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ABSTRACT
In this paper a variational Bayesian framework for semi-supervised
unmixing of hyperspectral data is proposed. It is assumed that a
set of spectral signatures of materials possibly present in the hyper-
spectral image is given a priori. A hierarchical Bayesian model is
adopted, incorporating prior distributions that both promote sparsity
and satisfy the non-negativity constraints for the abundance coeffi-
cients. By exploiting the special form of the resulting posterior dis-
tributions a computationally efficient variational Bayes (VB) algo-
rithm is derived to perform Bayesian inference. Experimental results
conducted on hyperspectral data from the OMEGA sensor on board
ESA’s Mars Express satellite demonstrate both the performance and
the sparsity-promoting nature of the proposed VB algorithm.

Index Terms— semi-supervised hyperspectral unmixing, linear
sparse regression, Bayesian inference, planetology, OMEGA data

1. INTRODUCTION

Spectral unmixing of hyperspectral data has received considerable
attention in the scientific literature during recent years, e.g. [1].
The linear mixing model is widely used to describe the interrela-
tion among the disparate materials’ spectra (endmembers) in a sin-
gle pixel. Nevertheless, the prior knowledge of the exact endmem-
bers present in each pixel is not always available. To complement
this prior knowledge, spectral libraries have been utilized in the un-
mixing process, that contain the spectral information of hundreds of
materials. This wealth of endmember availability calls for the devel-
opment of semi-supervised unmixing techniques.

Semi-supervised unmixing is the process of determining how
many and which endmembers are present in each pixel of a hy-
perspectral remote scene, as well as estimating their proportional
contributions (abundances). A reasonable assumption is that only a
few of the available endmembers will contribute in the spectrum of
a single mixed pixel. Hence, semi-supervised unmixing is bound
up with sparsity in the abundance vector. Many works have re-
cently considered the unmixing process as a sparse linear regres-
sion problem, belonging either to the deterministic or the proba-
bilistic framework. Characteristic examples of deterministic meth-
ods include [2, 3]. In [2], sparse unmixing is addressed via variable
splitting and the augmented Lagrangian method of multipliers (SUn-
SAL). In [3], a variation of the former method is proposed, termed
sparse unmixing via variable splitting augmented Lagrangian and to-
tal variation (SUnSAL-TV), which includes spatial information on
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the formulation of the sparse unmixing problem by means of a TV
regularizer. In the probabilistic setting, a Bayesian treatment is pro-
vided in [4], where a suitable, sparsity promoting Laplace prior is
utilized to model the abundance vector. Bayesian inference is then
performed using a first-moments approximating VB algorithm.

In this paper, we propose a Bayesian treatment of the sparse lin-
ear unmixing problem. First, we adopt the hierarchical Bayesian
model of [4], which is shown to promote sparsity and simultaneously
meet the non-negativity constraint of the abundance vector (imposed
due to physical restrictions). Next, we rely on a VB algorithm to
perform statistical inference for the model parameters. Closed form
expressions are provided for the updating of the parameters of all
posterior approximating distributions. More importantly, based on
suitable algebraic manipulations, a fast scheme is derived that allows
us to reduce the computational complexity of the VB algorithm by
one order of magnitude. This scheme performs Bayesian inference
for all model parameters, and hence, there is no need for parameter
cross-validation (as opposed to deterministic methods, e.g. SUn-
SAL, [2]). To demonstrate the efficiency of the proposed scheme,
experimental results on a typical Martian hyperspectral image of the
Syrtis Major volcanic complex are provided. This area is of great
interest and has recently been utilized in the evaluation of sparse un-
mixing algorithms, [5].

2. PROBLEM FORMULATION

Each pixel of a hyperspectral image can be represented by a M -
dimensional vector y, whose elements are reflectance values mea-
sured in the corresponding spectral bands. The linear mixture model
(LMM) adopted here assumes that the spectrum of a mixed pixel is
a linear combination of component spectra, i.e.

y = Φw + n = [φ1,φ2, . . . ,φN ] w + n, (1)

where the M × 1 dimensional vector φi represents the spectral sig-
nature (i.e., the reflectance values in all spectral bands) of the ith
endmember, w = [w1, w2, . . . , wN ]T is the N × 1 abundance vec-
tor associated with y, and n is a N -dimensional vector of random
zero mean Gaussian noise with covariance matrix β−1I. Due to
physical restrictions, a non-negativity constraint is imposed on the
abundance vector w, i.e., wi ≥ 0, i = 1, 2, . . . , N . Moreover, a
natural assumption is that only a few of the N possible endmembers
contribute in each pixel y, hence, the abundance vector w is inher-
ently sparse, i.e., ‖w‖0 = ξ � N , where ‖w‖0 is the number of
nonzero components of w.

