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ABSTRACT

The orbits of charged particles (electrons and protons), in a Harris-type 3D field topology of a reconnecting current sheet (RCS), are analyzed
by dynamical systems methods. The focus is on values of the magnetic and electric fields relevant to RCSs in the solar atmosphere. First, a
perturbative form of the equations of motion is used to determine the stability perpendicularly to the plane of reconnection, which is crucial
in the efficiency of the RCS as an accelerator. The problem is shown to correspond to a case of “parametric resonance”. The orbits are then
studied with the complete form of the equations of motion. These can be reduced to a two degrees of freedom Hamiltonian nonlinear system
by exploiting the existence of an additional integral of motion besides the energy. The orbits are studied analytically by normal form theory.
Regular and chaotic orbits are identified by the use of appropriate Poincaré surfaces of section. The kinetic energy gain for escaping particles
is calculated as a function of the initial conditions of injection of an orbit in the sheet. Formulae relating the kinetic energy gain to the physical
parameters of the sheet and the initial conditions of the orbits are given both for electrons and protons.

Key words. acceleration of particles – Sun: magnetic fields – chaos

1. Introduction

One of the most puzzling problems in Astrophysics, for the
past several decades, has been to understand how the magnetic
field in the solar and stellar atmospheres is able to accelerate
particles to relativistic velocities and, also, to heat the plasma
to temperatures that can reach tens of million degrees to form
what we know as coronas. Scientists expect the answer to come
from the solar corona which, being closest to us, is observed in
most detail.

The mechanism which provides the magnetic energy is
magnetic reconnection and it is based on topologies involving
magnetic fields with opposite orientation, which come close to-
gether within very small distances (e.g. Priest & Forbes 2000).
Theoretical models have been developed to study steady recon-
necting topologies, called ‘reconnecting current sheets’. Such
topologies are typically characterized by the presence of an
electric field, normal to the reconnecting magnetic field compo-
nent. The electric field is equal to −u×B, where u is the velocity
of the plasma bulk flow across the sheet and B is the value of
the reconnecting magnetic field. As the plasma is flowing into
the sheet, the electric field accelerates the charged particles. For
super-Dreicer electric fields, the orbits of such particles can be
considered as effectively collisionless, thus they can be studied
by orbital theory.

There is a variety of scaling formulae in the litera-
ture relating the kinetic energy gain of accelerated particles

(electrons or ions) as well as the form of the final kinetic distri-
butions to the physical parameters of the reconnecting region
(e.g. Speiser 1965; Bulanov 1980; Martens 1988; Martens &
Young 1990; Burkhart et al. 1990; Deeg et al. 1991; Bruhwiler
& Zweibel 1992; Moses et al. 1993; Litvinenko 1996; Vekstein
& Browning 1997; Browning & Vekstein 2001; Craig &
Litvinenko 2002; Dalla & Browning 2005). The result seems
to depend on the particular topology of the reconnection site
(e.g. simple current sheet, X-type, spine), the position of the
particles’ injection and the relative strengths of the electric and
magnetic fields within it. A common question of many stud-
ies concerns what should be the values of the different mag-
netic field components (reconnecting, transverse, longitudinal)
in various topologies, so that electrons and protons with initial
velocities close to thermal can be accelerated to kinetic ener-
gies of tens or hundreds of keV, for electrons, and tens of MeV
for protons. Many authors have also presented simulations with
particles for various choices of the RCS model and initial ki-
netic distribution (e.g. Kliem 1994; Fletcher & Petkaki 1997;
Petkaki & MacKinnon 1997; Mori et al. 1998; Heerikhuisen
et al. 2002; Nodes et al. 2003; Hamilton et al. 2003, 2005;
Zharkova & Gordovskyy 2004, 2005).

A suitable way to distinguish which phenomena are generic
and which are model-specific is by a precise theoretical study
of the orbits in various reconnecting topologies. Such is the
purpose of the present paper. We choose the simplest possible
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reconnecting topology, a Harris-type configuration, and study
the orbits in it by methods obtained from the theory of dynam-
ical systems.

Starting with Speiser (1965), the theoretical study of or-
bits within Harris- type RCSs has shown that, when there is
no magnetic field component normal to the reconnection plane,
the particles are trapped in the current sheet forever, being acce-
larated all along its length. In the case, however, of a non-zero
normal component of the magnetic field, the resulting Lorentz
force carries the particles out of the accelarator quickly and
the gain of kinetic energy is limited. The so obtained kinetic
energy is insufficient to explain observed kinetic energies of
the particles in solar flares (Speiser & Lyons 1984). Speiser
reached these conclusions by an analysis based on perturbation
theory. Later on, Cowley (1978) gave rigorous results based
on the existence of first integrals of the equations of motion
(adiabatic invariants). Chen & Palmadesso (1986) showed that
for a normal component large enough, there are both mirror-
type (trapped) and chaotically scattered (untrapped) orbits.
However, in the case of solar RCSs, the escaping particles leave
the sheet before being efficiently accelerated by the electric
field (Litvinenko 1996). Büchner & Zelenyi (1989) explicitly
calculated the adiabatic invariants, and showed that the scatter-
ing of particles in chaotic orbits can be described by a nonlin-
ear symplectic mapping similar to the Chririkov standard-map
model (Chirikov 1979).

Following the above studies, the orbits of particles in var-
ious 2-D field topologies were studied by means of dynami-
cal systems’ methods by a number of researchers mainly in the
field of magnetospheric physics (see Chen 1992, and references
therein for a comprehensive review, and Kliem 1994). On the
other hand, the orbits of particles in 3-D topologies involving
a component of the magnetic field parallel to the electric field
are less well studied. This is called a “longitudinal component”.
Büchner & Zelenyi (1991) provided a heuristic criterion for the
onset of chaoticity, corresponding essentially to the curvature
of the magnetic field lines. Zhu & Parks (1993) gave analyti-
cal expressions for the orbits when the longitudinal component
is non-zero while the normal component is equal to zero. The
most general (and realistic) case, where all three components of
the magnetic field are present, was studied in a series of papers
by Litvinenko & Somov (1993), and Litvinenko (1993, 1996).
The main conclusion of these studies is that a large value of
the longitudinal component forces the untrapped particles to
remain within the sheet for a transient period of time which is
long enough so as to allow for the electric field to accelerate the
particles to observed values of their kinetic energies. For a main
reconnecting field of order ∼100 G, a normal component∼1 G,
and an electric field ∼10 V/cm, the longitudinal field should be
10 ∼ 100 G to explain final kinetic energies of 10 ∼ 100 keV
for electrons.

Recent theoretical models (Anastasiadis et al. 1997, 2004;
Vlahos et al. 2004) consider the presence of multiple current
sheets in complex solar active regions. These models use as an
input the kinetic energy gain of particles per single particle -
RCS interaction. The kinetic energy gain, as a function of the
physical parameters of the RCS, is an important and crucial
point in the development of such models.

The present paper reports the results from a detailed ex-
ploration of the orbital dynamics in a simple 3D model RCS.
After describing the model in Sect. 2, Sect. 3 makes a study
of the stability problem in a perturbed form of the equations
of motion in view of the theory of parametric resonance (e.g.
Arnold 1978). This allows us to find an improvement of the
criterion of stability for electron orbits given in Litvinenko and
Somov (1993). Section 4 gives a theoretical analysis of the or-
bits by reducing the problem to a a two degrees of freedom
nonlinear Hamiltonian model. The main tools used in the the-
oretical analysis are the normal form method and the method
of a Poincaré surface of section. Section 5 presents the main
numerical simulations as well as the determination of the ki-
netic energy gain for escaping particles, as a function of the
position of injection and initial kinetic energy. These quanti-
ties are calculated numerically for protons and electrons and
they are compared with analytical formulae derived from the
preceding theoretical analysis. Section 6 summarizes our main
conclusions.

2. The model

The same simple RCS topology is considered as in Litvinenko
& Somov (1993) and Litvinenko (1996). The current sheet con-
figuration is shown in Fig. 1. The magnetic and electric fields
are:

E = (0, 0, E)

B = (−y/a, ξ⊥, ξ‖)B0 for |y| ≤ a (1)

B = (−sgn(y), ξ⊥, ξ‖)B0 for |y| > a

where B0 is a typical measure of the magnetic field in a re-
connecting region, ξ⊥, ξ‖, E are constants, and sgn(y) = y/|y|.
Thus, the magnetic field has constant measure outside the
sheet. This form of the magnetic field in the x−axis is a simpli-
fication of the Harris configuration B0 tanh(y/a). In fact, all the
orbits in the present paper are integrated up to |y| = a, while,
when an orbit crosses the value |y| = a, it is considered as es-
caping the sheet. Thus, the details of the magnetic field outside
the sheet are not important in the analysis below.

