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ABSTRACT

Massive amounts of data (also called big data) generated by

a wealth of sources such as social networks, satellite sen-

sors etc., necessitate the deployment of efficient processing

tools. In this context, online subspace learning algorithms

that aim at retrieving low-rank representations of data con-

stitute a mainstay in many applications. Working with in-

complete (partially observed) data has recently become com-

monplace. Moreover, the knowledge of the real rank of the

sought subspace is rarely at our disposal a priori. Herein, a

novel low-rank subspace learning algorithm from incomplete

data is presented. Its main premise is the online processing

of incomplete data along with the imposition of low-rankness

on the sought subspace via a sophisticated utilization of the

group sparsity inducing ℓ2/ℓ1 norm. As is experimentally

shown, the resulting scheme is efficient in accurately learn-

ing the subspace as well as in unveiling its real rank.

Index Terms— Subspace learning, low-rank, online, in-

complete data, ℓ2/ℓ1 regularization

1. INTRODUCTION

Learning the underlying subspace where high-dimensional

data “live” is a popular task arising in numerous problems in

the machine learning and signal processing fields, [1]. The

majority of the methods that have been developed for con-

fronting those problems, suppose that the dimensionality of

the sought subspace (i.e., the rank of the subspace matrix) is

known in advance. This is however a rather strong assump-

tion in many applications. As a result, traditional approaches

might present an unstable behavior in this realistic scenario.

Moreover, the development of algorithms that process large-

scale incomplete datasets has become imperative nowadays

[2]. That said, online low-rank subspace learning algorithms

from incomplete data, recently proposed in the literature

[3], constitute a valuable tool for handling those challenging

problems.

A recursive least squares (RLS)-type subspace learning

algorithm from incomplete data, called PETRELS, was put
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forth in [4]. PETRELS builds upon alternatingly estimat-

ing the subspace matrix and the projection of the incomplete

data on its column space, by minimizing an exponentially

weighted LS cost function. Since the knowledge of the rank

of the subspace is at the heart of PETRELS, it becomes unsta-

ble when this condition is not met. Capitalizing on this, Algo-

rithm 1 of [5] proposes the regularization of the PETRELS’

cost function by adding a low-rank promoting term that ro-

bustifies the algorithm in the lack of this knowledge. That

said, Algorithm 1 of [5] amounts to solving separate ridge-

regression type problems for estimating the subspace matrix

and the projection coefficients. In doing so, it becomes adept

at dealing with the unawareness of the real rank of the sought

subspace, albeit without revealing its true rank.

In this paper we propose a novel low-rank subspace esti-

mation algorithm that learns from incomplete data . Allowing

for the unawareness of the true rank of the subspace, a scheme

is derived that efficiently promotes its low-rankness. Towards

this and inspired by relevant Bayesian subspace learning ideas

[6], [7], [8], we propose to impose jointly column sparsity

on the subspace and the projection coefficient matrix via the

group sparsity inducing ℓ2/ℓ1 norm. The novel cost function

formed, which is the sum of an exponentially weighted (LS)

term and a low-rank promoting ℓ2/ℓ1 term, is then solved via

an alternating minimization strategy. The effectiveness of the

proposed online column sparsity subspace learning algorithm

in accurately estimating the subspace and revealing its true

rank is manifested at experiments conducted on both simu-

lated and real data.

2. PROBLEM STATEMENT

Let n be the time index and z(n) a sequence of incomplete
K × 1 data vectors of observations that can be expressed as,

z(n) = φ(n)⊙ y(n) = Φny(n). (1)

In (1), y(n) is the full K × 1 data vector, φ(n) is a {0, 1}-

binary K×1 vector having 0’s at the positions where y(n) has

missing entries and 1’s elsewhere, Φn = diag(φ(n)) and ⊙
denotes Hadamard multiplication. In this work we consider

that the data y(n) lie in a low-dimensional linear subspace

of (unknown) rank r(n) that may be time-varying. Based on

this, we assume that our data are produced according to the
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following linear regression model

y(n) = W(n)x(n) + e(n), (2)

where W(n) is a K × L subspace matrix with K ≫ L ≥
r(n), x(n) is the L × 1 low-dimensional representation of

y(n) in the subspace spanned by the columns of W(n) and

e(n) is zero-mean additive white Gaussian noise. It is clear

from the above that since the true subspace rank is unknown,

an overestimate L of it is implicitly assumed in (2). If we

now stack together incomplete observation vectors up to time

n as rows in a matrix Z(n), we easily get from (1) and (2)

