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Regular and chaotic dynamics in 3D reconnecting current sheets
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ABSTRACT

We consider the possibility of particles being injected at the interior of a reconnecting current
sheet (RCS), and study their orbits by dynamical systems methods. As an example we consider
orbits in a 3D Harris type RCS. We find that, despite the presence of a strong electric field, a
‘mirror’ trapping effect persists, to a certain extent, for orbits with appropriate initial conditions
within the sheet. The mirror effect is stronger for electrons than for protons. In summary, three
types of orbits are distinguished: (i) chaotic orbits leading to escape by stochastic acceleration,
(ii) regular orbits leading to escape along the field lines of the reconnecting magnetic compo-
nent, and (iii) mirror-type regular orbits that are trapped in the sheet, making mirror oscillations.
Dynamically, the latter orbits lie on a set of invariant KAM tori that occupy a considerable
amount of the phase space of the motion of the particles. We also observe the phenomenon
of ‘stickiness’, namely chaotic orbits that remain trapped in the sheet for a considerable time.
A trapping domain, related to the boundary of mirror motions in velocity space, is calculated
analytically. Analytical formulae are derived for the kinetic energy gain in regular or chaotic
escaping orbits. The analytical results are compared with numerical simulations.
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1 I N T RO D U C T I O N

Magnetic reconnection is the term used to describe a collection
of phenomena that take place when magnetic fields with opposite
orientation, carried by a hot plasma, come close together within a
very small volume of space. Theoretical models of reconnection
(see Priest & Forbes 2000 for a review) typically predict the for-
mation, within the reconnecting topology, of reconnecting current
sheets (RCS). A simple RCS model is shown in Fig. 1. Plasma is
flowing into the sheet from two opposite directions (see arrows),
and the plasma is forced to flow out of the sheet in the direction
indicated by a third arrow. The plasma carries magnetic lines with
it, so that there is a constant Poynting flux established through the
sheet. If v is the typical inflow velocity, there is an electric field
seen in the rest frame which, ignoring a Lorentz factor, is given by
E = −v× B, where B is the reconnecting magnetic field compo-
nent. The effects of oppositely oriented magnetic fields and inflow
directions mutually cancel each other out, so that E has the same
orientation on both sides of the sheet. This roughly constant electric
field acts as an accelerator for the charged particles of the plasma. If
the electric field is strong enough, the motions of energetic particles
become effectively collisionless, thus they can be studied by orbital
theory. These conditions are quite common in a number of astro-
physical contexts. Well known examples are current sheets formed
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in the Earth’s magnetotail (Speiser 1965) and in the solar atmosphere
(Somov 1992).

When the electric field is strong, particles are accelerated by the
electric field as soon as they enter into the sheet at its edges. Such
particles cannot be trapped in the sheet; they escape, usually gain-
ing considerable amounts of kinetic energy within very small times
compared to the RCS lifetime. For example, it is estimated that
in solar flare conditions electrons gain hundreds of keVs within
10−6 s, while ions gain tens of MeV within 10−3 s. The effective-
ness of a RCS as an accelerator depends on a number of parameters
related to the RCS geometry (e.g. X-type, spine) or the initial con-
ditions of the particles when they are injected (see Aschwanden
2004, for a review). This has been a subject of intense research
mostly by solar, plasma or geo-physicists. Indicative references are
Speiser (1965), Cowley (1978), Bulanov (1980), Speiser & Lyons
(1984), Chen & Palmadesso (1986), Martens (1988), Büchner &
Zelenyi (1989, 1991), Martens & Young (1990), Burkhart, Drake &
Chen (1990), Deeg, Borovsky & Duric (1991), Bruhwiler & Zweibel
(1992), Chen (1992), Moses, Finn & Ling (1993), Litvinenko &
Somov (1993), Zhu & Parks (1993), Litvinenko (1996), Vekstein &
Browning (1997), Browning & Vekstein (2001), Dalla & Browning
(2005) and Zharkova & Gordovskyy (2004, 2005).

The study of the acceleration problem is complicated by the
fact that regions of intense magnetic activity (e.g. in the solar
atmosphere) are characterized by the formation of complex RCS
structures involving multiple scattering events of the particles
that cross them. The complexity of the acceleration process
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Figure 1. A schematic representation of a current sheet showing the inflow
and outflow directions of plasma carrying magnetic flux, in and out of the
reconnecting region.

notwithstanding, models of multiple scattering events, which use as
input the dynamics provided by one single RCS (e.g. Anastasiadis,
Vlahos & Georgoulis 1997; Anastasiadis et al. 2004), have given
results promising enough to justify the study of dynamics in simple
RCS configurations.

In a previous paper (Efthymiopoulos, Gontikakis & Anastasiadis
2005, hereafter Paper I) we examined in detail the orbits of
accelerated particles in a model Harris-type configuration, for field
parameters relevant to RCSs in the solar atmosphere. Our study
was based on equations derived analytically by dynamical system
methods. Furthermore, we focussed on orbits corresponding to the
case of particles entering and leaving the sheet at its edges. Such
orbits are representative of a normal flow of plasma through the
sheet.

In the present paper we examine a different possibility: particles
with initial conditions in the interior of the sheet. There are vari-
ous source mechanisms, besides the sheet plasma itself, that could
account for the origin of such a population. For example, consider
a ‘breathing’ RCS, in which there are temporary reversals of the
flow directions shown in Fig. 1. Such a case is likely, e.g., on top
of a coronal loop; namely, the RCS may undergo back and forth
fluctuations caused by motions of the loop footpoints that affect the
whole geometry of magnetic field lines along the loop. Now, in a
phase of reversal of the flow directions of Fig. 1, plasma enters the
sheet towards its centre. If, later, the normal flow directions are re-
established, a population of particles will be left in the interior of
the sheet. A second example is an impulsive event leading to the
quick formation of an RCS before particles have time to escape the
reconnecting region (Bhattacharjee 2004). These and other situa-
tions may lead to populations of particles with initial conditions in
the interior of the sheet. The orbits of such particles are the subject
of the present paper.

A number of authors have addressed the question of how will
distributions of particles with initial conditions in the interior of a
RCS evolve when acted upon by the RCS force fields (Kliem 1994;
Fletcher & Petkaki 1997; Petkaki & MacKinnon 1997; Mori, Sakai
& Zhao 1998; Heerikhuisen, Litvinenko & Craig 2002; Nodes et al.
2003; Hamilton et al. 2003). Most of these studies rely on numeri-
cal simulations for large ensembles of orbits. In the present paper,
beside presenting numerical simulations, our purpose is to develop

an approximate analytical theory that describes these orbits. In par-
ticular, we seek to determine the boundary of the domain in velocity
space separating escaping from non-escaping orbits. In the absence
of electric field, this boundary becomes topologically equivalent
to what is referred to as a ‘loss cone’ in the plasma literature. We
should stress that the orbits in our model system are, in general,
beyond the limits of the guiding centre approximation, hence, the
determination of the trapping domain does not follow trivially from
the preservation of the first-order adiabatic invariant. Furthermore,
in the case of escaping orbits, we find analytical formulae relating
the kinetic energy gain as a function of the initial kinetic energy and
of the physical parameters of the sheet.