A charged particle with mass m and charge q will be under
the effect of a Lorentz force, and the non-relativistic equation
of motion is

m
du
dt
= q(E + u × B). (2)

Equation (2), can be analysed in three scalar differential equa-
tions in dimensionless form, if the half-thickness a is the unit
of length and the inverse gyrofrequency ω−1

B = m/qB0 is the
unit of time.

d2x
dt2
= ξ‖

dy
dt
− ξ⊥ dz

dt
(3)

d2y

dt2
= −ξ‖ dx

dt
− y dz

dt
(4)

d2z
dt2
= ε + ξ⊥

dx
dt
+ y

dy
dt
· (5)
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Fig. 1. The topology of the magnetic and electric fields in the model
current sheet.

In these equations the dimensionless electric field is given as
ε = mE/(aqB2

0), and the quantities ξ⊥ and ξ‖ are defined in
Eq. (1). The above equations hold for a positive charge with
the orientation of the axes and fields as shown in Fig. 1, or for
a negative charge with either the orientation of the y and z axes
reversed, or the orientation of the magnetic and electric fields
reversed.

The units of length and time in Eqs. (3)–(5), as well as the
values of the dimensionless parameters ξ‖, ξ⊥ and ε are deter-
mined by the values of the main component of the magnetic
field B0, the electric field E, the half-thickness of the sheet
a, and the nature of the charged particle (electron or proton).
Typical values of a, B0, and E for solar flares are induced by
observations, and/or analysis of the consistency of the plasma
parameters with the induced fields (e.g. Martens 1988; Martens
& Young 1990; Somov 1992; Litvinenko 1996, and references
therein). These values are ∼100 cm for a, 100 ∼ 200 G for B0,
1 ∼ 10 V/cm for E, and 0.1 ∼ 1 G for B⊥. The electric field
is super-Dreicer by about five orders of magnitude, thus the
study of individual orbits is justified. On the other hand, the
longitudinal component of the magnetic field B‖ can vary from
zero to a value as large as that of the main component B0 (the
ratio B‖/B0 determines the angle of contact of the reconnect-
ing field lines in two-loop models). This parameter is crucial in
the problem of particle acceleration because a value B‖ � B0

is required to explain the observed kinetic energies, at least of
electrons, in solar flares (Litvinenko 1996). A non-zero value
of B‖ is also supported by vector magnetic field measurements
(e.g. Hagyard 1990) and by observations of the geometry of
flare ribbons through their footpoints’ motions (Fletcher et al.
2004). In the present paper we examine the cases of a moderate
value (= 0.1B0) and of a large value (= B0) for B‖.

If the unit of the magnetic field is taken equal to 〈B〉 =
100 G, the scaled equations (4, 5, 6) correspond to electron
motion for a choice of time unit 〈t〉 = ω−1

B = 5.8 × 10−10 s.
The length unit is set equal to 〈L〉 = a = 0.58 m, yielding the
velocity unit 〈v〉 = 109 m/s and the energy unit 〈E〉 = me〈v〉2 =
5.7 × 103 keV (the velocities considered in the present paper
are at most v = 0.1, with typical values one order of magnitude
smaller, i.e., they can be treated by non-relativistic equations of

motion). With the above choice, the electric field unit is 〈E〉 =
aB2

0qe/me = 107 V/m = 105 V/cm. Typical values for the field
components in the above units are 10−3 ∼ 10−2 for ξ⊥, 0.1 ∼ 1
for ξ‖ and 10−5 ∼ 10−4 for ε.

In the case of protons, the unit of length is the same as for
electrons, but the unit of time must change so that the equations
of motion are valid in the dimensionless form (4, 5, 6). The unit
of time becomes 1.04 × 10−6 s, yielding a new unit of velocity
5.44× 105 m/s and a new unit of energy 3.09× 10−3 MeV. The
unit of the magnetic field is unaltered, but the unit of electric
field becomes 5.44 × 103 V/m. Thus, the only changes when
studying proton orbits are in the value of ε (typical values ε =
10−2 ∼ 10−1) and in the timestep of the integration routine.

Integrating Eqs. (3), (5) once with respect to t and substi-
tuting the result into (4) yields:

dx
dt
= ξ‖ y − ξ⊥ z + c1 (6)

d2y

dt2
+ ξ2‖ y = −

(
ε t + ξ⊥ x +

1
2
y2 + c2

)
y + ξ‖(ξ⊥z − c1) (7)

dz
dt
= εt + ξ⊥x +

1
2
y2 + c2. (8)

The constants c1 and c2, for zero initial velocities are given by:

c1 = −ξ‖y0 + ξ⊥z0 c2 = −ξ⊥x0 − 1
2
y2

0

where x0, y0, z0 are the initial coordinates of the particle.
The remaining part of the paper deals with the analysis

of the orbits induced by Eqs. (3)–(5), or (6)–(8). It should
by stressed that the equations of motion are autonomous be-
cause the topology of the fields described by Eqs. (1) has
been assumed to remain stationary in time. In reality, the fields
in reconnecting regions are not stationary, but their evolution
timescales are in general larger than the typical dynamical
times for particles’ orbits within an RCS.

3. Parametric resonance

For the current sheet to act as an accelerator, it is necessary
that a particle stays within the sheet for a time long enough so
that a significant amount of its electric potential energy is con-
verted to kinetic energy. Litvinenko & Somov (1993) made an
analysis of the range of parameter values for ξ‖, as a function
of ξ⊥ and ε, where the oscillations of a particle’s orbit in the
y-axis, i.e., perpendicularily to the sheet, are stable. This anal-
ysis is based on perturbative expansions. Namely, the orbital
functions x(t), y(t), z(t) are developed as

x(t) = x0 + x1(t), y(t) = y0 + y1(t), z(t) = z0 + z1(t). (9)

In Eq. (9), x1(t) and z1(t) are terms of size O(ε) representing
a cycloid motion with initial conditions (x0, y0, z0). In other
words, the particle oscillates in the z-axis, while the motion
in the x-axis is the combination of a constant drift with ve-
locity ε/ξ⊥ and of an oscillation. Litvinenko & Somov (1993)
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treated y1(t) as containing terms of both first and second
degree in ε. One then finds the equation:

d2y1

dt2
+

(
ξ2‖ + ε

sin(ξ⊥t)
ξ⊥

)
y1 = ξ

2
‖ y0 + (1 − cos(ξ⊥t))ε

ξ‖
ξ⊥
· (10)

By introducing a translation of the origin Y = y1 − Y0, where
Y0 = y0 + ε/(ξ‖ξ⊥), Eq. (10) takes the form:

d2Y
dt2
+ ξ2‖ (1 +

ε

ξ2‖ ξ⊥
sin(ξ⊥ t))Y = (11)

−ε
(
y0 +

ε

ξ‖ξ⊥

)
sin(ξ⊥t)
ξ⊥

− ε cos(ξ⊥t)
ξ‖
ξ⊥
·

The form of Eq. (11) is preferable because the right hand side
is now a periodic function of time with period equal to 2π/ξ⊥.
Equation (11) is a particular case of a Mathieu equation (e.g.
Ince 1926). Litvinenko & Somov (1993) claimed that the con-
dition

ξ2‖ ≥
ε

ξ⊥
(12)

is sufficient for the orbits to be stable, i.e., for y(t) making stable
oscillations. The argument is that if condition (12) is fulfilled,
the unperturbed frequency appearing in the l.h.s. of Eq. (11) is
real-valued for all t. The physical meaning of the criterion pro-
vided by Eq. (12) is that if the longitudinal magnetic field ξ‖ is
strong enough, the particles follow orbits almost parallel to the
direction of the longitudinal field, (z-axis), which is also paral-
lel to the electric field. Thus the particles stay within the current
sheet and they are being accelerated by the electric field.

