
Advances in Hellenic Astronomy during the IYA09
ASP Conference Series, Vol. 424, 2010
K. Tsinganos, D. Hatzidimitriou, and T. Matsakos, eds.

Identification of Non-Linear Space Weather Models of the
Van Allen Radiation Belts Using Volterra Networks

M. Taylor, I. A. Daglis, and A. Anastasiadis

Institute for Space Applications and Remote Sensing(ISARS), National

Observatory of Athens(NOA), Metaxa and Vasillis Pavlou Street, Penteli,

Athens 15236, Greece.

D. Vassiliadis

Department of Physics, Hodges Hall, PO Box 6315, West Virginia University,

Morgantown, WV 26506-6315, USA.

Abstract. Many efforts have been made to develop general dynamical models of the
Van Allen radiation belts based on data alone. Early linear prediction filter studies fo-
cused on the response of daily-averaged relativistic electrons at geostationary altitudes
(Nagai (1988); Baker et al. (1990)). Vassiliadis et al (2005) extended this technique
spatially by incorporating SAMPEX electron flux data into linear prediction filters for
a broad range of L-shells from 1.1 to 10.0 RE. Nonlinear state space models (Rigler &
Baker (2008)) have provided useful initial results on the timescales involved in model-
ing the impulse-reponse of the radiation belts. Here, we show how NARMAX models,
in conjunction with nonlinear time-delay FIR neural networks (Volterra networks) hold
great promise for the development of accurate and fully data-derived space weather
specification and forecast tools.

1. Theory

The overall methodology we have adopted is based on using NARMAX models to
then contruct equivalent nonlinear Volterra neural networks that benefit from Takens’
Theorem for time-delay embedding combined with the ability of multilayer perceptrons
to be universal function approximators.

1.1. STEP 1: Constructing a taxonomy of nonlinear input-output models

We began with a generalisation of the Wold time series decomposition (Wold (1954))
having the form,

Jt = δ + f(Ψt) + εt ≡ Ĵt + εt (1)

where Jt is the electron flux time series, Ĵt = δ + f(Ψt) are the model predictions, f
is a general function (linear or nonlinear), δ is a constant (zero in the absence of trend),

εt = Jt − Ĵt are the prediction errors and Ψt is an “information matrix” constructed
from lag polynomials Φp, Θq, Nr, lag operators Li, Lj , Lk and differencing indices d1,
d2 and which has the general form (Taylor et al. (2009)),

Ψt = Φp(1 − Li)d1Jt + Θqεt + Nr(1 − Lk)d2It, (2)

corresponding to a Nonlinear AutoRegressive Integrated Moving-Average eXogenous
input NARIMAX(p, d1, q, d2, r) process. Note that in the case of multiple inputs, It
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Figure 1.: The overall methodology we have adopted.

will be a vector It. The information matrix then contains operators acting on time-
delayed (lagged) time series of electron flux Jt−p (autoregression AR), lagged equation
errors εt−q (moving-average MA), and lagged inputs It−r (eXogenous). The particular
class of model chosen depends on how exactlyΨt is defined and on the functional form
of f . For example, the nonlinear autoregressive, moving-average, exogenous input
NARMAX(p, q, r) process has Ψt = ΦpJt + Θqεt + NrIt and represents the time
series decomposition,

Jt = δ + f
[

ϕ1 Jt−1, · · · , ϕpJt−p, φ1εt−1, · · · , φqεt−q, (3)

η1 It−1, · · · , ηrIt−r

]

+ εt. (4)

The table below shows the complete taxonomy of input-output models we have iden-
tified with this class. Armed with input-output relations, we now construct neural net-
works to model f .