One relevant aspect of our study concerns the separation of par-
ticles in those following regular or chaotic orbits. This separation
has remarkable dynamical implications. In particular, we find that
the orbits inside the trapping domain are mostly regular and lie on
manifolds of phase space known as ‘KAM tori’ in dynamical sys-
tems theory. However, there are also some chaotic orbits inside the
trapping domain. These practically remain trapped in the sheet for
very long times. We explain this phenomenon as a ‘stickiness ef-
fect’ (see Contopoulos 2002, for a review of stickiness). Finally we
find that escaping orbits are either regular or chaotic, but the gain
of kinetic energy, as a function of the physical parameters of the
sheet and of the initial energy of the particle, scales differently for
particles escaping along regular or chaotic orbits.

The paper is structured as follows: Section 2 presents the model
used, the Hamiltonian formalism of the equations of motion and the
choice of parameter values. Section 3 presents numerical simula-
tions of particle orbits, indicating the separation of the domains of
the trapping and escapes. Section 4 is devoted to a theoretical analy-
sis of the orbits by a Hamiltonian formalism, and to a comparison of
theoretical with numerical results. Section 5 summarizes the main
conclusions of the present study.

2 T H E M O D E L

Our model current sheet configuration is the same as in Litvinenko
& Somov (1993). The magnetic and electric fields are (Fig. 2):

E = (0, 0, E)

B = (−y/a, ξ⊥, ξ‖)B0 for |y| � a

B = [−sgn(y), ξ⊥, ξ‖]B0 for |y| > a (1)

Figure 2. The topology of the magnetic and electric fields in the model
current sheet.
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where B0 is a typical measure of the magnetic field in a reconnecting
region, ξ ⊥, ξ ‖ and E are constants, and sgn (y)= y/|y|. Equations (1)
approximate the Harris configuration Bx = B 0 tanh(y/a), where a
is the half width of the RCS. They also approximate one side of
an X-type current sheet. An orbit is integrated up to the moment
when it crosses the value |y| = a, where the orbit is considered as
escaping the sheet.

For |y| � a the projections of the magnetic field lines on the
(x , y) plane become almost parallel to the x-axis, but they are de-
scribed in opposite senses for y > 0 and y < 0. On the other hand,
the value of the magnetic field in the z-axis is determined by the
parameter ξ ‖. In particular, the relative angle between the upper and
lower reconnecting lines is given by tan φ = ξ ‖, so that ξ ‖ measures
the shear of the reconnecting field. In solar RCSs ξ ‖ may have any
value from zero to as large as the main reconnecting component
(0 � ξ ‖ � 1). In the geomagnetic tail we adopt a shear of ξ ‖ = 0.2
(see Zhu & Parks 1993, Lee et al. 2001).

For a particle with mass m and positive charge q, the non-
relativistic equations of motion can be written in dimensionless
form:

d2x
dt2

= ξ‖
dy
dt

− ξ⊥
dz
dt

(2)

d2 y
dt2

= −ξ‖
dx
dt

− y
dz
dt

(3)

d2z
dt2

= ε + ξ⊥
dx
dt

+ y
dy
dt

(4)

In these equations the dimensionless electric field is given by
ε = mE/(aqB2

0). For negative charge, the same equations hold with
either the orientation of the y- and z-axes reversed, or the orienta-
tion of the magnetic and electric fields reversed. Non-linear terms
are introduced by the dependence of the measure of the reconnecting
component of the magnetic field, Bx, on y.

In equations (2), (3) and (4), the physical quantities are repre-
sented by dimensionless parameters. The constants ξ ‖ and ξ ⊥ are
scaled to the mean value of the magnetic field, as indicated in equa-
tion (1). The unit of time is the inverse of the Larmor frequency
〈t〉 = ω−1

B = m/(q B 0). The length unit, 〈L〉, is set equal to the half
thickness, a, of the current sheet and the electric field unit is given
by 〈ε〉 = aB2

0 q/m. All units and parameter values used in our ex-
amples below are ensembled in Table 1. The parameter values for
RCSs originate from Martens & Young (1990).

The equations of motion (2), (3) and (4) can be derived from a
3-d.o.f. autonomous Hamiltonian function,

H = 1

2
(px + ξ‖ y)2 + 1

2
p2

y + 1

2

(
pz + ξ⊥x + 1

2
y2

)2

− εz, (5)

where the canonical momenta px, py, pz are given by the sum of
the velocity and of the vector potential components:

px = ẋ − ξ‖ y,

py = ẏ,

pz = ż − ξ⊥x − 1

2
y2. (6)

Hamilton’s equations

ẋ = ∂H
∂px

, ṗx = −∂H
∂x

(7)

Table 1. The first part shows typical values for the physical param-
eters of RCSs in solar flares (left-hand column) and in the Earth
magnetotail (second column). The second part shows the units and
the third part shows the range of parameters used in our computa-
tions.

Solar flares Earth
magnetotail

Estimated values from data

Magnetic field (Gauss) 100 2 × 10−4

half-thickness (m) 1 2 × 106

electric field (V m−1) 100 2.5 × 10−4

Gyroradius (el.1) (m) 3.5 × 10−2 6.8 × 103

Gyroradius (pr.1) (m) 1.5 2.9 × 105

Units

Magnetic field (Gauss) 100 2 × 10−4

Electric field (el.)(V m−1) 107 1.39 × 102

Electric field (pr.)(V m−1) 5.56 × 103 7.5 × 10−2

time (el.) (s) 5.7 × 10−10 0.284 × 10−3

time (pr.) (s) 1.04 × 10−6 0.52
length unit (m) 0.58 2 × 106

velocity (el.) (m s−1) 1. × 109 7. × 109

velocity (pr.) (m s−1) 0.5 × 106 3.8 × 106

K. energy (el.) (keV) 5.9 × 103 273 × 103

K. energy (pr.) (keV) 3.22 149

Dimensionless parameters

ξ ⊥ 10−3 0.05
ξ ‖ 0–1 0.2
ε (el.) 10−5 1.8 × 10−6

ε (pr.) 1.84 × 10−2 3.3 × 10−3

sheet half-thickness a 1 1

1For five times the thermal velocity, computed at T = 107 K for
solar flare and at 5.6 × 106 K for the Earth magnetotail.

(and similarly for y, py and z, pz), lead to the equations of motion
(2), (3) and (4). Furthermore, the Hamiltonian equations admit an
exact second integral of motion, independent of and in involution
with the Hamiltonian equation (5). The second integral reads

I2 = px + ξ⊥z (8)

and one verifies immediately that İ2 = {I2, H} = 0, where
{. . . , . . .} stands for the Poisson bracket operator. The existence
of a second integral, I2, linear in the momentum px allows one to
reduce the number of degrees of freedom by one, while keeping
the Hamiltonian character of the equations of motion. Following
the procedure described in Arnold & Novikov (1995) we find the
2-d.o.f. Hamiltonian:

H = 1

2
p2

y + 1

2

(
c4 + 1

2
y2

)2

+ 1

2
(I2 − ξ⊥z + ξ‖ y)2 − εz, (9)

where c4 = ξ ⊥x + pz . The new canonically conjugate pairs are
(y, py) and (z, c4). The new Hamilton’s equations read

ẏ = py,

ż = c4 + 1
2 y2,

ṗy = −y

(
c4 + 1

2
y2

)
− ξ‖(I2 − ξ⊥z + ξ‖ y),

ċ4 = ξ⊥(I2 − ξ⊥z + ξ‖ y) + ε, (10)
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and these equations are equivalent to the original equations of mo-
tion. By working with the variables (y, py) and (z, c4), one need not
explicitly consider the equation of motion (2) for the variable x.