However, the condition given by Eq. (12) is not sufficient to
ensure stability of the orbits. A detailed study of the solutions
of Eq. (11) can be obtained by the theory of Mathieu equa-
tions (Ince 1926). In particular, Eqs. (10) and (11) are special
examples of dynamical systems where the so-called paramet-
ric resonance phenomenon (e.g. Arnold 1978) is manifested.
One finds that there is a periodic solution of Eq. (11), namely
a solution of the form Y(t + T ) = Y(t) where T = 2π/ξ⊥. We
determine this orbit numerically, by considering a Poincaré sur-
face of section at times t = nT , with n integer, for the solutions
of Eq. (11). The successive iterates of the orbit on the surface
of section define a two-dimensional area-preserving mapping

Y′ = f (Y, PY ), P′Y = g(Y, PY) (13)

where Y = Y(t), PY = Ẏ(t) are the values corresponding to
any solution of (11), and Y′ = Y(t + T ), P′Y = Ẏ(t + T ).
Y(t + T ), PY(t + T ) are uniquely determined as the solutions
of the same differential equation at time t′ = t + T , with initial
conditions Y(t) and PY (t) at time t. Thus, in (13), Y′ and P′Y
are written simply as functions of Y and PY . A periodic orbit
corresponds to a fixed point of the mapping (13), namely to a
pair of values Y0, PY0 such that Y′ = Y0, P′Y = PY0. This point
is determined by finding numerically, with a Newton-Raphson
scheme, the root of the system of equations

F(Y, PY) = Y − f (Y, PY) = 0, G(Y, PY) = PY − g(Y, PY) = 0.

(14)

Fig. 2. Parametric resonance in the equations of motion (Eq. (11)). The
dotted curve indicates the transition values of the parameters ε and
ξ‖/ξ⊥ for which the orbits turn from stable to unstable. The criterion
(12) is superposed (curve without dots).

The linear stability of the periodic solution is determined by the
eigenvalues of the monodromy matrix A which is the Jacobian
of the mapping (13) calculated at the fixed point (Y0, PY0).
According to the theory of parametric resonance, as ξ‖ in-
creases, the periodic orbit (Y0, PY0) undergoes an infinity of
transitions from stable to unstable. For ε small, these transi-
tions occur near the values where the angular frequency ω0 of
the unperturbed oscillator (for ε = 0) becomes a multiple of
1/2, namely ω0 = n/2. In the case of the mapping (13) defined
by Eq. (11), for fixed ξ⊥,ω0 is proportional to ξ‖. Thus, an infin-
ity of transitions from stability to instability are expected as ξ‖
increases. These transitions are shown in Fig. 2. The dotted line
indicates the critical parameter values where the periodic orbit
turns from stable to unstable. The dotted curve has branches
which meet in pairs at specific points on the x-axis, correspon-
ing to the parameter value ε = 0. As shown in Fig. 2, these
points are precisely the multiples of 1/2.

The domains of instability defined for low multiples of 1/2
are much larger than those defined for high multiples of 1/2.
Thus, instability zones of considerable width exist for relatively
low values of ξ‖. For super-Dreicer electric fields, these zones
are very narrow so that the criterion (12) is an acceptable ap-
proximation (solid line in Fig. 2). Nevertheless, for any value
of ε > 0, instability domains, of narrower and narrower width,
exist for arbitrarily large values of ξ‖.

4. Hamiltonian reduction and theoretical study
of the orbits

4.1. Hamiltonian reduction

The results of the previous section were based on a perturbative
treatment of the equations of motion (3)–(5). In this section
we examine the full form of these equations of motion. These
can be derived from a three degrees of freedom autonomous
Hamiltonian function

H =
1
2

(px + ξ‖y)2 +
1
2

p2
y +

1
2

(
pz + ξ⊥x +

1
2
y2

)2

− εz (15)
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where the canonical momenta px, py, pz are given by the sum
of the velocity and of the vector potential components

px = ẋ − ξ‖y, py = ẏ, pz = ż − ξ⊥x − 1
2
y2. (16)

One verifies immediately that Hamilton’s equations

ẋ =
∂H
∂px
, ṗx = −∂H

∂x
(17)

(and similarly for y, py and z, pz), lead to the equations of
motion (3)–(5).

Equations (17) admit an exact second integral of motion
independent of and in involution with the Hamiltonian (15):

I2 = px + ξ⊥z. (18)

We find İ2 = {I2,H} = 0, where {·, ·} stands for the Poisson
bracket operator. Despite the existence of this second integral,
the 3DOF Hamiltonian system (15) is not integrable. One more
integral, independent of and in involution with both H and I2,
is required to ensure integrability of the system (15). Based
on some heuristic considerations, Litvinenko (1993) proposed
that there should be an approximate third integral of the mo-
tion which renders regular the character of the orbits within the
domain of its validity. Indeed, such an approximate integral is
found in Sect. 4.3 below.

The existence of a second integral I2 allows one to reduce
the system, for any constant value of I2, to a two degrees of
freedom Hamiltonian system. In general the algorithm for this
reduction (Arnold & Novikov 1995) leads to implicit formu-
lae. However, in the present case the reduction can be carried
out explicitly. Indeed if one uses the pairs of variables (y, py)
and (z, c4), where c4 = ξ⊥x + pz, then the use of the original
equations of motion and of the expression (18) for I2 yields the
equations

ẏ = py (19)

ż = c4 +
1
2
y2

ṗy = −y
(
c4 +

1
2
y2

)
− ξ‖(I2 − ξ⊥z + ξ‖y)

ċ4 = ξ⊥(I2 − ξ⊥z + ξ‖y) + ε

which are, precisely, Hamilton’s equations deduced from the
2DOF Hamiltonian:

H =
1
2

p2
y +

1
2

(
c4 +

1
2
y2

)2

+
1
2

(I2 − ξ⊥z + ξ‖y)2 − εz. (20)

The reduction of the original system to a Hamiltonian system of
two degrees of freedom is a quite helpful step, because many
well known analytical and numerical tools of study are more
effectively applicable in two than in three degrees of freedom
Hamiltonian systems. In particular, the theory of normal forms
can be used to extract analytically the main characteristics of
the orbits, and the method of the Poincaré surface of section can
be used to identify the regular or chaotic character of particular
orbits.

4.2. Equilibrium points when ε = 0

For typical values of the electric and magnetic fields in solar
RCS, the parameter ε is small, ε � 1, i.e., the term εz in the
Hamiltonian (20) can be considered as a perturbation term with
respect to the Hamiltonian H0 without electric field, namely

H0 =
1
2

p2
y +

1
2

(
c4 +

1
2
y2

)2

+
1
2

(I2 − ξ⊥z + ξ‖y)2. (21)

The Hamiltonian (21) posesses equilibrium points that can
serve as starting points for a theoretical analysis of the orbits.
Hamilton’s equations of motion for (21) are

ẏ = py (22)

ż = c4 +
1
2
y2

ṗy = −y
(
c4 +

1
2
y2

)
− ξ‖(I2 − ξ⊥z + ξ‖y)

ċ4 = ξ⊥(I2 − ξ⊥z + ξ‖y).

For any value of the integral I2, the family of points

py0 = 0, z0 =
1
ξ⊥

(ξ‖y0 + I2), c40 = −1
2
y2

0, (23)

for y0 arbitrary, are equilibrium points of the equations of mo-
tion (22). The stability of the whole family is obtained by lin-
earizing Eqs. (22). Taking y = y0+Y, z = z0+Z, py = py0+PY ,
c4 = c40+PZ, where Y, PY , Z and PZ are small quantities, yields
the variational equations of motion

Ẏ = PY (24)

Ż = PZ + y0Y

ṖY = −y0PZ − (y2
0 + ξ

2
‖ )Y + ξ‖ξ⊥Z

ṖZ = ξ⊥ξ‖Y − ξ2⊥Z.

Differentiation of Eq. (24) with respect to time yields a linear
system of the form

Q̈ = AQ (25)

where Q ≡ (Y, Z, PY , PZ) and A is a 4 × 4 matrix with constant
coefficients. The equation

det(A + ω2I) = 0, (26)

gives the eigenvalues (characteristic frequencies) which deter-
mine the stability of the equilibrium point. We find

ω2
1 = ξ

2
‖ + ξ

2
⊥ + y

2
0, ω

2
2 = 0. (27)

Thus, the whole family of equilibria are marginally simply un-
stable. This is nothing but the fact that, in the linear approxi-
mation, the motion around any equilibrium consists of a drift
along the magnetic field lines and an oscillation (projection of
a gyration) in the transverse plane to the field lines. However,
as shown in the sequel, the presence of nonlinear terms in the
equations of motion results in a second small “mirror” fre-
quency being introduced along the field lines.
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4.3. Normal form

Without loss of generality, we consider in detail the case I2 = 0,
and the equilibrium point of (21) y0 = z0 = py0 = c40 = 0. A lin-
ear canonical transformation diagonalizes the quadratic part of
the Hamiltonian (20). By introducing new canonical variables

u1 =
−ξ‖y + ξ⊥z√
ξ2‖ + ξ

2⊥
, p1 =

−ξ‖py + ξ⊥c4√
ξ2‖ + ξ

2⊥

u2 =
ξ⊥y + ξ‖z√
ξ2‖ + ξ

2⊥
, p2 =

ξ⊥py + ξ‖c4√
ξ2‖ + ξ

2⊥
(28)

the Hamiltonian (21) takes the form

H = H2 + H3 + H4 (29)

where

H2 =
1
2

p2
1 +

1
2

(ξ2‖ + ξ
2
⊥)u2

1 +
1
2

p2
2

H3 =
1

2(ξ2‖ + ξ
2⊥)3/2

(ξ‖ξ2⊥u2
2 p2 + ξ

3
⊥u2

2 p1 + ξ
3
‖ u

2
1 p2

+ξ2‖ ξ⊥u2
1 p1 − 2ξ2‖ ξ⊥u1u2 p2 − 2ξ‖ξ2⊥u1u2 p1)

H4 =
1

8(ξ2‖ + ξ
2⊥)2

(ξ4⊥u4
2 − 4ξ3⊥ξ‖u1u3

2

+6ξ2⊥ξ
2
‖ u

2
1u2

2 − 4ξ⊥ξ3‖ u
3
1u2 + ξ

4
‖ u

4
1).