Z(n) = Φ(n)⊙
(

X(n)WT (n) +E(n)
)

(3)

where

Z(n) = [z(1), z(2), . . . , z(n)]T = [z 1(n), z 2(n), . . . , zK(n)],
(4)

Φ(n) = [φ(1),φ(2), . . . ,φ(n)]T = [ϕ1(n),ϕ2(n), . . . ,ϕK(n)],
(5)

X(n) = [x(1),x(2), . . . ,x(n)]T = [x 1(n), x 2(n), . . . , xL(n)]
(6)

and E(n) = [e(1), e(2), . . . , e(n)]T . In addition, we define

the subspace matrix W(n) row- and columnwise as1

W(n) = [w1(n),w2(n), . . . ,wK(n)]T = [w1(n),w2(n), . . . ,wL(n)] .
(7)

It can be noticed from Eqs. (4)-(7) that the rowsize of matri-

ces Z(n),Φ(n) and X(n) increases with time, while W(n)
is a fixed size K × L matrix.

In this work we deal with the problem of online low-rank

subspace learning and matrix completion. That is, given the

incomplete data vector z(n) at each time instant n, we aim

at estimating a) the subspace matrix W(n), b) its low-rank

representation x(n) and c) the complete data vector y(n) as

a by-product. In the following, such an online algorithm is

presented, which besides the above, it also achieves to reveal

the true rank of the unknown data subspace, thus leading to

very accurate estimates.

3. THE PROPOSED MINIMIZATION PROBLEM

A direct way to solve the previously described problem is via
alternating LS, as in [4]. In that context the following mini-
mization problem is first defined,

min
x(n),W(n)

‖Λ
1

2 (n)
(

Z(n)−Φ(n)⊙
(

X(n)WT (n)
))

‖2F ≡

min
x(n),W(n)

n
∑

i=1

λn−i‖z(i)− φ(i)⊙ (W(n)x(i)) ‖22 (8)

where λ is the usual forgetting factor with 0 ≪ λ < 1 and

Λ(n) = diag([λn−1, λn−2, . . . , λ, 1]T ). Then x(n),W(n)
are estimated in an alternating fashion, a process which can

1In (4)-(7), small bold calligraphic letters have been used to denote

columns of matrices and regular bold letters to denote rows.

also easily be adjusted in the online scenario. As shown in

Section 5, such a procedure is sensitive to the lack of knowl-

edge of the true rank of the underlying data subspace and di-

verges if an overestimate L of it is used. Motivated by this,

we seek a specific mechanism that is able to reveal the true

subspace rank r(n) in time by gradually reducing the initially

set rank value L as the learning task progresses.

To achieve this we first recall that the matrix product

X(n)WT (n) appearing in (8) can be written as the sum of

the outer products between the columns x l(n) and w l(n) of

X(n) and W(n) respectively i.e.,

X(n)WT (n) =
L
∑

l=1

x l(n)w
T
l (n). (9)

It is obvious from (9) that the rank of X(n)WT (n) (and
that of W(n)) equals to the number of the rank-one terms

existing into the summation. Having said that, it becomes

clear that a possible way for reducing the subspace rank

is by somehow discarding a few of those terms. In view

of this, we propose the regularization of the LS cost func-

tion in (8) by utilizing the column sparsity promoting ℓ2/ℓ1
norm [9] applied on an appropriately formed matrix. To