The objective of semi-supervised unmixing is to estimate the
abundance vector w given the pixel’s measured spectra y and a set
of possible endmember signatures Φ, subject to the positivity con-
straint and the sparsity assumption. To this end, a Bayesian approach



is presented in this paper, where the hierarchical Bayesian model of
[4] is adopted and Bayesian inference is performed using a fast VB
algorithm.

3. BAYESIAN MODELING

The Bayesian model explored in this paper is that proposed in [4].
Its key feature is the utilization of a conjugate-friendly expression of
the double exponential (Laplace) distribution, which is widely used
to promote sparsity. To begin with the description of the model, the
presence of Gaussian noise in (1) dictates that the likelihood function
of the data y is

p(y|w, β) = N (y|Φw, β−1IM )

= (2π)−
M
2 β

M
2 exp

[
−β

2
‖y −Φw‖22

]
. (2)

Due to space limitations, we briefly report the priors of the prob-
abilistic model parameters defined in [4]. To satisfy the non-
negativity constraint, the prior of the abundance vector w is ex-
pressed as

p(w|γ, β) = NRN
+

(w|0, β−1Γ), (3)

where RN
+ is the non-negative orthant ofRN ,NRN

+
(·) stands for the

N -variate normal distribution N (·) truncated in RN
+ (see also [4]),

and Γ is a N ×N diagonal matrix with Γ = diag(γ1, γ2, . . . , γN ).
The variances γi, i = 1, 2, . . . , N are Gamma distributed, i.e.,

p(γi|λi) = Γ(γi|1,
λi
2

) =
λi
2

exp

[
−λi

2
γi

]
, (4)

where λi’s are hyperparameters that control the level of sparsity. By
combining the (3) and (4) the overall prior of w is a non-negatively
truncated Laplace distribution, as shown in [4]. To infer the value of
λi’s also from the data, we further assign a Gamma distribution to
them parameterized by ρ, δ ≥ 0, with ρ, δ ' 0, i.e.,

p(λi|ρ, δ) = Γ(λi|ρ, δ) =
δρ

Γ(ρ)
λi
ρ−1exp [−δλi] . (5)

Finally, a Gamma prior distribution parameterized by κ, θ ≥ 0, with
κ, θ ' 0 is selected over the noise precision β, defined as

p(β|κ, θ) = Γ(β|κ, θ) =
θκ

Γ(κ)
βκ−1exp [−θβ] , (6)

where β ≥ 0. The mean and variance of the Gamma distribution are
E[p(β|κ, θ)] = κ

θ
, and var[p(β|κ, θ)] = κ

θ2
, respectively.

4. BAYESIAN INFERENCE

According to the Bayes’ rule, the posterior distribution of w, β,γ,λ
is expressed as

p (w, β,γ,λ|y) =
p (y|w, β) p (w|γ, β) p (γ|λ) p (λ) p (β)∫

p (y,w, β,γ,λ) dwdγdλdβ
.

(7)

However, the exact computation of the posterior is infeasible due to
the integration at the denominator. In this paper we rely on the vari-
ational Bayesian framework [6] to approximate this joint posterior.

Assuming posterior independence among model parameters, the
joint posterior (7) can be factorized as

p (w, β,γ,λ|y) ≈ q (w, β,γ,λ) = q(w)q(β)

N∏
i=1

q(γi)

N∏
i=1

q(λi),

(8)

and we can derive closed form expressions for all approximate
posterior distributions q(w), q(γ), q(λ), and q(β), by utilizing the
Kullback-Leibler (KL) distance minimization criterion, [6]. It is not
difficult to verify by simple computations that the posterior q(w) is
a non-negatively truncated Gaussian distribution given by

q(w) = NRN
+

(w|µ,Σ), (9)

with

µ = 〈β〉ΣΦTy, and Σ = 〈β〉−1
(
ΦTΦ + 〈Γ−1〉

)−1

, (10)

where 〈·〉 denotes expectation of a random variable with respect to
its corresponding posterior q(·). The posterior q(β) for the precision
parameter β is expressed as

q(β) = Γ

(
M +N

2
+ κ,

1

2
〈‖y −Φw‖2〉+ θ +

1

2
〈wTΓ−1w〉

)
.

