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ABSTRACT

In this paper, optimal training design and placement are stud-

ied for channel estimation in a frequency selective, single re-

lay, amplify and forward cooperative system. Using a two-

phase transmission protocol, the power distribution between

the phases, among the pilot tones as well as the positioning

of pilot tones within the transmitted OFDM symbols are ex-

amined. The LMMSE and two variants of the LS estimator

are analyzed and the optimal training design and placement

strategies are derived. Closed-form expressions are derived

for the minimum achievable MSE in each case, which are pre-

cisely verified through simulations.

1. INTRODUCTION

The idea of cooperation has been introduced in communica-

tion systems in order to obtain spatial diversity gains, while

only single-antenna terminals are used ([1]). In such systems,

a relay node assists the communication between a transmit-

ter and a receiver providing an additional transmission path.

Most of the methods that have been proposed so far, can be

divided into two categories depending on the procedure fol-

lowed at the relay. Specifically, in Decode and Forward (DF)

methods, the relay decodes, re-encodes and forwards the re-

ceived signal while in Amplify and Forward (AF) methods,

the relay multiplies the received signal with a constant and

then forwards it.

In most of these methods, the involved channels are as-

sumed to be known. Thus, in practice, a channel estima-

tion procedure is required to provide the desired information.

For flat fading channels, [2] studies channel estimation in the

AF case assuming a single relay scenario. Multiple relays

are considered in [3], [4] for the AF and DF cases, respec-

tively. For frequency selective channels, a minimum vari-

ance unbiased (MVU) estimator for an AF single relay sys-

tem is described in [5]. In [6], a linear minimum mean square
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Fig. 1. The cooperative system

error (LMMSE) channel estimator is proposed assuming an

AF multiple relay scenario. In [7], channel estimation in a

two-way relay system is studied. Finally, in [8], the authors

propose a single-carrier frequency-domain semi-blind chan-

nel estimation technique (as opposed to the aforementioned

training-based ones) for a multiple relay network.

In this paper, we consider a frequency-selective single re-

lay network, where transmission is realized through orthogo-

nal frequency division multiplexing (OFDM). A two-phase

transmission protocol is adopted [9] and the minimum re-

quired number of tones in each OFDM symbol is assigned

to training. Assuming that a total power P is devoted to train-

ing at the source node, we investigate the optimal power al-

location between the two phases of transmission and among

the training symbols in each phase, as well as the optimal

placement of pilots in the OFDM symbols. Both the LMMSE

and the least squares (LS) channel estimators are studied. For

the latter, two distinct cases, namely a deterministic and a

stochastic, are analyzed separately. The optimality conditions

for all three scenaria are derived and expressions for the mini-

mum attainable mean squared error (MSE) are provided. The

presented theoretical results are completely verified by simu-

lations.

The works mostly related to the current paper are [5] and

[7]. More specifically, the stochastic LS estimator mentioned

above, turns out to be the MVU estimator of [5]. However,

in [5] only the optimal training power allocation is studied,

while the positioning of pilots is not investigated. Optimal

pilot design and placement is also considered in [7]. However,

the cooperative setting there is different.



In the following, bold underlined small and capital letters

denote vectors at the time and frequency domain, respectively.

Also, bold capital letters are used for matrices. F denotes the

N × N Fourier matrix whose (p, q)-th element is given by

[F ]p,q = 1√
N

e−j2πpq/N . AT and AH denote transposition

and conjugate transposition of A. Also, diag{a} produces

a diagonal matrix with a on its main diagonal and vect{A}
produces a vector whose elements are the diagonal elements

of A. IN is the identity matrix of size N , Tr{A} is the

trace of A, ‖.‖ is the 2-norm of a vector, |.| the absolute value

of a scalar and E{.} denotes statistical expectation. Finally,

x ∼ CN(µ,Σ) denotes a complex Gaussian random vector

with mean µ and covariance matrix Σ.

In Section 2, the system model is presented. In Sections

3, 4, the LMMSE and the LS channel estimators along with

their corresponding performance optimization are described,

respectively. In Section 5, simulation results are presented

and Section 6 concludes the paper.

2. SYSTEM MODEL

We consider the cooperative system shown in Fig. 1. A

two-phase transmission protocol proposed in [9] is adopted.

As shown in [10], this protocol offers the optimal diversity

/ multiplexig trade-off among the AF half-duplex protocols.