be more specific, we define the (n + K + 1) × L matrix

A(n) = [XT (n)Λ
1

2 (n),WT (n), ǫ]T , i.e. we concatenate

matrices Λ
1

2 (n)X(n) and W(n) columnwise and the L × 1

vector ǫ with entries small constants ǫ
1

2 , so that any column

sparsity inducing mechanism applied on A(n) to annihilate

jointly the corresponding columns of X(n) and W(n). The

ℓ2/ℓ1 norm of A(n) is defined as

‖A(n)‖2,1 =
L
∑

l=1

‖al(n)‖2, (10)

where al(n) = [xT
l (n)Λ

1

2 (n),wT
l (n), ǫ

1

2 ]T is the lth column

of A(n) and

‖al(n)‖2 =
√

x
T
l (n)Λ(n)x l(n) + ‖w l(n)‖22 + ǫ. (11)

Favorably, the inclusion of the small constants ǫ’s in A(n),
renders smooth the inherently non-smooth ℓ2/ℓ1 norm, [10].

We are now in place to define the following minimization

problem for low-rank subspace estimation,

min
x(n),W(n)

n
∑

i=1

λn−i‖z(i)−Φ(i)⊙ (W(n)x(i)) ‖22

+δ
L
∑

l=1

√

x
T
l (n)Λ(n)x l(n) + ‖w l(n)‖22 + ǫ, (12)

where δ is a low-rank regularization parameter. The proposed

minimization problem consists of two terms: a) an exponen-

tially weighted LS term which performs the fitting between

the data and the model and b) the previously defined ℓ2/ℓ1
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norm which is used as a regularizing term for imposing low-

rankness.

It is worthy to underline that albeit the first term of (12)

decouples over both the rows and the columns of X(n) and

W(n), this is not the case with the second low-rank promot-

ing term. Hence, getting closed form expressions for estimat-

ing x(n) and W(n) at time n is rendered infeasible, while

also the lack of such a decoupling seems to hinder the deriva-

tion of an online scheme. However, in the next section we

show that by adopting an alternating minimization strategy

that combines regularized LS and cyclic coordinate-descent

type steps, an efficient online subspace learning algorithm can

be obtained.

4. THE PROPOSED ALGORITHM

Since we adhere to the online scenario we assume that incom-

plete datums z(n)’s are processed sequentially over time. At

each time instance n, our subspace learning task amounts to:

a) getting an estimate x̂(n) of the projection coefficients vec-

tor x(n) of z(n) on the column space of the subspace matrix

estimate Ŵ(n − 1) (computed in the previous time instance

n−1) and b) updating the subspace matrix estimate to Ŵ(n).
As mentioned previously, the approach that we follow is

based on minimizing (12) alternatingly w.r.t. x(n) and W(n).
Defining the L× L diagonal matrix D(n) with

dl(n) =
δ

√

x̂
T
l (n)Λ(n)x̂ l(n) + ‖ŵ l(n)‖22 + ǫ

, (13)

its diagonal entries, we first minimize (12) w.r.t. x(n) and get
an approximate closed-form solution2 for x̂(n), i.e.,

x̂(n) =
(

Ŵ
T (n− 1)ΦnŴ(n− 1) +D(n− 1)

)−1

×

Ŵ(n− 1)T z(n). (14)

Next we adopt a block coordinate-descent (CD) type min-
imization of (12) w.r.t. the columns of W(n), [11], which
results to the following expression for the estimate of its klth
element3,

ŵkl(n) =

(

n
∑

i=1

λ
n−i

φk(i)x̂
2
l (i) + dl(n− 1)

)−1 n
∑

i=1

λ
n−i

x̂l(i)×



zk(i)− φk(i)





∑

l
′
<l

x̂
l
′ (i)ŵ

kl
′ (n) +

∑

l
′
>l

x̂
l
′ (i)ŵ

kl
′ (n− 1)







 .