3 N U M E R I C A L S I M U L AT I O N S

This section presents numerical simulations of the orbits of the par-
ticles, in three characteristic cases: (i) solar flare RCSs without shear
(ξ ⊥ = 10−3, ξ ‖ = 0, ε = 10−5); (ii) solar flares with a moderate shear
(ξ ‖ = 0.1), and (iii) the Earth magnetotail current sheet (ξ ⊥ = 0.05,
ξ ‖ = 0.2, ε = 1.8 × 10−6). The orbits are calculated by integrating
the equations of motion derived by the Hamiltonian equation (9).
We also studied the case of a solar flare RCS with strong shear
(ξ ‖ � 1), but the results are qualitatively very similar to those of the
Earth magnetotail.

3.1 Mirror-type and escaping orbits

The first calculation refers to electrons injected from the centre of
the sheet (y = 0, z = 0) with various velocities (v) and injection
angles (θ ) defined by ż = v cos θ and ẏ = v sin θ . The velocity v

is given by v =
√

ẏ2 + ż2. Since ẋ = 0, the injection angle with
respect to the direction of the main magnetic component is φ = 90◦.
As shown below, for ξ ‖ 
= 0, all the particles injected with negative
θ are bounced at some negative y and return to the plane y = 0 with
a positive angle θ , while in the case ξ ‖ = 0 injection in the two half-
planes becomes symmetric. Thus, we shall consider injections only
on the half-plane ẏ > 0, i.e. 0 � θ � π. We shall also consider an
upper limit for initial velocities defined by the simultaneous require-
ment that v does not exceed a non-relativistic limit (v/c � 0.1) or a
very high tail limit of a thermal distribution (v < 10v th). Thus in solar
RCSs we set 0 � v � 0.1, while in the Earth magnetotail we set 0 �
v � 0.01.

Taking initial conditions for 400 orbits in a grid 20 × 20 on the
rectangle of the (v, θ ) plane defined by the above limits, the orbits
are integrated numerically for a time t = 106, which corresponds to
a few thousand dynamical periods of oscillations in the y-axis. An
orbit is considered as escaping the sheet if it goes outside the zone
|y| = 1, which defines the physical width of the sheet within the
integration time. Otherwise, the orbit is considered as trapped in the
sheet.

Figs 3(a), (b) and (c) show the main result for electron orbits for
our chosen parameter sets. The points in each panel correspond to
the values of (v, θ ) for which the orbits are trapped in the sheet. The
following are observed.

(i) The initial conditions corresponding to trapped orbits are
limited within a domain of the space (v, θ ) defined by a limiting
boundary.

(ii) As ξ ‖ increases, the total area of the trapping domain tends
to decrease (compare Fig. 3a with 3b).

(iii) When ξ ‖ > 0, there is a limiting velocity vmin such that
all particles with v < vmin escape (vmin � 0.02, 0.002 for Fig. 3b,
c respectively). For a large integration time t, we find that the es-
caping particles just follow the combined gyromotion and E × B

drift where B is the component of the magnetic field outside the
sheet.

(iv) For v > vmin there are trapped particles in the range of
angles of injection θ min � θ � θ max, where the angles θ min and θ max

depend in general on v. Asymptotically, for large v, these angles
tend to constant limits. Typical values for these limits are θ min �
π/3, and θ max � π.

Figure 3. The values of initial velocity measure |v| and angle θ , (upwards,
with respect to the positive z semi-axis, for which the orbits of electrons, or
protons, injected at y = z = 0, are trapped in the sheet, for (a) ε = 10−5,
ξ ⊥ = 10−3, ξ ‖ = 0, (b) ε = 10−5, ξ ⊥ = 10−3, ξ ‖ = 10−1, (c) ε = 1.8 ×
10−6, ξ ⊥ = 0.05, ξ ‖ = 0.2 and (d) ε = 3.3 × 10−3, ξ ⊥ = 0.05, ξ ‖ = 0.2.
Each trapped orbit is represented with a diamond. In panel (a), stars show
unstable trapped orbits that escape the sheet when y is slightly different from
zero. The solid and dashed curves represent an analytical determination of
the domains of trapping that are valid In the limits ξ ‖ → 0 (full line) and
ξ ‖ → 1 (dashed line) respectively (see Sections 4.2 and 4.3 for details).

Fig. 3(d) shows a similar calculation for protons for parameters
relevant to RCS in the Earth magnetotail. We found that, in gen-
eral, trapping effects are weaker for protons than for electrons. In
fact, we did not find trapped protons in solar RCS models for any
physically relevant field parameters or proton velocity values. In
the case of the geomagnetic tail, the trapping domain for protons
has a smaller angle width compared to that of electrons, while trap-
ping requires a larger initial velocity of injection (compare Figs 3c
and 3d).

Fig. 4 refers to escaping electrons and protons under the same
values of the field components and the same initial conditions of
injection within the sheet as in Fig. 3. The final kinetic energy of
these particles is plotted against their initial kinetic energy. The
main remark here is that, for given initial kinetic energy, there is
an upper bound to the amount of possible kinetic energy gain. On
the other hand, in Fig. 4(b), (c) and (f) many escaping particles are
below the diagonal, meaning that the particles escape by actually
losing rather than gaining kinetic energy. The upper dashed line
corresponds to a theoretical calculation of the upper bound for the
final kinetic energy, as a function of the initial kinetic energy (see
Section 4.4). We note also the different behaviour of the kinetic
energy gain functions of protons in solar flares and in the Earth
magnetotail. In solar flares, the kinetic energy gain for protons can
be one order of magnitude larger than their initial kinetic energy
(see Fig. 4d and e). However, inside the Earth magnetotail RCS
(Fig. 4c and f), the energy gain for protons and electrons are similar
functions of the initial kinetic energy. The dimensionless value of the
electric field ε, used in equation (4), is larger than the corresponding
value for electrons by a factor m p/m e. This reflects the fact that
electric forces, compared to magnetic forces, are relatively more
important in protons than in electrons with similar kinetic energy.
Consequently, protons are not easily trapped in the sheet.
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Figure 4. Final kinetic energy versus initial kinetic energy for particles in escaping orbits, injected at the centre of the RCS (y = z = 0). The physical parameters
are: (a) ε = 10−5, ξ ⊥ = 10−3, ξ ‖ = 0; (b) ε = 10−5, ξ ⊥ = 10−3, ξ ‖ = 10−1; (c) ε = 1.8 × 10−6, ξ ⊥ = 0.05, ξ ‖ = 0.2; (d) ε = 1.84 × 10−5, ξ ⊥ = 10−3,
ξ ‖ = 0; (e) ε = 1.84 × 10−5, ξ ⊥ = 10−3, ξ ‖ = 10−1 and (f) ε = 3.3 × 10−3, ξ ⊥ = 0.05, ξ ‖ = 0.2. The upper and lower dot–dashed curves correspond to
a theoretical calculation of the maximum kinetic energy gain or loss (equation 30 in Section 4.4, below). The dashed curve in panels (b), (c), (e) and (f) is a
calculation of the energy gain by Litvinenko (1996). The energy unit indicated is valid for the energies of both axes of the panel.

The remaining part of this paper is devoted to a theoretical un-
derstanding of the above results.