(11)

Straightforward computations yield that the approximating posterior
pdf of γi, i = 1, 2, . . . , N is the following generalized inverse Gaus-
sian distribution

q(γi) =

(
〈λi〉
2π

) 1
2

γ
− 1

2
i exp

[
−〈β〉〈w

2
i 〉

2γi
− 〈λi〉

2
γi +

√
〈β〉〈λi〉〈wi〉

]
. (12)

Next, the posterior q(λi), i = 1, 2, . . . , N is expressed as

q(λi) = Γ

(
αi|1 + ρ,

〈γi〉
2

+ δ

)
. (13)

It is easy to verify from the resulting posterior distributions that the
model parameters are interrelated. This gives rise to an iterative up-
dating procedure, where the distributions’ moments are easily eval-
uated using the following results

〈wi〉 = µi,tr, 〈w2
i 〉 = µ2

i,tr + σii,tr (14)

〈γi〉 =

√
〈β〉〈w2

i 〉
〈λi〉

+
1

〈λi〉
, 〈γ−1

i 〉 =

√
〈λi〉
〈β〉〈w2

i 〉
(15)

〈λi〉 =
1 + ρ

1
2
〈γi〉+ δ

(16)

〈‖y −Φw‖2〉 = ‖y −Φµtr‖
2 + Trace

[
ΦΣtrΦ

T
]

(17)

〈wTΓ−1w〉 =

N∑
i=1

[
〈γ−1
i 〉〈w

2
i 〉
]

(18)

〈β〉 =
M+N

2
+ κ

1
2
〈‖y −Φw‖2〉+ θ + 1

2
〈wTΓ−1w〉

, (19)

where µtr = [µ1,tr, µ2,tr, . . . , µN,tr]
T is the mean and Σtr is the

covariance matrix of the truncated Gaussian distribution q(w) in (9).



Note that µtr will be the estimate of the sparse abundance vector
of the pixel y. The proposed VB scheme iterates among the pa-
rameters of the approximating posterior distributions q(w), q(γi),
q(λi), q(β), utilizing the required moments in (14)-(19). Conver-
gence is achieved since in each step the KL distance between the
true posterior (7) and the approximating distribution (8) is decreased.
The most computationally demanding tasks of the proposed VB al-
gorithm involve the computation of µtr and Σtr of the truncated
Gaussian distribution (9). To reduce complexity significantly, an ef-
ficient scheme is proposed next for the computation of µtr . More-
over, the need to compute Σtr analytically is alleviated by making
the reasonable approximations 〈‖y −Φw‖2〉 = ‖y −Φµtr‖

2 and
〈w2

i 〉 = µ2
i,tr .

4.1. Fast computation of the abundance vector estimate µtr

In [4], an iterative scheme has been proposed to compute the expec-
tation of a multivariate Gaussian distribution truncated in the non-
negative orthant of RN . In this paper, we propose a more com-
putationally efficient implementation of this scheme, based on suit-
able algebraic manipulations. The scheme proposed in [4] iterates
among the means of the one-dimensional conditional distributions
of the i-th element of w conditioned on the remaining elements
µ¬i,tr = [µ1,tr, . . . , µi−1,tr, µi+1,tr, . . . , µN,tr]

T . These condi-
tional distributions are expressed as, [4],

wi|µ¬i,tr ∼ NR1
+

(
wi|µ∗i , σ∗2ii

)
(20)

with

µ∗i = µi + σT¬iΣ
−1
¬i¬i

(
µ¬i,tr − µ¬i

)
(21)

σ∗2ii = σii − σT¬iΣ
−1
¬i¬iσ¬i, (22)

where µi and σii represent the i-th and ii-th elements of µ and Σ
respectively, the (N − 1) × (N − 1) matrix Σ¬i¬i is formed by
removing the i-th row and the i-th column from Σ, while the (N −
1) × 1 vector σ¬i is the ith column of Σ after removing its ith
element, and µ¬i is the vector resulting from µ after removing its
i-th element µi. The j-th iteration of the proposed scheme can be
expressed as

1. µ
(j)
1,tr = E[p(w1|µ(j−1)

2,tr , µ
(j−1)
3,tr , . . . , µ

(j−1)
N,tr )]

2. µ
(j)
2,tr = E[p(w2|µ(j)

1,tr, µ
(j−1)
3,tr , . . . , µ

(j−1)
N,tr )]

... (23)

N. µ
(j)
N,tr = E[p(wN |µ(j)

1,tr, µ
(j)
2,tr, . . . , µ

(j)
N−1,tr)].

Note that in the one-dimensional case, the expectation of a random
variable x ∼ NR1

+
(x|µ∗, σ∗2), such as those in (23), can be com-

puted as, [4],

E [x] = µ∗ +

1√
2π

exp
(
− 1

2
µ∗2

σ∗2

)
1− 1

2
erfc

(
µ∗
√
2σ∗

) σ∗, (24)

with erfc(·) being the complementary error function. It has been
experimentally verified that this scheme converges after a few itera-
tions, [4].

In the sequel we show that it is possible to drop the depen-
dence on µ in (21) and sidestep the complex operations of matrix
inversions, i.e., the computation of Σ−1

¬i¬i∀i, which have complexity

Input y,Φ
Initialize β,γ,λ
Compute A = ΦTΦ, and z = ΦTy
for t = 1, 2, . . .