(15)

In Eqs. (14), (15) there is a subtle point that should be accen-

tuated: both x̂(n) and Ŵ(n) aside from their inherent inter-

relation shown in (14) and (15), they involve matrix D(n−1)

2The exact (yet not closed-form) expression for x̂(n) contains D(n) in

place of D(n− 1) in Eq. (14).
3Note that in (15) we consider a single iteration of the CD procedure and

map CD iterations to time iterations.

which in turn includes quantities depending on x̂ l(n− 1) and

ŵ l(n − 1). Hence, it arises that x̂(n) estimated at time n
is also influenced by the projection coefficient vectors esti-

mated in the previous time instants. A similar case occurs

for the estimate Ŵ(n) of the subspace matrix, which due to

the presence of D(n − 1) in (15) also relies on its estimate

obtained in the previous time instant. It should be noted that

this particular characteristic of our method results from the

aforementioned non-decoupling nature of the low-rank reg-

ularizing term utilized. This tricky point gives the proposed

algorithm the ability of revealing the true rank of the subspace

after convergence, an issue that is further explained below and

highlighted in the experimental section.

Eq. (15) can be written more compactly and avoid time-

increasing summation terms by incorporating appropriate

time-updating formulas. First we define the following fixed

size w.r.t. time quantities

T(n) = X̂T (n)Λ(n)Z(n), (16)

Pk(n) =X̂T (n)Λ(n)Φk(n)X̂(n), k = 1, 2, . . .K, (17)

ql(n) = x̂
T
l (n)Λ(n)x̂ l(n), l = 1, 2, . . . L, (18)

where Φk(n) = diag(ϕk(n)). Eqs. (16), (17), (18) can be

easily expressed time-recursively as

T(n) = λT(n− 1) + x̂(n)zT (n), (19)

Pk(n) =λPk(n− 1) + φk(n)x̂(n)x̂
T (n), (20)

ql(n) = λql(n− 1) + x̂2
l (n). (21)

The term x̂
T
l (n)Λ(n)x̂ l(n) which appears in the expression

of dl(n) (13) coincides with ql(n) and thus it is efficiently

computed via (21). Following the same path Eq. (15) is

rewritten by integrating the above-defined quantities yielding

ŵkl(n) =
tlk(n)− pT

k¬l(n)ŵk¬l(n)

pk,ll(n) + dl(n− 1)
, (22)

where tlk(n) denotes the lkth entry of the L×K matrix T(n),
pT
k¬l(n) is the lth row of the L × L autocorrelation matrix

Pk(n) after ignoring its lth entry pk,ll(n), and finally

ŵk¬l(n) =[ŵk1(n), ŵk2(n), . . . , ŵkl−1(n), ŵkl+1(n− 1),

. . . , ŵkL(n− 1)]T . (23)

The proposed online column sparsity promoting subspace

learning algorithm (OCSpSL) from incomplete data is sum-

marized in Algorithm 1. By using an element-by-element

CD estimation procedure for the unknown subspace ma-

trix, the computational complexity of OCSpSL is reduced to

O(|φ(n)|L2) (with |φ(n)| the number of 1’s in φ(n)) which

is similar to that of PETRELS and lower than that of Algo-

rithm 1 in [5]. The most important feature of the proposed

algorithm though is its ability in retrieving the true rank of

the unknown subspace, by zeroing whole columns of Ŵ(n)
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Algorithm 1 The OCSpSL algorithm

Initialize W(0), D(0)
Set T(0) = 0, q(0) = 0, δ

for n = 1, 2, . . .
Compute x̂(n) from (14)

Update q(n),D(n) from (21) and (13)

Update T(n) from (19)

for k = 1, 2, . . . ,K
Update Pk(n) from (20)

for l = 1, 2, . . . , L
Compute ŵkl(n) from (22)

end

end

end

after convergence. This is readily explained from (22), since

for obsolete columns of A(n), as verified by (11) and (13),

dl(n − 1) takes large values that drive all entries of the lth

column of Ŵ(n) to zero, thus reducing its rank.

5. EXPERIMENTAL RESULTS AND DISCUSSION

In this section the performance of OCSpSL is evaluated on a

simulated online matrix completion problem as well as on the

reconstruction of a real hyperspectral image.