4 T H E O R E T I C A L A NA LY S I S

4.1 Visualization of the phase space by Poincaré sections

A theoretical treatment of the orbital dynamics in our model RCS
requires illustrating the phase space structure by means of Poincaré
surfaces of sections. Fig. 5(a) shows a Poincaré section for electron
orbits in a solar RCS (ξ ⊥ = 10−3, ξ ‖ = 0.1, ε = 10−5 and particles
with total energy E = 2 × 10−4). The Poincaré section is com-
puted as follows. For a given orbit, a point is marked on the section
every time when the orbit crosses the plane y = 0 with ẏ > 0.
As a consequence, from the second equation of (10), we have on
the Poincaré section, the equality c4 = ż. All points on this sec-
tion are restricted in a domain bounded by a closed curve, called
the ‘limiting curve’. This curve, derived from equation (9), has the
form:

ż2 + ξ 2
⊥

(
z − ε

ξ 2
⊥

)2

= 2E + ε2

ξ 2
⊥

; (11)

in the case of Fig. 5(a), E = 2 × 10−4. The form of equation (11)
is an ellipse centred at (z, ż) = (ε/ξ 2

⊥, 0). The radius of the ellipse
increases as the energy E increases.

Now, a visual inspection of the Poincaré section of Fig. 5(a) re-
veals that the points lie on a number of open or closed curves. Such
curves are called invariant curves, and they determine a domain
of regular motions on the Poincaré section (domain D in Fig. 5a).
In fact, these curves surround a point (B) on the same section, at
(z0, ż0) � (14.27, −0.009). This point corresponds to a periodic
orbit, i.e. an orbit which intersects the Poincaré section at the same
point at each period. For initial conditions in the neighborhood of

Figure 5. Poincaré section y = 0, ẏ > 0 for orbits in an RCS with ξ ⊥ =
10−3, ξ ‖ = 0.1, ε = 10−5 and orbital energy E = 2 × 10−4. Panels (b), (c)
and (d) show y(t) (thin line) and z(t) ξ ⊥/ξ ‖ (thick line) for the orbits with
initial conditions marked as B, C, D on the Poincaré section.

(z0, ż0), quasi-periodic orbits are created. Quasi-periodic orbits in-
tersect the Poincaré section at different points on the same invariant
curve. Such curves are also called KAM curves because their ex-
istence is predicted by the Kolmogorov (1954), Arnold (1963) and
Moser (1962) theorem. In fact, a quasi-periodic orbit lies on a 2D
manifold of phase space which is topologically equivalent to a 2D
torus. This is called a ‘KAM torus’. The intersection of a KAM torus
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with the Poincaré surface of the section y = 0 yields an invariant
KAM curve.

The time-evolution of the periodic orbit (B) is shown in Fig. 5(b).
The y(t) coordinate performs a nearly harmonic oscillation, while
z(t) remains practically constant. The closed curve indicated as C on
the Poincaré section of Fig. 5(a) corresponds to a quasi-periodic or-
bit shown in Fig. 5(c). In this case, y(t) performs an oscillation with
frequency nearly equal to the frequency of the periodic orbit. How-
ever, the function y(t) is modulated by a second oscillation which
has a much smaller frequency. As shown below, this new oscilla-
tion originates from z(t) which presents the same small frequency
oscillation.

In Fig. 5(a) there are also open invariant curves which form arcs
that end on the limiting curve. These curves also represent quasi-
periodic orbits, as does the one shown in Fig. 5(d). Here, y(t) per-
forms the same type of oscillations as in the case of Fig. 5(c). How-
ever, the amplitude of the second oscillation is now larger so that, for
some time-segments, y(t) does not intersect the y-axis. These time-
segments correspond to a domain (z, ż) lying outside the limiting
curve of the Poincaré section y = 0.

It is well known from the theory of dynamical systems that, in
general, the domain of regular orbits is limited by an outermost
KAM curve, while, beyond this curve, orbits are in general chaotic
(except perhaps for very small stability islands embedded in a large
chaotic domain that are not clearly seen in the present scale). The
intersection of a chaotic orbit with the Poincaré section does not lie

Figure 6. Poincaré surfaces of section (z, ż), y = 0, ẏ > 0, for the Hamiltonian (9). The parameters are: ξ ‖ = 0, ξ ⊥ = 10−3, ε = 10−5 in the first row, ξ ‖ =
0.1, ξ ⊥ = 10−3, ε = 10−5 in the second row, ξ ‖ = 0.2, ξ ⊥ = 0.05, ε = 1.8 × 10−6 in the third row. The energy is : (a) E = 5 × 10−5; (b) E = 1.8 × 10−3;
(c) E = 3.2 × 10−3; (d) E = 2 × 10−4; (e) E = 1.25 × 10−3; (f) E = 3.2 × 10−3; (g) E = 4.5 × 10−6; (h) E = 1.8 × 10−5 and (i) E = 5 × 10−5.

on an invariant curve, but it fills stochastically the available space
between the last KAM curve and the limiting curve. In fact, we
shall see (Section 4.4) that the extensions of the limiting curves
to the whole available phase space define the limiting surfaces of
motion for constant energy E. These surfaces are open, allowing
particles to escape from the sheet. Since chaotic orbits outside the
last KAM torus are free to explore the whole phase space that is
energetically available, these orbits always become escaping orbits
at a certain time t.

On the other hand, regular orbits are confined on KAM tori and
they perform quasi-periodic oscillations in the y- and z-axes. If the
oscillation amplitude of y(t) is smaller than the sheet dimension,
particles cannot escape the sheet. However, an escape is possi-
ble when the KAM torus for a particular orbit crosses one of the
planes of escape y = ±1 which define the edges of the sheet in our
model.

In summary, escaping orbits can be either chaotic or regular. In
the former case, the motion takes place in the domain defined by an
inner boundary (a last KAM torus) and an outer boundary (limiting
surface of zero velocity). In the latter case, the motion is restricted
to a KAM torus and the escape necessarily takes place at some point
on this torus, where the torus crosses one of the planes y = ±1.

Fig. 6 shows several characteristic examples of Poincaré sections
in our model. Each row of panels in Fig. 6 are computed using the
same parameters with each of the panels (a), (b) and (c) in Fig. 3.
The columns, from left to right, correspond to increasing orbital
energy.
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As the energy increases, the limiting curve occupies a larger area
of the Poincaré section (note the different axes limits in the panels
of each row, from left to right). Consequently, particles are allowed
to have larger velocities and explore larger areas of the phase space.

Fig. 6(a), (b) and (c), referring to a solar RCS without shear, show
that the associated phase space is almost entirely filled with invariant
KAM curves. These curves surround the fixed point of a periodic
orbit, which lies near the lower edge of the limiting curve. The
position of the periodic orbit is different in each of the panels (a),
(b) and (c), indicating a dependence of the position on the particle
energy.

Near the periodic orbit, there are many closed invariant curves.
However, further away we observe open invariant curves as well as
zones, which are similar to curves but with some thickness (mostly
visible in Fig. 6a). We shall show (Section 4.5) that these zones
correspond to weakly chaotic orbits that behave almost like regular
orbits.