The terms H3 and H4 can be considered as perturbation terms
with respect to the quadratic term H2. To study the effect of the
nonlinear terms H3 and H4, we find a “normalizing transforma-
tion” and associated normal form for the Hamiltonian (29). A
normalizing transformation is a near-identity canonical trans-
formation to new variables u′i = ui + . . ., p′i = pi + . . . such that
the Hamiltonian (29), expressed in the new variables (u′i , p

′
i)

takes a simpler form (the normal form) which renders trans-
parent the nature of the solutions to Hamilton’s equations, i.e.,
the nature of the orbits. The general theory of normal forms
for Hamiltonian systems, developed by Poincaré (1892) and
Birkhoff (1927), does not cover the case when one of the fre-
quencies is equal to zero, as in the case of the Hamiltonian
H2. The appropriate theory was developed by Contopoulos &
Vlahos (1975), using the Birkhoff – von Zeipel method, and by
Dragt & Finn (1979) and Engel et al. (1995), using the method
of canonical transformations via the composition of Lie series.
Here we implement a simplified version of the algorithm of
Dragt & Finn (1979). Details of this algorithm are given in the
Appendix.

Introducing action-angle variables (J1, φ1) given by:

u1 =

√
2J1

ω10
cos 2φ1, p1 =

√
2ω10J1 sin 2φ1 (30)

where ω10 =
√
ξ2⊥ + ξ2‖ , the quadratic part of the Hamiltonian

is given by

H2 = ω10J1 +
p2

2

2
· (31)

In the absence of H3 and H4, the action J1 is an integral
of motion (adiabatic invariant). However, the terms H3 and

H4 depend on the angle φ1, so that J1 is no longer an inte-
gral of the motion. We thus introduce new canonical variables
J′1, φ

′
1, u
′
2, p
′
2 by a near identity transformation so that the an-

gle φ′1 is eliminated in the transformed Hamiltonian (normal
form). The normal form Z ≡ H(J′1, φ

′
1, u
′
2, p
′
2) contains only

terms which are even in the canonical variables. Up to terms of
sixth degree, it is given by:

Z = Z2 + Z4 + Z6 + . . . (32)

where

Z2 = ω10 J′1 +
p′22
2

Z4 =
ξ2‖ J

′2
1

16ω4
10

+
ξ2⊥J′1u′22

2ω3
10

Z6 =
ξ2‖ J

′3
1

ω9
10

5ξ2⊥
576
− ξ

2
‖

256

 + ξ
2⊥J′21 u′22
16ω8

10

(25ξ2⊥ − 8ξ2‖ ) −
7ξ4⊥J′1u′42

24ω7
10

·

The new variables are given in terms of the old variables by the
relations (up to fourth degree):

J′1 = J1 +
ξ2‖ ξ

2⊥(2ξ2⊥ − ξ2‖ )
16(ξ2‖ + ξ

2⊥)9/2
J2

1 + F1(J1, φ1, u2, p2) (33)

u′2 = u2 + U2(J1, φ1, u2, p2),

p′2 = p2 +
ξ3‖ J1

2(ξ2‖ + ξ
2⊥)2
+ P2(J1, φ1, u2, p2)

where the functions F1,U2 and P2 are trigonometric functions
with respect to the angle φ1 (F1,U2 are O(J3/2

1 ) while P2 is
O(J1)). Thus, the values of the new variables along a particu-
lar orbit fluctuate in general around the values of the respective
old variables along the same orbit. Furthermore, the values of
J′1 are shifted with respect to the values of J1 by a second or-
der correction O(J2

1). This is expected by the general normal
form theory. However, the values of p′2 are shifted with respect
to the values of p2 by a first order correction O(J1). This phe-
nomenon appears only in the particular case of the normal form
considered here.

Since the angle φ′1 does not appear in Z, J′1 becomes
a “formal integral” of the motion. This integral is approxi-
mate because the series expressions are truncated at order six.
However, even at this order of truncation the normal form al-
lows one to extract the main characteristics of the orbits with a
quite high accuracy.

By a rearrangement of terms Z takes the form:

Z = ω10 J′1 +
1
2

(p′22 + ω
2
2(J′1)u′22 ) + b(J′1) − c(J′1)u′42 + . . . (34)

where

ω2
2 =
ξ2⊥J′1
ω3

10

+
ξ2⊥J′21

8ω8
10

(25ξ2⊥ − 8ξ2‖ ) + . . .

b(J′1) =
ξ2‖ J

′2
1

16ω4
10

+
ξ2‖ J

′3
1

ω9
10

5ξ2⊥
576
− ξ

2
‖

256

 + . . .
and

c(J′1) =
7ξ4⊥J′1
24ω7

10

+ . . .
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Fig. 3. Comparison between the numerically calculated frequency ω2,
as a function of J1, and the theoretical prediction by the normal form
analysis (Eq. (34)).

Considering any constant value of the adiabatic invariant J′1 =
const., the Hamiltonian Z may be viewed as an one degree
of freedom Hamiltonian for the canonical variables (u′2, p

′
2). If

ω2
2(J′1) > 0, the motion in the second degree of freedom is a

harmonic oscillation with frequency equal to ω2 plus correc-
tions due to higher order terms in u′2. This oscillation causes a
“magnetic mirror” effect. The condition ω2

2(J′1) > 0 is fulfilled
for

0 < J′1 < ∞ if ξ2‖ < 25ξ2⊥/8

0 < J′1 <
8ω5

10

8ξ2‖ − 25ξ2⊥
if ξ2‖ > 25ξ2⊥/8. (35)

At the limit ξ‖ � ξ⊥, the transformation (28) tends to the trans-
formation

u1 � −y, u2 � z. (36)

Thus, when ξ‖ � ξ⊥ the slow “mirror” oscillation is practically
aligned with the direction of the longitudinal field, while there
is a fast gyration, with frequency of the order of ξ‖ transversally
to the longitudinal field. This limit corresponds to the “guiding
center approximation”. The frequency of the mirror oscillation

ω2 =

√
ξ2⊥J′1
ω3

10

+
ξ2⊥J′21

8ω8
10

(25ξ2⊥ − 8ξ2‖ ) (37)

initially increases as J′1 increases, while it reaches a maximum
at the value J′1 = 4ω5

10/(8ξ
2
‖ − 25ξ2⊥). These results are con-

firmed by a comparison of Eq. (37) with a numerical calcula-
tion of the mirror frequency along various orbits for different
values of J′1 (Fig. 3).

4.4. Poincaré surfaces of section. Regular and chaotic
orbits

All the orbits of energy E which intersect a particular plane
y = const. with ẏ > 0 (or ẏ < 0) determine a Poincaré surface

of section (z, c4). Such sections are quite useful in visualizing
the dynamics of the orbits. In particular, regular orbits lie on
invariant curves in the Poincaré section, while chaotic orbits
fill stochastic domains in the same section.

Figure 4 shows an example of Poincaré surfaces of section
for the Hamiltonian (21). The section is the plane (z, c4), for
y = 0, ẏ > 0. For y = 0 we have c4 = ż (see Eq. (22)). Thus,
the sections shown below will be referred to as (z, ż). In fact,
the constant value of the second integral I2 = ẋ + ξ⊥z− ξ‖y = 0
yields, on the Poincaré section y = 0, the relation ẋ = −ξ⊥z.
Thus, the section plane (z, ż) of the 2DOF Hamiltonian (21) is
equivalent to the plane (ẋ, ż) of the original 3DOF Hamiltonian
(15), with ε = 0. This means that all the structures observed in
the above Poincaré surface of section can be translated in terms
of the three velocity components (ẋ, ẏ, ż) (ẏ is obtained by the
constant energy condition). This reflects the fact that the equa-
tions of motion are invariant under translations in the direction
of the z axis. In fact, a translation z → z + z0 is equivalent to a
different value of I2, i.e., I2 → I2 + ξ⊥z0.