Online matrix completion. Since our aim is to simulate a

matrix completion problem, we generate a low-dimensional

subspace matrix U ∈ RK×r with K = 500 and r = 5 and

i.i.d Gaussian distributed entries i.e., ukl ∼ N (0, 1
K
). Next,

we produce n = 25000 r × 1 projection coefficient vectors

c(n) that follow a Gaussian distribution, c(n) ∼ N (0, Ir).
Then, the signal y(n) at time n is generated as Uc(n).
Additive i.i.d Gaussian noise of variance σ2 = 10−3 is

assumed to contaminate the data. OCSpSL is compared

with two state-of-the-art subspace learning algorithms, i.e.,

PETRELS [4] and Algorithm 1 of [5]. The low-rank reg-

ularization parameters of OCSpSL and Algorithm 1 of [5]

are set to 0.1 and λ = 0.99. The algorithms are tested for

two different percentages of missing (at random) data i.e.,

π = {0.5, 0.8}. As metric performance we utilize the nor-

malized reconstruction average estimation error (NRAEE)

NRAEE(n) = 1
n

∑n

i=1
‖ŷ(i)−y(i)‖2

‖y(i)‖2
and the initial rank of the

subspace matrices is set to L = 20.

As is shown in Fig. 1, OCSpSL exhibits a robust behavior,

outperforming its rivals in terms of NRAEE for both values

of π, while PETRELS diverges after a number of iterations.

Interestingly, OCSpSL besides its robustness and improved

estimation performance, it is also able to retrieve the real sub-

space rank. After convergence most of the columns of Ŵ(n)
are zero and its rank is 5. On the contrary, Algorithm 1 of [5]

ends up without decreasing the initially set rank value. Note

that this favorable behavior of OCSpSL is observed in many

different experiments that have been run, but are not presented

here due to space limitations.
Pixel-by-pixel hyperspectral image reconstruction. A hy-

perspectral image (HSI) consists of multiple gray-scale im-

ages captured at narrow contiguous spectral bands. Thus,
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Fig. 1: NRAEE obtained by OCSpSL, PETRELS [4] and Algorithm

1 of [5] on the simulated matrix completion problem.

✡

☛✡✡

☞✡✡✡

☞☛✡✡

✷✡✡✡

✷☛✡✡

✸✡✡✡

✸☛✡✡

✌✡✡✡

✌☛✡✡

✍

✎✍✍

✏✍✍✍

✏✎✍✍

✑✍✍✍

✑✎✍✍

✒✍✍✍

✒✎✍✍

✓✍✍✍

✓✎✍✍

✔

✕✔✔

✖✔✔✔

✖✕✔✔

✗✔✔✔

✗✕✔✔

✘✔✔✔

✘✕✔✔

✙✔✔✔

✙✕✔✔

✚✛✛

✜✛✛✛

✜✚✛✛

✢✛✛✛

✢✚✛✛

b) incomplete c) reconstructed d) residual
image π = 0.75 image Ŷ10 error
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Fig. 2: Reconstruction of Salinas Valley HSI using OCSpSL, for

different fractions of observed entries π.

each pixel is represented by a high dimensional vector called

spectral signature. Each vector entry is radiance captured at a

specific spectral band. HSIs inherently present a high degree

of correlation both in the spectral and spatial domains [12]. In

light of this, if we form a matrix with rows corresponding to

the pixels’ spectral signatures (i.e., the rowsize of the matrix

is the number of pixels), then we can safely assume that the

formed matrix can be well approximated by a low-rank one.

Herein, the Salinas Valley HSI dataset, [12], is utilized

and we consider two different incomplete versions of the

dataset corresponding to different fractions of the missing

entries, namely π = {0.75, 0.9}. OCSpSL processes se-

quentially (online) the pixels of the HSI, i.e, it follows a

row-by-row processing of the formed matrix. Figs. 2a,2b,2e

show the 10th band image of the Salinas HSI and the incom-

plete versions of it corresponding to the different π’s tested.

As it can be derived by the reconstructed images and the

residual images (|Y10 − Ŷ10|) in Figs. 2c,2d,2f,2g, OCSpSL

reliably reconstructs the HSI for both π’s, thus corroborating

its efficiency also on this real data experiment.
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