Fig. 6(d), (e) and (f) refer to a solar RCS with moderate shear.
The periodic orbit still lies near the lower edge of the limiting curve.
However, in panel (d), the KAM curves are now clearly distorted
from vertical symmetry, and some of them intersect the limiting
curve at large values of z. At higher orbital energy (panels e and
f), only closed KAM curves are observed. In fact, the phase space
above these curves is filled with many chaotic orbits. Such orbits
form arc segments on the Poincaré section, as the ones shown in
the top of Fig. 6(f). These segments give the impression of being
open invariant curves. However, a careful inspection of these curves
reveals that the same orbit, started on one curve, returns later on
a different curve of the Poincaré section. In fact, the arc-forming
periods are interrupted by periods during which the particle does
not cross the Poincaré section at all. Examples of this type can be
found in the studies of Chen & Palmadesso (1986), Büchner &
Zelenyi (1989), Chen (1992) and in Paper I (for initial conditions at
the edge of the sheet).

Finally, in Fig. 6(g), (h) and (j), which correspond to the RCS
parameters of the Earth magnetotail, the KAM curves also fill a
large part of the available phase space. However, the topological
structure of these curves is quite different from that of the previous
cases. In particular, most KAM curves are now open and almost
horizontal. Closed curves are observed only in the neighbourhood
of a central periodic orbit. In panel (g), the centre lies outside the
limiting curve, and there are no closed invariant curves. In fact, as
shown in Section 4.2, these curves are parts of deformed ellipses
with axial ratio very different from unity. Thus, only some parts of
the ellipses lie in the domain inside the limiting curve of the Poincaré
section.

4.2 Theoretical analysis of the phase space structure

The next step in our analysis is to provide a theoretical explanation
of the morphology of the regular domain of the Poincaré sections of
Fig. 6. In particular, we seek to explain the morphological evolution
observed in the pattern of the regular domains as we move through
the varius panels of this figure.

Without loss of generality (see Paper I), we shall consider the
Hamiltonian equation (9) for the choice I 2 = 0. This Hamiltonian
can be written in the form H = H 0 + H non-linear, where

H0 = 1

2

(
p2

y + c2
4

) + 1

2

(
ξ 2
⊥z2 + ξ 2

‖ y2 + 2ξ⊥ξ‖ yz
) − εz

and

Hnon-linear = 1

2

(
c4 y2 + y4

4

)

The term Hnon-linear can be considered as a pertubation to the term
H0, thus we shall study first the dynamics induced by H0. With a
canonical transformation (Paper I)

u1 = −ξ‖ y + ξ⊥z√
ξ 2
‖ + ξ 2

⊥
,

p1 = −ξ‖ py + ξ⊥c4√
ξ 2
‖ + ξ 2

⊥

u2 = ξ⊥ y + ξ‖z√
ξ 2
‖ + ξ 2

⊥
,

p2 = ξ⊥ py + ξ‖c4√
ξ 2
‖ + ξ 2

⊥
, (12)

the function H0 takes the form:

H0 = 1

2

(
p2

1 + ω2
10u2

1

) + 1

2
p2

2 − ε
ξ⊥u1 + ξ‖u2

ω10
,

where ω10 =
√

ξ 2
‖ + ξ 2

⊥. We distinguish now two limiting cases as
follows.

(i) ξ ‖ → 0 (RCS without shear). In this case, the transformation
(12) tends to the form:

u1 � z, p1 � c4, u2 � y, p2 � py .

Thus the Hamiltonian H0 implies an oscillation in the z-axis, with
frequency ω10, and a free motion in the y-axis. This is just a Larmor
motion with the drift directed towards the y-axis (see Speiser 1965).
This corresponds to the fact that near the plane of reconnection the
component Bx of the magnetic field becomes very small, so that
the leading component of the magnetic field is ξ ⊥. Note that the
E × B drift is in the x-direction, which does not explicitly appear in
the analysis because of the Hamiltonian reduction of equation (9).
However, away from the plane y = 0, the component Bx becomes
more important than ξ ⊥. Formally, this is reflected as the effect of
the non-linear terms H non-linear, which transform the motion in the
y-axis to a mirror type motion, with a small frequency. It can be
shown that the second frequency is of the order of z2

a/2, where za is
the amplitude of oscillation in the z-axis.

(ii) ξ ‖ � ξ ⊥, ξ ‖ → 1 (RCS with large shear). In that case, the
normalizing transformation tends to the form

u1 � −y, p1 � −ẏ, u2 � z, p2 � c4.

Thus, near the plane of reconnection, the Hamiltonian H0 now im-
plies a fast oscillation, with frequency ω10 � ξ ‖ in the y-axis, and a
drift in the z-axis; that is, the directions of oscillation and drift are
reversed with respect to case (i). This is because the main magnetic
field component near the plane of reconnection is, now, ξ ‖, which
is aligned with the z-axis. The effect of H non-linear is, again, to trans-
form the drift motion to a mirror motion on the z-axis. The frequency
ω2, derived from the analysis below, is ω2 � ξ⊥ ya/(ξ‖

√
2), where

ya is the amplitude of oscillations in the y-axis.

In order to construct an analytical theory for these limiting cases,
we use the theory of normal forms (see Paper I for details). In the
case of the Hamiltonian (9) there are two perturbing parameters in
the problem: (1) the relative importance of the sheared field com-
ponent [ξ ‖ → 0 in case (i) and ξ ⊥/ξ ‖ 
 1 in case (ii)], and (2)
the electric field ε. In order to obtain a useful expression in normal
form, we consider first the case without the electric field (i.e. ε = 0
in equation 9). The so-derived Hamiltonian can be written in new
canonical variables that clearly unravel the two main oscillations.
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The new expression for the Hamiltonian is given as series in new
canonical variables J ′

1, u′
2 and p′

2 (Paper I)

Z = ω10 J ′
1 + 1

2

[
p′2

2 + ω2
2(J ′

1)u′2
2

] + b(J ′
1) − c

(
J ′

1

)
u′4

2 + · · ·
(13)

where ω2
2 = (ξ 2

⊥ J ′
1/ω

3
10) + (ξ 2

⊥ J ′2
1/8ω8

10) (25ξ 2
⊥ − 8ξ 2

‖) + . . ., and
b(J ′

1), c(J ′
1) are terms of small size defined in Paper I. The vari-

ables J ′
1, u′

2 and p′
2 are near-identity transformations of the vari-

ables J 1, u2 and p2, where J1 is the action variable of the con-
jugate pair (J 1, φ1) defined by u1 = √

2J1/ω10 cos 2φ1, p1 =√
2ω10 J1 sin 2φ1 (see Paper I for details). We notice in particular the

relation

p′
2 = p2 + ξ 3

‖ J1

2(ξ 2
‖ + ξ 2

⊥)2
+ . . . (14)

used in the analysis below.
Since no angle conjugate to J ′

1 appears in the transformed
Hamiltonian, the transformed action J ′

1 represents an approximate
integral of motion of the Hamiltonian Z. This integral differs from
the usual adiabatic invariant in higher order terms in the action vari-
ables (see Contopoulos 1966 for a comparison of formal integrals
and adiabatic invariants). It is known that such approximate integrals
are valid only for regular orbits laying on the surface of invariant
KAM tori. The mirror frequency associated with regular orbits of
this type is ω2(J ′

1).
Considering now a non-zero electric field, ε 
= 0, the normal

form analysis above is, formally, no longer valid. However, we
found that the two limiting cases, ξ ‖ → 0 and ξ ‖ → 1, can be
treated analytically by an appropriate anzatz added to the normal
form description. This allows us to calculate theoretically the form
of the invariant curves on the Poincaré surface of the section as
follows.