- compute V(t) = A + Γ−1(t)
for i = 1, 2, . . . , N

- extract v¬i(t) and vii(t) from V(t)
- compute σ∗2ii (t) from (29) and µ∗i (t) from (30)
- compute µi,tr(t) from (24)

end for
- compute β(t) from (19)
- compute γ(t) from (15)
- compute λ(t) from (16)

end for

Table 1: The proposed fast variational Bayes algorithm.

O(N(N − 1)3). To this end, straightforward computations for µ∗i
in (21) yield that

µ∗i = σT¬iΣ
−1
¬i¬iµ¬i,tr +

[
−σT¬iΣ−1

¬i¬i 1
] [ µ¬i

µi

]
. (25)

Setting z = ΦTy, (10) becomes µ = 〈β〉Σz and we get[
µ¬i
µi

]
= Tiµ = 〈β〉TiΣz = 〈β〉TiΣTT

i Tiz = 〈β〉Σi(Tiz)

(26)

where Ti is an appropriate permutation matrix and Σi is obtained
from Σ by moving its i-th column and row to the end of the matrix,

Σi =

[
Σ¬i¬i σ¬i
σT¬i σii

]
. (27)

By substituting (27) in (26), and then in (25), it easily follows that

µ∗i = σT¬iΣ
−1
¬i¬iµ¬i,tr + 〈β〉σ∗2ii zi (28)

Let us denote with vT¬i the i-th row of V = 〈β〉−1Σ−1 excluding
its i-th element vii. From (27) and the partitioned covariance matrix
inversion formula, we get

vT¬i = −〈β〉
−1

σ∗ii
σT¬iΣ

−1
¬i¬i, σ∗2ii =

〈β〉−1

vii
. (29)

Using (29), (28) becomes

µ∗i =
1

vii
(zi − vT¬iµ¬i,tr), (30)

that is, each µ∗i is efficiently computed with N operations. The pro-
posed algorithm is summarized in Table 1. Note that matrix inver-
sions have been completely eliminated and the required computa-
tional complexity of the algorithm isO(N2) per iteration t, which is
one order of magnitude less than the original BI-ICE algorithm, [4].
In addition, both algorithms converge very fast, exhibit similar esti-
mation performance, and produce sparse estimates without the need
of tuning or cross-validating any parameters.



5. EXPERIMENTAL RESULTS

In this section, we test the proposed VB algorithm on the calibrated
OMEGA cube of the Syrtis Major area used in [5]. The endmember
matrix Φ contains the spectral signatures of 32 mineral, previously
detailed in [5]. Syrtis Major is a Hesperian volcanic complex com-
posed essentially of basalts. Mafic minerals, olivine and both low-
calcium (LCP) and rich-calcium (HCP) pyroxenes [7], as well as
phyllosilicates [8] have been identified in the area. Moreover, there
is a significant presence of hydrated minerals [9], feldspar [8] and
iron-bearing minerals such as iron oxides [10]. In the study area,
Mustard et. al. in [7] have already identified the presence of three
specific mafic minerals (i) hypersthene, (ii) diopside and (iii) fay-
alite.

Abundance maps obtained by applying the proposed algorithm
reveal the presence of three areas with distinct characteristics in the
image. In the middle part of the image, LCP pyroxenes prevail, as
shown in Fig. 1a. The results shown in Fig. 1a are in accordance to
the corresponding maps in [5]. The upper part of the image presents
low reflectance and low abundance values and no spatially predom-
inant mineral. HCP diopside is observed only in this area but in
localized outcrops, as shown in Fig. 1b. In addition, the lower zone
of the image is characterized by strong presence of iron oxides, such
as magnetite (Fig. 1c) and hematite, accompanied by clay minerals
such as nontronite. Finally, olivines are detected in few pixels with
low abundance values in the middle left part of the image, while
phyllosilicates such as muscovite are detected in the whole image,
although having low abundances. The latter results are not shown
here due to space limitations. Furthermore, the mean number of
abundances of value higher than 0.1 is 1.74, i.e., in the mean, ap-
proximately two endemembers are present in each pixel, which jus-
tifies the use of a sparsity-promoting unmixing scheme. The sum of
abundances per pixel in the upper half of the image varies around
0.35 while in the bottom half the same sum exceeds 1.5. This is
possible since the sum-to-one constraint, i.e.,

∑N
i=1 wi = 1, is not

imposed in the proposed model and is an indication that the end-
members library used in the unmixing process may be insufficient to
effectively describe the exact mineral composition of the scene, as
also noted in [5].

6. CONCLUSION

In this paper, an iterative VB algorithm for the sparse linear unmix-
ing problem is proposed. The algorithm converges very fast and has
a low computational complexity of O(N2) per iteration. Experi-
mental results conducted on real hyperspectral data captured from
the OMEGA sensor clearly demonstrate that the proposed method
favors sparse estimates and allows for the reliable mineral analysis
and mapping of the martian surface.
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