Specifically, at the first phase, S broadcasts a signal to R and

D. At the second phase, S sends a new signal and, concur-

rently, R amplifies and forwards to D the signal received at the

previous phase. The transmissions are performed in blocks of

N symbols by utilizing OFDM and S, R are assumed to be

synchronized. To avoid interblock interference, a cyclic pre-

fix (CP) of appropriate length is appended to the transmitted

signals ([11]). The frequency selective channels hSD, hSR

and hRD are modeled as vectors of lengths LSD, LSR and

LRD, respectively.

At Phase I, after discarding the CP, the received signal

vectors at R and D are given by

y
R

= HSRx1 + wR, (1)

y
1

= HSDx1 + w1, (2)

respectively. Similarly, at Phase II, the received signal vector

at D is expressed as

y
2

= HSDx2 + αHRDy
R

+ w2. (3)

In (1)-(3), the N×N matrices Hi are circulant, having as first

columns the vectors [hT
i 0 . . . 0]T , where i ∈ {SD,SR,RD}.

Also, xi = F HXi, i = 1, 2, are the signal vectors trans-

mitted by the source in each phase and Xi denote the corre-

sponding N × 1 information symbol blocks. The relay termi-

nal normalizes the received vector y
R

by a fixed gain factor

α ([2]), so that the average power per symbol remains con-

stant. Finally, we assume that wR∼ CN(0, σ2
RIN ), w1,

w2∼ CN(0, σ2
DIN ), where σ2

R, σ2
D denote the noise vari-

ances at R and D, respectively.

Using the well-known identity Hj=F H
ΛjF for circu-

lant matrices, where j ∈ {SD,RD,SR} and Λj are diag-

onal matrices, it can be easily shown from (1) and (2) that

the frequency domain vectors Y i = Fy
i
, i = 1, 2 can be

expressed as
[

Y 1

Y 2

]

=

[

X1 0

X2 X1

] [

ΛSD

ΛR

]

+

[

W 1

W̃ 2

]

(4)

In the last equation, Xi = diag{Xi}, ΛSD = vect{ΛSD}
and ΛR = vect{ΛR} where ΛR = αΛSRΛRD. It can be

also verified that, W 1 ∼ CN{0, σ2
DIN} and W̃ 2 has zero

mean and C = σ2
DIN + σ2

R|α|2E{ΛH
RDΛRD} as a conva-

riance matrix. It should be noted that ΛSD in (4) contains

the frequency response of the source-to-destination channel

in N frequency tones. Similarly, ΛR contains the frequency

response of the overall source-relay-destination channel ex-

pressed in the time-domain as hR = αhSR ∗ hRD, where ∗
denotes convolution.

In the following, we assume without loss of generallity

that LSD = LSR + LRD − 1 = L and a minimum number

of L tones in each Xi are devoted to training. If Λi,L stands

for the vector formed by any L randomly selected elements of

Λi, i ∈ {SD,R}, then Λi,L =
√

NF Lhi ([12]). The L × L
matrix F L is produced by the corresponding L rows of F and

its first L columns. Then, from Eq. (4) we get

Y = Ah + W (5)

where Y = [Y T
1,L Y T

2,L]T , W = [W T
1,L W̃

T

2,L]T , h =

[hT
SD hT

R]T and

A =
√

N

[

X1,L 0

X2,L X1,L

] [

F L 0

0 F L

]

=
√

NXF d.

(6)

Also, W 1,L ∼ CN{0, σ2
DIL} and W̃ 2,L is zero mean with

covariance matrix CL = σ2
DIL + σ2

R|α|2E{ΛH
RD,LΛRD,L}.

Note that the meaning of subscript L in the above expressions

is that L elements or rows have been retained from the respec-

tive vectors and matrices.

In the next section, we present optimal design and place-

ment of pilots tones, so that the mean squared error (MSE) of

the LMMSE and LS estimators of h in (5) is minimized. We

assume that the total training power for both phases is P and

that P1 =
∑L

n=1
pn and P2 =

∑L
n=1

qn are the power distri-

butions between the two phases with P1 + P2 = P . Finally,

p = [p1, . . . , pL]T and q = [q1, . . . , qL]T is the powers as-

signed to the training symbols (elements of X1,L and X2,L

in (6)) in each phase.

3. LMMSE ESTIMATION

In this case, we assume that hi ∼ CN(0Li
, diag{σi}) where

σi = [σ2
i (1), . . . , σ2

i (Li)]
T , σ2

i (n) is the variance of hi(n)



with i ∈ {SD,SR,RD} and n = 1, . . . , Li.