4.2.1 Case i: ξ ‖ → 0

When ξ ‖ → 0, the variables u2 � y and p2 � py correspond to
an oscillation along the y-axis with frequency ω2, whereas J1 cor-
responds to the action integral of an oscillation along the z-axis
with amplitude za given by za = √

2J1/ξ⊥. For the cases studied in
Fig. 6(a), (b) and (c), one finds that ω2 in equation (13) typically
satisfies the condition ω2 �ω10, namely, the oscillation in the y-axis
is faster than that of the z-axis. Thus, an expression for the invariant
curves can be found by applying an averaging technique in the orig-
inal Hamiltonian, known in celestial mechanics as ‘Hadjidemetriou
mapping’ (Hadjidemetriou 1991). This method produces a ‘sym-
plectic’ mapping model for the Poincaré surface of a section of the
Hamiltonian system. The final mapping (Appendix A) reads

żn+1 = żn − T ξ 2
⊥zn + T ε

zn+1 = zn + T żn+1 + T
y2

a

4
.

(15)

The position of the periodic orbit on the Poincaré section is ap-
proximated by the period-one fixed point of the mapping (A6), given
by

z0 = ε

ξ 2
⊥

, ż0 = T ε − y2
a

4
. (16)

For the fixed point (16), the Hénon’s stability index (Hénon 1965)
is equal to b = 1 − T 2ξ 2

⊥/2. Because T ∼ 2π/ω2, we have T 2ξ 2
⊥/2


 1, or |b| < 1, that is, the central periodic orbit is stable. This

means that the point is surrounded by invariant curves. We readily
find the form of these curves:

	(
z, 
ż) = 
ż2 − T ξ 2
⊥
ż
z + ξ 2

⊥
z2, (17)

where 
z = z − z0, 
ż = ż − ż0 and 	 = constant. The small non-
diagonal term T ξ 2

⊥
ż
z is an artifact of the method that produces
the mapping and shall be ignored below; we consider the form of
the invariant curves being given by

	(
z, 
ż) = 
ż2 + ξ 2
⊥
z2 = constant. (18)

Fig. 7(a) shows a theoretical calculation of invariant curves accord-
ing to equation (18), for same parameter values as in Fig. 6(b) (shown
also as Fig. 7b for comparison). The agreement between these curves
is good. However, as stressed above, the real invariant curves have
in general a limit defined by an outermost invariant curve, while,
beyond this curve, the real Poincaré section is filled with chaotic
orbits. This limit cannot be found by equation (18), which gives
only the form of theoretical invariant curves. We shall discuss this
limit below (Section 4.3).

4.2.2 Case ii: ξ ‖ � ξ ⊥, ξ ‖ → 1

At the second limit, ξ ‖ � ξ ⊥, ξ ‖ → 1, the action J1 corresponds
to an oscillation on the y-axis, while u2 � z and p2 � c4. Thus, the
expression of the normal form (13) can be used directly to derive
the form of the invariant curves of the section (z, ż).

Neglecting the small terms b(J ′
1) and c(J ′

1), the anzatz is now to
introduce a term εz � εu′

2 for the electric potential in the normal
form (13). The new function is

Z ≡ E = ω10 J ′
1 + 1

2

[
p′2

2 + ω2
2(J ′

1)u′2
2

] − εu′
2 (19)

Figure 7. Comparison between analytical calculation of Poincaré sections
with numerical calculation. (a) Analytical calculation of invariant curves,
based on the Hadjidemetriou mapping, holding when ξ ‖ → 0 (see Sec-
tion 4.2.1). (b) Same as Fig. 6(b). (c) Analytical calculation of invariant
curves based on the normal form (see Section 4.2.2). (d) Same as Fig. 6(i).
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With u′
2 � z, equation (19) reduces to

J ′
1

4ξ 2
‖

+
(

2ω10 + ż
ξ‖

+ ξ 2
⊥
ξ‖

z2

)
J1 + ż2 − 2εz − 2E = 0 (20)

This equation yields invariant ellipses on the plane (z, ż), centred
at (z0, ż0) = (ξ 3

‖ ε/ξ 2
⊥ J10, J10/ξ‖) where J 10 � E/ξ ‖ is the value

of the action J1 at the centre. The short axis of an ellipse is equal
to 1/ω2(J ′

1)2. Since ω2 
 1, the ellipses are very elongated with
respect to the z-axis (Figs 7c and d). This reflects the physical fact
that, at the adiabatic limit, a mirror-type orbit behaves almost like a
constant drift orbit for any time interval between its turning points.
In fact, the comparison of theoretical and real invariant curves on
the Poincaré section, for the parameters values of Fig. 6(h), is sat-
isfactory. The deformation of the real curves from perfect ellipses
represents the size of corrections needed with respect to the adiabatic
approximation.

4.3 Theoretical determination of trapping domains

Based on the previous analytical approximations, we may now ex-
plain the trapping domains of Fig. 3 theoretically. In order to be
trapped, an orbit must: (1) lie inside the domain defined by the out-
ermost KAM torus (corresponding to the outermost KAM curve on
the Poincaré section) and (2) lie inside the domain defined by a torus
which crosses either of the planes y = ±1. We then examine case (i),
(ξ ‖ → 0), in which condition (1) is more restrictive than condition
(2), separately from case (ii), in which (2) is more restrictive than
(1).

4.3.1 Case i: ξ ‖ → 0

In Fig. 6 the invariant curves in panels (a) to (f) are more closely
represented by the theoretical curves corresponding to the limiting
case ξ ‖ → 0. The main observation here is that the outermost KAM
curve is close to a curve which comes almost tangent to the limiting
curve at its lowest point. This is clearly seen in Fig. 6(e) and (f). In
fact, when the shear is zero (Fig. 6a, b and c), there seem to be many
invariant curves outside this tangent curve. However, as explained
above, many of these curves belong to zones crossed by the same
chaotic orbit.

Based on this remark, we shall approximate the trapping domain
by a model shown schematically in Fig. 8. Namely, the limit of this
domain is obtained by considering that the outermost KAM curve
is the curve tangent to the limiting curve. Neglecting a small term
Tε in equation (16), this curve is given by


ż2 + ξ 2
⊥
z2 =

⎡
⎣

√
2E +

(
ε

ξ⊥

)2

− y2
a

4

⎤
⎦

2

(21)

The amplitude of oscillation ya of the central periodic orbit corre-
sponds to an extremum of the action integral J ′

1. For a fixed total
kinetic energy E, this is given by

ya =
{

16

3

(
2 E + ε2

ξ 2
⊥

)}1/4

(22)

From the form of equation (11) one finds immediately that the limit-
ing curve on the Poincaré section always intersects the straight line
z = 0 (see Figs 6 and 8). This means that all the initial conditions on
the grid described in Section 3 belong to the segment AB defined by
the intersection of the line z = 0 with the limiting curve. The points
of the segment between A and B correspond to an angle of ejection

Figure 8. Theoretical model of the Poincaré surface of the section, with the
outermost invariant curve separating the domains of trapping and of escapes.

θ which increases as we move from A (θ = 0) to B (θ = π). Now, the
outermost KAM curve may or may not intersect the segment AB. In
fact, the distance from the segment AB to the central periodic point
is roughly constant �ε/ξ 2

⊥, while the semi-axis 
z of the outermost
invariant curve is an increasing function of E. When E is small, we
have 
z < ε/ξ 2

⊥, i.e. the particles injected at y(t = 0) = z(t = 0) =
0 cannot be trapped in the sheet. Physically, mirror motions are sup-
ported after a threshold value of the magnetic force, which implies
a threshold value of the initial particle velocity. On the other hand,
for a large enough value of E, the outermost KAM curve intersects
the line z = 0, meaning that there is a segment of this line which lies
within the domain of trapping. The limiting points of this segment
correspond to velocities żmin, żmax, which can be transformed to
(vmin, θ ), (vmax, θ ) values by the constant energy condition.