In all the sections shown in Fig. 4, the section points are
limited in a domain defined by a limiting outermost closed
curve. This is the curve of zero velocity on the Poincaré section,
corresponding to orbits that reach the section plane tangently.
In fact, for any fixed value of the energy H = E, and for y = 0,
the velocity ẏ = py can be determined from the Hamiltonian
(21)

ẏ = py = ±
√

2E − ż2 − ξ2⊥z2. (38)

The quantity under the square root must be positive. The limit-
ing curve on the surface of section is then given by

ż2 + ξ2⊥z2 = 2E (39)

i.e., it is an ellipse centered at (z, ż) = (0, 0), with axial ratio
equal to ξ⊥.

In Fig. 4a the energy is E = 10−4 and the parameters
are ξ⊥ = 0.001 and ξ‖ = 0.1. In the surface of section of
Fig. 4a most orbits are regular, i.e., they lie on invariant curves.
The ‘formal integral’ approximation is valid for such orbits.
However, as the effective perturbation ξ⊥/ξ‖ increases, or as
the energy E increases for fixed ξ⊥/ξ‖, many tori are destroyed,
and chaos is introduced in the system. These phenomena are
shown in Figs. 4b,c,d. Figures 4b,c show the surface of sec-
tion for the same energy and ξ‖, but for ξ⊥ = 0.01 and 0.02
respectively. The size of domain of chaotic motion increases
in general as ξ⊥/ξ‖ increases. In particular, as ξ⊥ increases, the
chaos proceeds mainly from an outer domain inwards, towards
a central periodic orbit (marked by O). For ξ⊥ sufficiently large,
the regular domain is defined by an outermost invariant curve
which is a closed curve around O (Fig. 4c).

On the other hand, the intersections of a chaotic orbit with
the upper part of the surface of section give the impression
of forming arcs that are similar to segments of open invariant
curves as those of Fig. 4a. However, the same orbit, after mak-
ing a number of intersections along one arc, goes away from
the surface of section and later returns to it giving points on
a different arc. Thus, the orbit does not belong to an invari-
ant curve but it is a chaotic orbit which behaves almost reg-
ularly for some transient time intervals. This phenomenon is



670 C. Efthymiopoulos et al.: Particle dynamics in 3-D RCS in the solar atmosphere

Fig. 4. a) Poincaré surfaces of section (z, ż), y = 0, ẏ > 0, for the Hamiltonian (21), for ξ‖ = 0.1 and a) ξ⊥ = 0.001, E = 10−4 b) ξ⊥ = 0.01,
E = 10−4 c) ξ⊥ = 0.02, E = 10−4 d) ξ⊥ = 0.001, E = 10−3.

clearly seen on the Poincaré surface of section as the energy E
increases. Figure 4d shows the surface of section for the same
parameters as in Fig. 4a, but for the energy E = 10−3. At this
energy many orbits around O are still regular. However, the or-
bits with initial conditions (z, ż) = (0, 0.012) (point A1) and
(z, ż) = (0, 0.016) (point B1) are chaotic. In particular, the or-
bit with the initial condition A1 forms an inner arc down to a
point intersecting the limiting curve, but the next consequent is
on the arc A2, which is further away. Similarly, the orbit start-
ing at B1 gives intesections forming an arc which intersects the
limiting curve, but the consecutive returns of the same orbit to
the surface of section are on the arc B2, and later on B3. Thus
these orbits do not lie on invariant curves, but they are chaotic.
Similar arcs exist in Fig. 4b, but they are less visible.

The phenomenon of appearance of arcs that are consecu-
tively intersected by weakly chaotic orbits is well known in
this type of system (e.g. Büchner & Zelenyi 1989), but also in
other types of systems such as rotating galactic potentials (see
Contopoulos 2002). In particular, the consecutive crossings can
be described in terms of a mapping similar to the Chririkov
standard map, i.e., this phenomenon is similar to Fermi accel-
eration (Lichtenberg & Lieberman 1992).

The fixed point O corresponds to the equilibrium point
u′2 = p′2 = 0 of the Hamiltonian (34) written in normal form.
Now, recalling that p′2 contains a first order correction O(J)
with respect to p2, given by Eq. (33), the equilibrium point
(u′2, p

′
2) corresponds to the point

(u2, p2) �
0,− ξ3‖ J1

2(ξ2‖ + ξ
2⊥)2

 ·

Recalling the transformations (28), for ξ‖ � ξ⊥, yields the ap-
proximate position of the fixed point O in the old variables

z = 0, ż � − J1

2ξ‖
· (40)

If y0 is the amplitude of oscillations in the y−axis, in the neigh-
borhood of the fixed point O, then, the action J1, in the low-
est approximation, is given by J1 = ω10y

2
0/2 � ξ‖y2

0/2, which
yields the position of the fixed point as

z = 0, ż � −y
2
0

4
· (41)

The invariant curves close to the point O are deformed ellipses,
i.e. they are closed curves surrounding the point O. However,
at larger distances from O the invariant curves are open. This
effect is explained in Sect. 4.5 below.

Let us now give a non-zero value to the electric field ε in
the Hamiltonian (20). The limiting surfaces of motion, for any
value of the energy E, are given by setting ż = c4 + y

2/2 = 0
and ẏ = py = 0 in the Hamiltonian (20), yielding

ξ2‖ y
2 + ξ2⊥z2 − 2ξ‖ξ⊥yz − 2εz = 2E (42)

which is a parabola on the plane (y, z) open at the limit y →
∞. Thus, the limiting surface is open at the half-plane y > 0
(signs are reversed for charges of opposite sign). This means
that escapes from the plane y = 1 are possible for any value of
the energy, while escapes from the plane y = −1 are possible
only if the minimum of the parabola is below y = −1.
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Fig. 5. Poincaré surfaces of section (z, ż), y = 0, ẏ > 0, for the Hamiltonian (20), with ξ‖ = 0.1, ξ⊥ = 0.001, and a) ε = 0, E = 10−4, b) ε = 10−5,
E = 10−4, c) ε = 0, E = 10−3, d) ε = 10−5, E = 10−3.

If we consider any surface of section (z, ż) for y = ys, ẏ > 0,
escapes are possible perpendicularly to the section plane. The
limiting curve in such a section is given by

ż2 + ξ2⊥

(
z − ξ‖ξ⊥ys + ε

ξ2⊥

)2

= 2E +
ε

ξ⊥

(
2ξ‖ys +

ε

ξ⊥

)
, (43)

Eq. (43) defines an ellipse which reduces to a point when

ys,min = − ε

2ξ‖ξ⊥
− Eξ⊥
εξ‖
· (44)

All the orbits reaching this point are bounced in the positive y
direction.

When ys = 0, the limiting curve reduces to

ż2 + ξ2⊥

(
z − ε
ξ2⊥

)2

= 2E +
ε2

ξ2⊥
· (45)

Thus, the center of the limiting curve is displaced, with respect
to the center of the limiting curve of the case ε = 0, by the
quantity ε/ξ2⊥. Equivalently, since I2 = 0, this displacement
corresponds to an increase of the average velocity ẋ by ε/ξ⊥
for all the orbits with initial conditions in the section. This is
nothing but the constant drift introduced by the electric field
perpendicularly to ε and ξ⊥.

Now, a numerical integration of the orbits shows that many
regular orbits survive for ε � 0, yielding invariant curves on
the Poincaré section which are displaced and deformed with
respect to the invariant curves in the case ε = 0. Figure 5 shows
the surfaces of section for ξ‖ = 0.1, ξ⊥ = 0.001, and two dif-
ferent energies, E = 10−4 (Figs. 5a,b), and 10−3 (Figs. 5c,d).

The left panels refer to the Poincaré sections when ε = 0, while
the right panels refer to the same sections when ε = 10−5. In
the case of Fig. 5b, the energy E = 10−4 is of the order of
ε2/ξ2⊥. Thus, magnetic forces are the same order of magnitude
as electric forces. This means that the electric field can be con-
sidered as introducing a large perturbation to the system. This
effect causes a considerable deformation of the invariant curves
on the surface of section with respect to the same curves when
ε = 0 (Figs. 5a,b). The position of the central periodic orbit is
also shifted considerably.

