L(i) (0)

i!
(35)

where L(i) (·) is the i-th derivative of L (·). By employing
Cauchy’s inequality the absolute value ci can be bounded as
[16]

|ci| ≤ L0 (u)
ui

(36)

where u is any positive value satisfying u <
1/max{max

i
{|γi|},max

i
{|δi|}} and

L0 (u) = max
|θ|=u

|L (θ)| . (37)

By employing (36) a bound on the absolute value of the
truncation error ε(z) of (19) can be obtained as

ε (z) ≤ A
L0 (u)un−1 exp

(
− z

β

)
β

∞∑
i=N+1

(z/βu)n+i−1

(n+ i− 1)!
.

(38)
After some algebraic manipulations, (38) is rewritten as

ε (z) ≤A
L0 (u)un−1 exp

(
− z

β

)
β

×
(
exp

(
z

βu

)
−

n+N−1∑
i=0

(z/βu)i

i!

)
.

(39)

By inspecting (39), it can be seen that uniform convergence of
pz(z),∀r ≥ 0 is achieved as long as u > 1 , or equivalently
as long as 0 < β < 4min

i
{bi}.
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