4.3.2 Case ii: ξ ‖ → 1, ξ ‖ � ξ ⊥

In the limit ξ ‖ → 1, ξ ‖ � ξ ⊥ the invariant curves are more closely
represented by the theoretical curves corresponding to the Poincaré
sections of Fig. 6(g), (h) and (i) (Section 4.2.2). The condition of
escape is then identified by the condition that the overall amplitude
of the y-oscillation of a regular orbit does not surpass the value
of the RCS half-thickness. The variations in the y-oscillation are
related to variations in the mirror oscillation (in the z-axis) via the
transformations (12). The final condition reads

ξ⊥
ξ‖

(
za + z0) + 
u1
ω10

ξ‖
� 1, (23)

where, by the analysis of the previous subsection, z0 = ε/ω2
2(J ′

1),
with J ′

1 given by ω10 J ′
1 = E 1 = 1/2p2

1, and p1 is expressed in terms
of the initial velocity and angle of injection

p1 � −ξ‖v0 sin θ + ξ⊥v0 cos θ√
ξ 2
‖ + ξ 2

⊥
. (24)
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We also have 
za =
√

2E2/ω
2
2, with E2, the energy of the mirror

oscillation, being related to the total energy via:

E = E1 + E2 − ε2

2ω2
2(J ′

1)
(25)

In the actual calculation, we fix the initial injection velocity v0,
and vary the injection angle θ until we reach the limits where con-
dition (23) is violated.

4.3.3 Comparison of theoretical and numerical results

The above two independent theoretical determinations of the trap-
ping domain are represented in Fig. 3 by a solid curve (for case
i) and a dashed one (for case ii). In Fig. 3(a), where ξ ‖ = 0, the
solid curve includes only a part of the real trapping domain. This
phenomenon is due to the presence of ‘sticky’ chaotic orbits and
will be analysed in Section 4.5. On the other hand, in all other pan-
els of Fig. 3, one of the two theoretical approximations provides a
successful representation of the real trapping domain.

In Fig. 3(b), the solid line corresponding to the limit ξ ‖ → 0
describes the trapping domain well, especially for high angles near
the edge θ = π. The estimation of the low energy edge of the trap-
ping domain (v � 0.02 in Fig. 3b) is not exact because the KAM
curves deviate from the shape of an ellipse at low velocities (com-
pare Fig. 6d and e). Figs 3(c) and (d) refer to the Earth magnetotail
for electrons and protons, respectively. The ratio ξ ‖/ξ ⊥ = 4 holds
for both cases. However, the different values of the scaled elec-
tric field (ε = 1.68 × 10−6 and ε = 3.3 × 10−3, respectively), as
well as the different velocity range, cause a different approximation
to be valid for electrons and protons. Electrons, in a strong mag-
netic field (=ξ ‖) have gyroradii which are small compared to the
sheet thickness. Thus electrons follow guiding centre orbits, i.e. they
are better represented by the lowest order terms of approximation
(ii). On the contrary, protons have large gyroradii and feel the non-
linear effects of the magnetic field variation throughout the sheet.
Thus, trapped proton orbits are better represented by the theoretical
approximation (i).

4.4 Theoretical determination of the kinetic energy gain for

escaping particles

Having analyzed the orbits of trapped particles, we now focus on
escaping ones and provide theoretical estimates of their kinetic en-
ergy gain when they leave the sheet. This is done as a function of the
initial kinetic energy of the particles and of the physical parameters
of the sheet.

Limits of motion for non-trapped particles are imposed only by
the constant energy condition of an orbit. For a given energy E the
limiting surfaces of zero velocity are given by the conic sections

ξ 2
‖ y2 + ξ 2

⊥z2 − 2ξ‖ξ⊥ yz − 2εz = 2E . (26)

For ξ ‖ 
= 0, E > 0, equation (26) is a parabola (see Fig. 9), which
tends to two parallel straight lines as ξ ‖ → 0. For ξ ‖ 
= 0, the
parabola is open on one half-plane y > 0, while it closes on the
opposite half-plane at the point

ys,min = − ε

2ξ‖ξ⊥
− Eξ⊥

εξ‖
. (27)

This point moves away from the sheet plane as the particle energy
increases. As long as y s,min > −1, particles can escape only from
the one open half-plane, while particles with ẏ < 0 at y = 0 are
bounced at some point of the half-plane y < 0 and return to the

Figure 9. The zero-velocity surface is shown to be a parabola. Particles can
escape the sheet in different ranges of Z, depending if they escape from y
= 1 or y = −1. In this example ξ ‖ = 0.1, ξ ⊥ = 10−3, ε = 10−5 and the
energy of the particles E = 0.003 (see Fig. 4b, where the same parameters
are used).

half-plane y > 0. However, when ξ ‖ = 0 or y s,min < −1, particles
can escape from both edges of the sheet.

Fig. 9 shows the form of the zero velocity boundary for a case
where ys,min < −1. Particles can leave the sheet at both edges y ± 1.
However, the corresponding acceleration lengths are quite different.
Namely, the interval [z(+)

min, z(+)
max] (top edge) is shifted by a positive

amount, while [z(−)
min, z(−)

max] is shifted by a negative amount with
respect to the symmetry axis z = 0. Practically, a particle leaving
the sheet at y = 1 has a large chance to gain kinetic energy with
respect to its kinetic energy of injection at y = 0. On the contrary,
a particle leaving the sheet at y = −1 has a large chance to lose
kinetic energy. Particles leaving the sheet at a point tangential to
zero velocity curve have the largest possible kinetic energy gain.
This is because ‘zero-velocity’ means the y- and z-components of the
velocity, while the kinetic energy gain is in the x-velocity component
which does not appear explicitly in the reduced equations of motion.
The minimum and maximum acceleration lengths for y = 1 are
given by

z(+)
min,max = ξ‖ξ⊥ + ε ±

√
2εξ‖ξ⊥ + ε2 + 2ξ 2

⊥ E
ξ 2
⊥

, (28)

while for y = −1:

z(−)
min,max = −ξ‖ξ⊥ + ε ±

√
−2εξ‖ξ⊥ + ε2 + 2ξ 2

⊥ E
ξ 2
⊥

. (29)

Independently of the details of an orbit, the maximum kinetic energy
gain, as a function of the initial kinetic energy E0, is calculated by
setting the maximum acceleration length equal to zmax, and E = E 0.
This yields


Emax = εz(+)
max = ε

ξ 2
⊥

(
ξ‖ξ⊥ + ε +

√
2εξ‖ξ⊥ + ε2 + 2ξ 2

⊥ E0

)
.

(30)

In the same way, using the possibilities of equations (28) and (29)
one can compute the minimum or maximum kinetic energy gains for
particles leaving the sheet from y = ±1. In view of equation (27),
an escape from the boundary y = −1 is possible when E0 satisfies
the condition

E0 � εξ‖
ξ⊥

(
1 − ε

2ξ‖ξ⊥

)
. (31)
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Thus, the maximum kinetic energy gain 
E max is a negative
number if ξ ‖ξ ⊥ > ε and

E0 <
ξ 2
‖
2

, (32)

meaning that a particle with initial kinetic energy below the value
(32) leaves the sheet by actually losing kinetic energy.