For larger energies, the particles’ velocities are large
enough so that electric forces are small compared to magnetic
forces. In this case the surfaces of section are very similar with
or without the electric field (Figs. 5c,d), except that the whole
section is displaced by an effective displacement z = ε/ξ2⊥ for
ε � 0. In particular, similar phenomena occur as regards the
separation of the regular and chaotic domains and the chaotic
escapes along arcs. However, the set of invariant curves are dis-
placed by z = ε/ξ2⊥ for ε � 0.

4.5. The limit of a strong longitudinal field ξ‖: electrons

At the limit of a strong longitudinal field ξ‖ → 1 the dynamics
of electrons tends to the limit of the guiding center approxima-
tion. This is due to the fact that, for a typical (close to thermal)
velocity of electrons v ∼ 10−2, the gyroradius both at the cen-
ter and at the edges of the sheet becomes of order Rg ∼ 10−2,
i.e., it is much smaller than the characteristic scale length of
the sheet. Formally, the guiding center approximation
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Fig. 6. a) The Poincaré surface of section (z, ż), y = 0, ẏ > 0, derived by numerical integration of orbits in the Hamiltonian (21), for the energy
E = 10−3 for the values ξ⊥ = 0.001, and a) ξ‖ = 0.5, c) ξ‖ = 1. The corresponding theoretical invariant curves, derived by the adiabatic
approximation (Eq. (46)) are shown in b) and d) respectively.

corresponds to considering only the lowest order term Z2 in the
normal form (Eq. (32)) at the limit ξ‖ � ξ⊥. Thus we consider
the Hamiltonian

Z = ξ‖J1 +
1
2

(p
′2
2 + ω

2
2(J)u2

2) (46)

where the following approximations are made:

J1 =
1

2ξ‖
(ξ2‖u

2
1 + p2

1), ω2(J1) =
ξ2⊥J1

ξ3‖
, p′2 � p2 + J1/2ξ‖

and

u1 � −y + ξ⊥
ξ‖

z, p1 � −py +
ξ⊥
ξ‖

c4, u2 � z, p2 � c4.

For an orbit of energy Z = E, the adiabatic invariant J1 can be
expressed in terms of the variables (u2, p2) � (z, c4) by mak-
ing the corresponding substitutions of variables in Eq. (46) and
finding the positive root with respect to J1. One finds:

J2
1

4ξ2‖
+

2ξ‖ +
p2

ξ‖
+

u2
2ξ

2⊥
ξ3‖

 J1 + (p2
2 − 2E) = 0. (47)

The family of curves (u2, p2; E, J1) given by Eq. (47), for con-
stant parameters (E, J1), are invariant ellipses on the (u2, p2)
plane. At the maximum value of J1, the corresponding ellipse
shrinks to an invariant point. The maximum of J1 on the plane
(u2, p2) is at the point

u2 = 0, p2 = − E

2ξ2‖
, J1,max =

E
ξ‖
· (48)

For y = 0 we have u2 � z, p2 � ż. Thus, the Poincaré surface
of section (z, ż) for y = 0, ẏ > 0, for constant E, corresponds to
the parts of the invariant ellipses (47) where the corresponding
orbit has intersections with the plane y = 0. These parts are
limited by the limiting curve ẏ = 0 (Eq. (39)). Figure 6 shows
the comparison between the theoretical invariant curves pre-
dicted by (Eq. (47)) and the precise invariant curves obtained
by numerical integration of electron orbits on the Poincaré sec-
tion (z, ż) for y = 0, ẏ > 0, for a constant value of the energy
E = 10−3. The field components are ξ⊥ = 0.001, while ξ‖ has
the value 0.5 in Figs. 6a,b, and 1 in Figs. 6c,d. We note that, as
ξ‖ increases, the ellipses become so elongated (becauseω(J1) in
Eq. (46) is of order ω(J1) = O(ξ−3

‖ )) that their parts within the
limiting curve of the Poincaré section become elongated arcs
approaching straight horizontal segments (Figs. 6c,d). This ex-
plains why many invariant curves on the surface of section are
open.

If we now turn on the electric field ε, the dynamics is de-
scribed quite accurately by adding an electrostatic potential
term to the lowest order terms of the normal form (Eq. (46)),
namely:

Z = ξ‖J1 +
1
2

(p
′2
2 + ω

2
2(J)u2

2) − εu2 (49)

where the variables J1, p′2, u2 are given in terms of the original
variables by the same formulae as in Eq. (46).

The Hamiltonian (49) yields integrable orbits consisting of
two independent oscillations. In particular, similarly to the case
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Fig. 7. Poincaré surfaces of section (z, ż), y = 0, ẏ > 0, for the Hamiltonian (20), with ξ‖ = 1, ξ⊥ = 0.001, ε = 10−5 and E = 10−3. a) The
section derived by numerical integration of the orbits b) Theoretical invariant curves which correspond to segments of invariant ellipses given
by Eq. (49).

ε = 0, the projection of an orbit in the plane (u2, p2), for con-
stant values of E ≡ Z and J1, lies on an invariant ellipse which
is the integral curve of a formal integral of motion. However,
the center of an ellipse is shifted with respect to the position
u2 � z = 0. The approximation y � −u1 made in the previous
subsection is no longer valid, because the orbit undergoes os-
cillations with a large amplitude in the z−axis, so that the term
ξ⊥z/ξ‖ is dominant in the transformation y = −u1 + ξ⊥z/ξ‖.
However, the form of the Hamiltonian (49) allows one to ex-
tract directly the shift of the center of the ellipse in the z-axis:

zc =
ε

ω2(J1,max)
=
εξ4‖
ξ2⊥E
· (50)

In view of the constancy of the integral I2 (Eq. (18)), the
above equation implies a drift with constant average velocity
ẋ = −ξ⊥zc in the x-axis. Thus, the centre of the family of el-
lipses does not correspond to a real periodic orbit, but only to
an orbit which is periodic in its (y, z) projection, while it drifts
along the magnetic field lines in the x-direction.

Figure 7 shows the Poincaré surface of section (z, ż), y =
0, ẏ > 0 for electrons with initial kinetic energy E = 10−3,
as derived by direct numerical integration of the orbits, when
the field components are ξ⊥ = 10−3, ξ‖ = 1 and ε = 10−5

(Fig. 7a). Figure 7b gives the theoretical invariant curves as de-
rived from Eq. (49), for the same energy E = Z and for differ-
ent values of J1. The main remark is that the shift predicted by
Eq. (50), namely zc = 10 000, is three orders of magnitude big-
ger than the shift of the center of the limiting curve (Eq. (43)),
i.e., ε/ξ2⊥ = 10. Thus, the Poincaré section y = 0 contains arcs
which are segments of the outermost left part of the invariant
ellipses given by Eq. (49). The intersection of these arcs with
the limiting curve marks the starting and ending points of the
segments of an orbit that have recurrent intersections with the
plane y = 0.

4.6. The limit of a strong longitudinal field ξ‖: protons

For equal values of the kinetic energy, the gyroradius of a pro-
ton orbit is larger than the gyroradius of an electron orbit by

a factor � 45. Thus, for protons at thermal velocities we have
Rg ∼ 0.45, i.e., the gyroradius is a significant fraction of the
current sheet width.This implies that typical proton orbits can-
not be described by the guiding center approximation.

On the other hand, the analysis made by the normal form
(Eq. (34)) continues to be precise. Figure 8 shows the projec-
tions y(t), z(t) and u1(t) for a typical proton orbit with energy
E = 0.5. The main difference of proton orbits, relative to elec-
tron orbits is in the much larger values of the action J1, which
leads to oscillations of the u1 normal variable with amplitude
close to unity. This means that higher order terms of the nor-
mal form are required to describe accurately the dynamics. For
example, the frequency of oscillations in Fig. 8c is equal to
ω1 = 1.14 > ω10 = ξ‖ = 1. If the term c(J′1) in the normal form
(34) is taken into account, one finds ω1 = ω10+∂c/∂J′1. Setting
J′1 � 1 yields the theoretical estimate ω1 � 1.12, which is quite
close to the numerically determined frequency.

Now, for ε � 0, the dynamics for protons is determined by
the facts that a) the value of the action J1 is large (J1 ≥ 1),
and b) the dimensionless parameter ε of the electric field is
three orders of magnitude greater than that of electrons for the
same value of the electric field. The consequence of (a) is that
the values of u1 are large. The consequence of (b) is that the
electric potential term −εu2 � −εz is the dominant term in the
normal form (49), up to quite large values of z.