Function Autoregression order Moving-Average order Inputs Model
1 1 0 0 AR(1)=Random walk
1 p 0 0 AR(p)
1 p 0 r ARX(p, r)
1 0 q 0 MA(q)
1 0 ∞ 0 MA(∞)=Wold Decomposition
1 0 q r MAX(q, r)
1 p q 0 ARMA(p, q)
1 p q r ARMAX(p, q, r)
f p 0 0 NAR(p)
f p 0 r NARX(p, r)
f 0 q 0 NMA(q)
f 0 q r NMAX(q, r)
f p q 0 NARMA(p, q)
f p q r NARMAX(p, q, r)
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1.2. STEP 2: Equivalence between input-output models and Volterra Networks

Equivalence between any NARIMAX(p, d1, q, d2, r) process and its Volterra network
representation is guaranteed by a special combination of 2 Theorems:

1. Takens’ Theorem (Takens (1981)): There is a 1-to-1 mapping between a time
series and the underlying dynamical state space

2. Universality Theorem (Horkin et al. (1989)): Nonlinear Multilayer Perceptrons
are universal and exact function approximators

1.3. STEP 3: Construction of Volterra networks

Feedforward MLPs with lagged inputs create short-term memory and incorporate non-
linear dynamics into the network state space. In the case that neural activation functions
are linear then they operate as finite impulse-response (FIR) networks (Wan (1993)).
Linear FIR models already exist in the literature (Vassiliadis et al. (2005)). Here we de-
velop nonlinear (sigmoidal activation function) time-delay FIR networks (Volterra net-
works) based on the NARMAX(p, 0, r) process, whose general architecture is shown
in Figure 2. In this poster we will show initial results of nonlinear autoregressive mod-
eling of the electron flux based on the NAR(p) process as as example of the network
operation and capability.

Figure 2.: A schematic diagram of the nonlinear time-delay (Volterra) network used in
this work.

In order to measure the degree of success in reproducing observed values J(t)

from the network model Ĵ(t), we used the data-model correlation coefficient C:

C =
1

T

1

σJσ
Ĵ

∫ T

0

(

Ĵ(t) −
〈

Ĵ(t)
〉 )(

J(t) − 〈J(t)〉
)

dt (5)

where 〈J(t)〉 and σJ are the mean and standard deviation of J(t).
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Figure 3.: The raw dataset comprises daily-averaged values of 1-6MeV electron flux Je

over the time interval 01/01/1993-31/12/2001. The data for 1995 used in this study is
indicated. Note that SAMPEX-PET data is available only above L=1.1.

1.4. STEP 4: Identification of the physical model

Since the neuron activation function and weights (connections) in Volterra networks
are extractable and therefore explicit, the network architecture can be converted into
equations with known AR and MA coefficients thus providing model equations. In the
Results section, we present a spatio-temporal model of the electron flux calculated with
a NAR(30) process. The 30 lag steps in the FIR filter makes it impractical to write
down the resulting model equations here, but Figures 3b), 4) and 5b) suggest that the
simulated model is reproducing fairly well, the physics.

Figure 4.: a) The raw electron flux data normalised to the interval [-1,1] and b) initial
results from the nonlinear autoregression NAR(30) Volterra network revealing fairly
successful modeling of the salient features in this time interval.



96 Taylor et al.

Figure 5.: The impulse-response function obtained directly from the Volterra network
neuron weightings. The main impulse-response region is between L=2.7 and L=4.2 and
has a duration of approximately 23 days.

Figure 6.: a) The first zero crossing of the autocorrelation function calculated from
the raw data is at a lag of 23 days, b) apart from a numerical artifact at the data edge
(< L = 1.5), the data-model correlation functionC peaks in the main impulse-response
region, c) the raw data and the network model at the peak of the impulse response at
L = 3.6.

2. Discussion

All Volterra networks were trained with the Levenberg-Marquardt backpropagation al-
gorithm (Rumerlhart & McClelland (1986)) for 100 epochs and 10 adaptive passes at
each step in L-shell altitude (0.1 Earth radii) and over daily-averaged data covering the
whole of 1995. These early results suggest that this particular modeling approach is
capable of recovering the nonlinear dynamics implicit in the data.
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