3.1. Channel estimation

The LMMSE estimator of h in (5) is given by ([13])

ĥ = ChhAH(AChhAH + CWW )−1Y , (7)

where Chh = E{hhH} and CWW = E{WW H}. Its error

covariance matrix is expressed as

Ce = (C−1

hh + AHC−1

WW A)−1. (8)

The covariance matrices in (7) and (8) can be written as

Chh =

[

diag{σSD} 0

0 |α|2diag{σSR ∗ σRD}

]

, (9)

and

CWW =

[

σ2
DIL 0

0 CL

]

. (10)

Moreover, it can be shown that E{|ΛRD,L(k)|2} = σ2 and

σ2 =
∑LRD

n=1
σ2

RD(n) for every diagonal element k of ΛRD,L

([13, p. 535]) and, thus, CL = (σ2
D + |α|2σ2

Rσ2)IL.

3.2. Training design

To optimize the performance of the LMMSE estimator the

following minimization problem must be solved

min
P1,P2,p,q,{ik}

{ 1

2L
Tr{Ce}} (11)

s.t. P1 + P2 = P

where {ik, k = 0, 1, . . . , L} is the set of the L pilot positions

in X1,X2, in which pilot symbols will be placed.

It is known that for a K × K positive definite matrix B,

Tr{B−1} ≥ ∑

i [B]−1

i,i , with equality when B is diagonal.

Hence, from (11)

Tr{Ce}
2L

≥
∑2L

i=1
[C−1

hh + AHC−1

WW A]−1

ii

2L
= f(P1, P2),

(12)

where

f(P1, P2) =

L
∑

i=1

(2L)−1

ci + σ−2

D P1 + u−1P2

+

2L
∑

i=L+1

(2L)−1

ci + u−1P1

(13)

and u = σ2
D + |α|2σ2

Rσ2, ci = [C−1

hh ]ii. As it can be observed

from (13), the lower bound in (12) depends only on the distri-

bution of power P between the two phases. However, in order

to achieve this bound, the positions and the power distribution

for the training symbols should also be determined.

By substituting P1 = P − P2 in f(P1, P2), we get that

f(P1, P2) =g(P1), where g(P1) is monotonically decreasing,

attaining its minimum value when P1 is maximized, i.e. P1 =

P or P2 = 0. Thus, the minimum value of the lower bound in

(12) is expressed as

g(P ) =

L
∑

i=1

(2L)−1

ci + σ−2

D P
+

2L
∑

i=L+1

(2L)−1

ci + u−1P
(14)

As already mentioned, to achieve this lower bound, Ce must

be diagonal, or from (12), T = AHC−1

WW A must be diago-

nal. Having X2,L = 0 in (6), it can be shown that T becomes

diagonal when pi = P/L,∀i and F H
L F L = L

N IL.The last

two conditions are satisfied when the pilot tones in the first

transmission phase are equispaced and equipowered.1

Overall, the performance of the estimator of Eq. (7) is

optimized when (a) P1 = P , P2 = 0, (b) pi = P/L, qi = 0
and (c) ik = k N

L . The minimum channel estimation MSE is

then given by Eq. (14).

4. LS ESTIMATION

4.1. Channel estimation

The LS estimator of h in (5), and the error covariance matrix

CLS = E{(ĥ−h)(ĥ−h)H} that describes its performance,

are given by

ĥ = A−1Y , CLS = A−1CWW A−H , (15)

where CWW is defined in (10). However, depending on whe-

ther the channel hRD is assumed stochastic or deterministic,

matrix CL is different, leading to different solutions for the

optimization problem, as explained below.

4.2. Training design: Stochastic case

In this framework, hRD is assumed to be a complex Gaussian

random vector, as in the LMMSE case and CL is defined by

the expression given after Eq. (10). Moreover, the optimiza-

tion problem is defined as in (11) by replacing Ce with CLS .

The trace of the error covariance matrix will be now lower

bounded as follows

Tr{CLS}
2L

≥
∑2L

i=1
[AHC−1

WW A]−1

ii

2L
= fLS(P1, P2),

(16)

where

fLS(P1, P2) =
1

2(σ−2

D P1 + u−1P2)
+

1

2u−1P1

, (17)

and u is defined as before.

Following the same procedure as in the LMMSE case, the

conditions under which the performance of the LS estimator

is optimized turn out to be identical. In this case, the achiev-

able lower bound is given by

gLS(P ) =
σ2

D + u

2P
=

2σ2
D + |α|2σ2

Rσ2

2P
, (18)

1It is also assumed that N/L is an integer



where σ2 is defined as in the LMMSE case.

It can be seen that gLS(P ) is obtained from g(P ) by set-

ting ci = 0 in (14). Since ci ≥ 0,∀i, gLS(P ) ≥ g(P ) , i.e.

as expected, the performance of the LMMSE estimator is su-

perior than that of the LS estimator provided that the second

order statistics of the involved channels are available.