These effects are demonstrated in Fig. 9, where a typical
proton orbit, with initially thermal velocity, is plotted up to the
moment when the proton escapes from the sheet (y = 1, at
t � 1050, Fig. 9a). The fact that the −εz term is dominant in the
Hamiltonian is demonstrated by comparing the z(t) projection
of the orbit with a theoretical constant acceleration term z(t) =
εt2/2 corresponding to the action of a potential −εz.

In view of the fact that u1 is now a large quantity, an inver-
sion of the normalizing transformation z = ξ‖(y− u1)/ξ⊥ yields
u1 � ξ⊥z/ξ‖, i.e., the function u1(t) is modulated by the function
z(t) times a factor ξ⊥/ξ‖. This is clearly visible in a compari-
son of Figs. 9b,c. Furthermore, the oscillatory part of both y(t)
and u1(t) shows segments with non-constant oscillation period,
meaning that the corresponding orbit is weakly chaotic.
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Fig. 8. A typical proton orbit in the Hamiltonian (21), for the values ξ⊥ = 0.001, ξ‖ = 1, and energy E = 0.5. a) y(t), b) z(t), and c) u1(t).

Fig. 9. A typical proton orbit in the Hamiltonian (20), for the values ξ⊥ = 0.001, ξ‖ = 1, ε = 1.8 × 10−2 and energy E = 0.5. a) y(t), b) z(t), and
c) u1(t). The soft solid line in b) is a theoretical curve z(t) = 1

2 εt
2.

In conclusion, for a strong value of the longitudinal field ξ‖,
typical proton orbits are weakly chaotic, and they are effec-
tively described by a constant acceleration term in the direction
of the electric field.

5. Maximum acceleration length and kinetic
energy gain

This section studies numerically the kinetic energy gain for
electrons and protons along escaping orbits injected at the
edges of the current sheet. The results of the previous section
can be exploited in order to derive analytical formulae that are
compared with the results of the numerical simulations.

As demonstrated above, protons escape mostly along
weakly chaotic orbits. Electrons escape along either regular or
chaotic orbits, depending on the value of the longitudinal field
ξ‖. When ξ‖ is of the order of the main reconnecting component,
the electrons follow regular orbits preserving an adiabatic in-
variant which is described by the normal form theory of Sect. 4.
On the other hand, if ξ‖ is not very strong (ξ‖ ≤ 10−1), the
electrons follow weakly chaotic orbits, and the escape is along
manifolds in phase space which intersect the Poinaré surface of
section at the arcs shown in Fig. 5d.

Now, chaotic orbits are free to explore the whole energeti-
cally available phase space up to the moment of escape, since
they are not limited by a third integral of motion. Thus, the
maximum possible kinetic energy gain along chaotic orbits, as
a function of the initial kinetic energy of an orbit, is determined

only by the outer boundary of the curves of zero velocity at the
limiting planes |y| = yout. For any value of I2, this is given by

ξ2⊥ z2−2 (ξ⊥ I2 + ξ‖ ξ⊥ y + ε) z + I2
2 + 2 I2 ξ‖ y + ξ2‖ y

2=2 E (51)

which is the generalization of Eq. (42) for a non-zero value
of I2. Solving Eq. (51) for z, we find the z limits of the zero
velocity curve when the particle crosses the edges yout of the
sheet.

zmin,max =
1

ξ2⊥

(
ξ⊥ I2 + ξ‖ξ⊥yout + ε

±
√

2ξ⊥I2ε + 2ξ‖ξ⊥youtε + ε2 + 2ξ2⊥E
)
. (52)

In our simulations, yout = ± 1 and, without loss of generality,
injections are from z = 0. The value of I2 is determined by the
value of y = yin at the injection point, and the component ẋ
of the initial velocity (which does not explicitly appear in the
equations of motion). The starting point is set slightly below
the edge of the sheet (yin = ±0.9). This is because the gyro-
radious for typical electron orbits at y = 1 is R � 0.1, and
we wish to avoid counting as escaping particles that intersect
the edge along their first gyration. Finally, I2 is set to the value
I2 = −ξ‖ yin = ± 0.09, in order to keep the initial value of the
velocity component ẋ equal to ẋ = 0 (see Eq. (21)).

Independently of the details of an orbit, the maximum ki-
netic energy gain, as a function of the initial kinetic energy E0,
is calculated by setting the maximum acceleration length equal
to zmax, and E = E0. Thus

∆Emax = ε zmax. (53)
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Fig. 10. The final kinetic energy vs. the initial kinetic energy for electrons in escaping orbits, for various parameters of the RCS and initial
conditions of the orbits. The energy unit is 5.66×103 keV. The solid line is the diagonal. A dashed curve corresponds to a theoretical formula of
Litvinenko (1996) (Eq. (55)). The upper dot-dashed curve corresponds to a theoretical calculation of the maximum kinetic energy gain (Eq. (52)
below). The electric field is ε = 10−5. a) ξ⊥ = 10−3, ξ‖ = 10−1, yin = −0.9, b) ξ⊥ = 10−3, ξ‖ = 10−1, yin = 0.9, c) ξ⊥ = 10−3, ξ‖ = 1, yin = −0.9,
d) ξ⊥ = 10−3, ξ‖ = 1, yin = 0.9, e) ξ⊥ = 10−2, ξ‖ = 10−1, yin = −0.9, f) ξ⊥ = 10−2, ξ‖ = 10−1, yin = 0.9, g) ξ⊥ = 10−2, ξ‖ = 1, yin = −0.9,
h) ξ⊥ = 10−2, ξ‖ = 1, yin = 0.9.

Escapes from the upper boundary yout = 1 are possible for all
values of the initial kinetic energy E0. On the other hand, es-
capes from the boundary yout = −1 are only possible when E0

is large enough. We readily find

E0 ≥ ξ‖ ε
ξ⊥

(
1 − ε

2 ξ⊥ ξ‖
− I2

ξ‖

)
(54)

from Eq. (52). In the latter case, the energy gain is smaller com-
pared to that of escapes from the upper boundary, due to the
term −ξ‖ ξ⊥ ε in the square root term of Eq. (54). Furthermore,
Eq. (52) implies that for a certain choice of parameter values
it is possible that zmin < 0. Thus, it is possible that particles
in chaotic orbits escape by losing rather than gaining energy.
This happens when a particle leaves the sheet at a point with
z− coordinate close to the limiting value z = zmin.

These phenomena are seen in Figs. 10, 11, which show the
final kinetic energy as a function of the initial kinetic energy
for escaping particles (electrons in Fig. 10, protons in Fig. 11)
injected at both edges of the sheet, for various characteristic
values of the magnetic field components ξ‖, ξ⊥. The diamonds
correspond to orbits injected with various angles in the range 0
to π pointing towards the sheet interior. Proton orbits are ob-
tained with the same initial conditions as electron ones, by
changing the value of the dimensionless electric field as ex-
plained in Sect. 2.

The theoretical upper bound to the amount of possible ki-
netic energy gain (Eqs. (51) and (53)) is shown by a dot-dashed
line. Note that many escaping electrons (Fig. 10) are below

the diagonal (solid line in all panels) meaning that they es-
cape by losing rather than gaining kinetic energy. Finally, due
to the preservation of the integral I2 = −ξ‖ yin, injections from
yin = −0.9 (Figs. 10a,c,e,g and 11a,c,e,g) have always larger
energy gains than injections from yin = 0.9 (Figs. 10b,d,f,h
and 11b,d,f,h). Physically, the accelerated particle spends more
time in the sheet in the former case than in the latter case.

Finally, a comparison is made to existing formulae in the
literature. A dashed line in each panel corresponds to the en-
ergy gain following Litvinenko (Eq. (34) in Litvinenko 1996):

zmax =
ξ‖
ξ⊥
,∆ E =

ε ξ‖
ξ⊥
· (55)

This formula is an approximation for orbits that can be treated
by a perturbative technique. This formula can be recovered
by a precise treatment in the case of regular orbits follow-
ing the guiding center approximation. Namely, the equation
of the invariant ellipses (49) and the normalizing transforma-
tion of Eq. (46) yields, at the limit J1 � 1, y � ξ⊥z/ξ‖. Thus,
along any invariant ellipse given by Eq. (49), the escaping value
y = yout = 1 corresponds to an acceleration length z � ξ‖/ξ⊥,
i.e., a kinetic energy gain ∆E � εξ‖/ξ⊥. However, a crossing of
the opposite plane y = −1 leads to escapes through a loss of
kinetic energy, since z � −ξ‖/ξ⊥, ∆E � −εξ‖/ξ⊥.