4.3. Training design: Deterministic case

In this case, hRD is considered to be deterministic and, so,

CL= σ2
D + |α|2σ2

RΛ
H
RD,LΛRD,L. In the following we de-

fine Λ
H
RD,LΛRD,L = diag{[σ2

1 , . . . , σ2
L]T }, where σ2

i , i =
1, . . . , L are the squared amplitudes of the relay-to-destina-

tion channels in L carriers. Such a modeling is useful, for

example, when the channel between R and D is constant for

long periods of time [14] (e.g., when the relay and the desti-

nation are static nodes such as base stations). In such cases,

σ2
i ’s, i = 1 . . . , L, can be considered to be known at S.

The minimization problem is identical to the one defined

for the stochastic case. However, here, we can not follow the

same optimization procedure because the related bound is not

attainable. After some algebraic manipulations, the following

relation is derived

Tr{CLS}
2L

=
1

2LN
Tr{(XHC−1

WW X)−1(F dF
H
d )−1}

=
1

2LN
Tr{QS}

≥ 1

2LN

∑

i

λiµi, (19)

where λi’s are the eigenvalues of Q in non-decreasing order

and µi’s are the eigenvalues of S in non-increasing order [15,

p. 249]. Equality holds when both matrices are diagonal.

By simple inspection, matrix Q = (XHC−1

WW X)−1 be-

comes diagonal when X2,L = 0 or, else, when P1 = P ,

P2 = 0 and, consequently q = 0. Similarly, matrix S =

(F dF
H
d )−1 becomes diagonal only when F LF H

L = L
N IL

which requires that the pilot tones are equispaced. This means

that the set {ik} is determined as in the LMMSE case. Us-

ing these results in Eq. (19), the trace becomes equal to
1

2LTr{CLS} = 1

2LN

∑

i [Q]ii[S]ii = h(p), where

h(p) =
1

2L2

L
∑

i=1

σ2
D + ui

pi
, (20)

and ui = σ2
D + |α|2σ2

Rσ2
i , i = 1, . . . , L. Finally, the optimal

power distribution of p is found by minimizing Eq. (20) under

the constraint
∑L

i=1
pi = P using Lagrange multipliers. The

solution of this optimization problem turns out to be

pi =

√

σ2
D + ui

∑L
i=1

√

σ2
D + ui

P, i = 1, . . . , L. (21)

and the minimum MSE of the LS estimator for a deterministic

hRD is given by (20).

5. EXPERIMENTS

In this section, the theoretical results are verified through sim-

ulations. More specifically, the MSE 1

2LE{‖h− ĥ‖2} versus

the signal to noise ratio (SNR) at the destination is plotted

for the estimators presented in the previous sections. We as-

sume that the variances of each channel hi follow a simple

exponentially decaying model, i.e. σ2
i (n) = e−n + 1 where

n = 0, 1, . . . , Li − 1 and i ∈ {SD,SR,RD}. Also, we set

for simplicity α = 1, P = 1 and σ2
D = σ2

R.
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Fig. 2. LMMSE vs LS (stochastic case)
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In Fig. 2, MSE versus SNR curves are presented for the

LMMSE and LS (stochastic case) channel estimation. We

observe that Eqs. (14), (18), describing the optimal perfor-

mance of the two estimators, are verified. Moreover, the per-

formance degradation of the estimation is presented in the

case P1 = P2 = P/2, i.e. when we deviate from the con-



dition P1 = P , P2 = 0. Similar results are obtained for the

other conditions, as well.

In Fig. 3, the two LS scenaria are compared. We can see

from the figure that not only the theoretical MSE of Eq. (20)

is verified but also the superiority of the deterministic LS over

the stochastic LS estimator is corroborated.

6. CONCLUSIONS

In this paper, optimal channel estimation has been investi-

gated for a single relay cooperative system in a frequency

selective environment. Based on the LMMSE and the LS es-

timation criteria, specific conditions are provided for optimiz-

ing the estimation performance at the destination node.

It has been shown that, in all cases, the source node should

assign the total training power at the first transmission phase

to avoid interference with the relay during the second phase.

An important consequence of this approach is that channel

estimation is decoupled in the two phases and can, thus, be

performed independently.

For LMMSE and stochastic LS estimation, the optimal so-

lution calls for training symbols equipowered and equispaced.

However, when the relay-to-destination channel is assumed

deterministic, equispaced but not equipowered training sym-

bols result in the minimum MSE. The presented theoretical

results have been completely verified by simulation experi-

ments.
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