Independently of the regular or chaotic nature of an orbit,
Eq. (55) corresponds also to the limiting case of Eqs. (52), (53)
when ε � ξ‖ξ⊥ and I2 = 0, E0 → 0. These conditions are
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Fig. 11. The final kinetic energy vs. the initial kinetic energy for protons in escaping orbits, for various parameters of the RCS and initial
conditions of the orbits. The energy unit is 3.087 × 10−3 MeV. The solid and dashed lines, as well as the parameters of the magnetic field are as
in Fig. 4. The electric field parameter is ε = 1.84 × 10−2.

likely to be valid for electrons. Note that since I2 = 0, the initial
conditions of orbits in Eq. (55) should be considered to be at
yin = 0. Thus, as shown in Figs. 10a,c,e,g, Eq. (55) corresponds
to half the total kinetic energy gain for particles injected at yin =

−0.9.
The situation is quite different for protons (Fig. 11). There,

most escaping orbits are weakly chaotic. Equations (52), (53)
provide an upper limit of the kinetic energy gain, which, how-
ever, is only order of magnitude correct. Furthermore, the con-
dition ε > ξ‖ξ⊥ typically holds. At the limit of large ε, Eqs. (53)
or (52) tend asymptotically to the limiting formula

∆E � 2ε2

ξ2⊥
(56)

i.e., one recovers asymptotically Speiser’s (1965) formula (see
also Heerikhuisen et al. 2002 for a relativistic correction).

6. Conclusions

In this paper, the orbits of charged particles (electrons and
protons), under the influence of the magnetic and electric fields
inside a Harris-type reconnecting current sheet (Fig. 1), are
studied by dynamical systems methods. The emphasis is on
building an approximate analytical theory giving the approx-
imate integrals of regular orbits and the domains of chaotic
orbits. The kinetic energy gain of escaping particles is analyt-
ically determined as a function of the physical parameters of
the RCS and of the initial conditions of the particles’ orbits.
The analytical results are compared to results obtained by

numerical integration of representative orbits. The following
are our main conclusions:

1) The problem of stability for motions perpendicular to
the plane of reconnection is shown to correspond to a problem
of “parametric resonance”. It is shown that, for all values of the
electric field ε, zones of instability exist for arbitrarily large val-
ues of the longitudinal magnetic field (ξ‖). The width of these
zones decreases as the value of the longitudinal field increases.
The stability criterion given by Litvinenko and Somov (1993)
is satisfactory for quite large values of ε.

2) The equations of motion can be reduced to Hamilton’s
equations in a two degrees of freedom Hamiltonian dynamical
system. The orbits are studied analytically by transforming the
2DOF Hamiltonian to a normal form. Accurate formulae are
given for the orbits obeying an “adiabatic invariant”. These or-
bits define invariant curves on appropriate Poincaré surfaces of
section. The orbits in chaotic domains escape by a Fermi-type
chaotic scattering mechanism.

3) For moderate values of the longitudinal magnetic field
(ξ‖ ∼ 10 percent of the main reconnecting component), both
electrons and protons escape along weakly chaotic orbits sub-
ject to Fermi-type acceleration. However, for large values of
ξ‖ (of the same order as the main reconnecting component or
larger), electrons escape through regular orbits. The passage of
electrons from the RCS is represented by segments of ellipses
on the Poincaré surface of section. On the other hand, protons’
orbits are quite similar to constant acceleration orbits.

4) The kinetic energy gains of escaping particles are deter-
mined numerically as a function of the type of particle (elec-
tron or proton), the strengths of the magnetic field components
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ξ⊥, ξ‖ and the initial kinetic energy at injection in the current
sheet. The resuts are in good agreement with the above analyt-
ical predictions.

5) Useful formulae are derived, relating the maximum ki-
netic energy gain ∆E of a particle escaping the sheet to the
physical parameters of the sheet and the initial kinetic energy
E0 upon injection. The main formulae are Eq. (53) for a max-
imum acceleration length given by (52). The asymptotic for-
mula ∆E = εξ‖/ξ⊥ (Litvinenko 1996) holds for the kinetic en-
ergy gain of electrons from the center of the sheet to the escape
point, when the initial kinetic energy E0 is small. For large E0,
∆E scales as ∆E ∝ E1/2

0 . For protons, the same equations lead
asymptotically to Speiser’s formula ∆E = 2ε2/ξ2⊥ for large ε.
A number of particles may leave the sheet with a net loss of
kinetic energy. This phenomenon is explained theoretically.
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7. Appendix

7.1. Calculation of the Normal Form with Lie series

The Lie series method introduces canonical transformations as
mappings q, p → q′, p′ induced by the Hamiltonian flow for
t = 1 under a Hamiltonian χ called “generating function”. Any
function F(q, p) of the old canonical variables is transformed to
a function F(q′, p′) of the new canonical variables according to

F(q′, p′) = exp(Lχ)F(q, p) (57)

where Lχ = {·, χ} is the Poisson bracket operator of the function
χ, and the exponential operator exp(Lχ) is defined as

exp(Lχ) =
∞∑

k=0

1
k!

Lk
χ. (58)

For a given non-integrable Hamiltonian H(q, p), the normal
form Z is a transformation of H to new variables, obtained by
the composition of r successive Lie canonical transformations
with generating functions χ3, χ4, ...,χr, where χs is of order s
in the canonical variables. The transformed Hamiltonian after
r steps, denoted H(r) is in normal form up to terms of order r,
namely

H(r) ≡ exp(Lχr ) exp(Lχr−1 )... exp(Lχ3 )H (59)

= Z2 + Z3 + Z4 + ...Zr + h(r)
r+1 + ...

(H(2) corresponds to the original Hamiltonian).
Let the quadatic part of the Hamiltonian H2 be given by

H2 ≡ 1
2

(p2
x + ω

2
1 x2) +

1
2

p2
y. (60)

By a canonical transformation

q1 =
X1 − iP1√

2
, p1 =

P1 − iX1√
2

(61)

with X1 ≡ √ω1 x, P1 ≡ px/
√
ω1 the Hamiltonian H2 is writ-

ten as

H2 = iω1 p1q1 +
p2
y

2
· (62)

The recursive scheme which defines the generating function χr

at order r is determined by the equation

Dωχr − h(r−1)
r + Zr = 0 (63)

where Dω denotes the linear operator

Dω = {·,H2} (64)

and Zr denotes the normal form at order r. The function
Zr is the sum of a number of monomial terms of the form
qk1

1 pl1
1 y

k2 pl2
y . Zr is integrable if the following definition is used:

Definition 1: a monomial term qk1
1 pl1

1 y
k2 pl2
y is said to be in

normal form with respect to the operator Dω if k1 = l1, and
l2 = 0.

The action of Dω on any monomial qk1
1 pl1

1 y
k2 pl2
y is given by

Dωqk1
1 pl1

1 y
k2 pl2
y = i(k1 − l1)ω1qk1

1 pl1
1 y

k2 pl2
y + k2qk1

1 pl1
1 y

k2−1 pl2+1
y .

(65)

Thus, if the normal form terms Zr are chosen by

Zr = terms of h(r−1)
r satisfying Definition 1 (66)

Eq. (63) is reduced to the form

Dωχr − h̃(r−1)
r = 0 (67)

where

h̃(r−1)
r = h(r−1)

r − Zr. (68)

Now, Eq. (67) can be written as a linear system of alge-
braic equations for the unknown coefficients of all the possible
monomial terms included in χr. Considering the setAkl which
includes all the terms of h̃(r−1)

r of the form:

Akl = {akl,nqk
1 pl

1qn
2 pr−k−l−n

2 : k + l ≤ r, (69)

n = 0, 1, . . . , r − k − l}
the coefficients akl,n, for all k, l, n with k + l + n = r are known.
Let bkl,n be the unknown coefficients of the same monomial
terms in the function χr. Taking into account Eqs. (67) and (65),
the two sets of coefficients are linked by a bidiagonal linear
system of equations



λ 1
λ 2
. . .
. . .

λ r − k − l
λ





bkl,0

bkl,1
...
...

bkl,r−k−l


=



akl,0

akl,1
...
...

akl,r−k−l


, (70)

where λ = i(k − l)ω1 � 0 (since the terms ofAkl do not belong
to the normal form. Equation (70) has a unique solution

bkl,n =

r−k−l∑
m=n

m!
n!

akl,m

λm−n+1
· (71)
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All the coefficients bkl,n of χr are thus specified. Once χr is
specified, the Lie series transformation of the Hamiltonian
H(r) = exp(Lχr )H

(r−1) is calculated. This completes one iter-
ation of the normal form algorithm.
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