These theoretical limits are drawn in Fig. 4(a) to (f). In all cases,
we find that the curves E 0 + εz(+)

max and E 0 + εz(+)
min correspond

precisely to the orbits with the larger or smaller kinetic energy gain.
However, the spreading of the distribution of the particles between
these two limits strongly depends on the regular or chaotic character
of the orbits. In particular, the spreading is larger when the orbits
are chaotic.

4.5 Chaotic sticky orbits

As a final step, we explain the inconsistency of the theoretically
derived trapping domain in Fig. 3(a) with the numerically com-
puted domain. As already pointed out in Section 4.1, the discrep-
ancy should be attributed to the presence of chaotic orbits that stay
inside the sheet [|y(t)| < 1] for a very long time, while they lie
outside the domain of the last KAM torus. Such orbits are called
‘sticky orbits’, and they produce arcs with a certain thickness in the
Poincaré section. Examples of such arcs were given in Fig. 6.

In order to demonstrate that these apparently trapped orbits are
in fact chaotic, we calculate the Lyapunov characteristic number
(Benettin, Galgani & Strelcyn 1976)

L = lim
t→∞, d(0)→0

1

t
ln

d(t)
d(0)

(33)

where d(t) is the time-evolution of the distance, in phase space,
between two neighboring orbits, d(0) being their distance at t =
0. The Lyapunov characteristic number (LCN) is equal to zero for
regular orbits while it tends to a constant positive value for chaotic
orbits. This implies that the deviations d(t) of chaotic orbits grow
with time exponentially, whereas the deviations of regular orbits
grow with time algebraically. Lyapunov characteristic numbers of
orbits in X-type RCSs were computed, e.g. by Hannah, Fletcher &
Hendry (2002) and Martin (1984).

In practice, the Lyapunov number has to be computed for a time
that is large enough to allow the quantity ln |d(t)/d(0)| to reach its
final asymptotic behaviour given by equation (33). In Fig. 10 we
show the Lyapunov number evolution for two orbits with initial
conditions corresponding to different domains of Fig. 3(a). Both
orbits have initial velocity v0 = 0.07 and z0 = y0 = 0. The first
orbit is taken at an initial angle θ = 1 which corresponds to ż =
3.8 × 10−2 and lies outside the domain of trapping as determined
theoretically. The second orbit is taken at θ = 2 which corresponds
to ż = −2.9 × 10−2 and lies inside the theoretical domain. Fig. 10
shows the Lyapunov number of the first orbit to decrease with time
until it reaches a constant value after a time�6×104. This behaviour
is typical of a chaotic orbit. On the contrary, the Lyapunov number of
the second orbit decreases with time and it falls asymptotically as L
∝ t−1, indicating that the orbit is regular. We have investigated all the
orbits of Fig. 3(a) by using a variant of the LCN method (alignement
index, Skokos 2001; Voglis, Kalapotharakos & Stavropoulos 2002),
which provides a clear separation of regular and chaotic orbits. The
result is shown in Fig. 11. Chaotic orbits are indicated with crosses
and regular orbits with diamonds. Clearly, the analytical solution
derived in Section 4.3.1 contains all the regular orbits of Fig. 11. On
the other hand, the orbits shown by crosses are chaotic, despite the
fact that these orbits ‘stick’ to the sheet for quite long times.

Figure 10. Lyapunov number in function of time for two different orbits.
For both of them the parameters are ξ ‖ = 0, ξ ⊥ = 10−3, ε = 10−5 and the
energy is E = 2.45 × 10−3, which corresponds to an initial velocity of 0.07.
For the first, the Lyapunov number evolves as t−1 and is represented by a
straight line on this logarithmic diagram. For the second orbit, the Lyapunov
number is stabilized to a constant value, indicating a chaotic behaviour.

Figure 11. Same figure as panel (a) of Fig. 3. There, chaotic orbits are rep-
resented with a cross whereas integrable ones with diamonds. The analytic
solution separated the two types of orbits exactly.

5 S U M M A RY A N D C O N C L U S I O N S

In this paper we consider a Harris-type current sheet model with
field values relevant to RCSs in the solar atmosphere and in the
Earth magnetotail. We then study particle orbits in this current sheet,
when the initial conditions of the orbits are taken in the interior of
the sheet. Our conclusions are as follows.

(1) Numerical simulations show the presence of orbits trapped
in a mirror motion within the sheet even when the electric field
has large values. Such orbits perform a mirror-type motion with
frequencies ω1 �

√
ξ 2
‖ + ξ 2

⊥ and ω2 determined by an analytical
calculation, based on normal forms (Section 4.2). The same theory
yields an approximate second integral of motion that is preserved
by regular orbits.

(2) We illustrate the phase-space dynamics by computing
Poincaré surfaces of section. Such sections provide a clear
separation of the domains of trapping (defined by an outermost in-
variant KAM torus) and of escapes. The boundary of these domains
are estimated theoretically by two independent approximations. The
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extent of applicability of each approximation is found by compari-
son with numerical simulations.

(3) In the limit of strong shear (ξ ‖ → 1), the action integral J ′
1

found in our calculation tends to the form of an adiabatic invariant.
This integral is better preserved when the length scale of the mag-
netic field variation is larger than the Larmor radius of particles’
orbits, i.e. for ξ ‖ → 1 and/or small particles’ velocities. When these
conditions hold, the phase-space of motion is almost entirely filled
with invariant KAM tori (e.g. as in the Poincaré surfaces of Fig. 6g,
h and i). On the other hand, an increase of the kinetic energy of
the particles causes larger areas of chaotic motions on the Poincaré
surfaces (e.g. Fig. 6d, e and f). The extent of the area of regular mo-
tion for different RCS parameters and the energies of the particles
is explored by analytical means.

(4) Escaping orbits are either regular or chaotic. When the shear
(ξ ‖) is non-zero, escapes preferentially follow one of the half-planes
determined by the sheet reversal line. Escapes from the other half-
plane are possible only when the initial kinetic energy of injection
is larger than a threshold value (equation 31). Furthermore, escapes
from the preferential plane lead, in general, to a gain of kinetic en-
ergy, while escapes from the non-preferential plane lead, in general,
to a loss of kinetic energy. Analytical formulae are derived which
provide the limits of kinetic energy gain (positive or negative) in
both cases with a good precision.

(5) We find ‘sticky’ chaotic orbits, which remain trapped in the
sheet for very long times, before they finally escape. Such orbits
are important because they enhance the population of particles that
supports the self-consistency of the sheet.
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A P P E N D I X A : D E R I VAT I O N O F A

‘ S Y M P L E C T I C ’ M A P P I N G

Assuming that the y(t) motion is a fast oscillation given by

y(t) � ya sin(ω2t), (A1)

where ya is the amplitude of the y oscillation, the Hamiltonian is
written as

H = 1

2

[
c4 + 1

2
y2

a sin2(ω2t)

]2

+ 1

2
[ξ‖ ya sin(ω2t) − ξ⊥z]2 − εz.

(A2)

Taking the average of the above expression over the fast-oscillating
trigonometric terms yields the averaged Hamiltonian:

H̃ = 1

2
c2

4 + y2
a

4
c4 + 1

2
ξ 2
⊥z2 − εz (A3)

A symplectic mapping is produced from the averaged Hamiltonian
by the generating function

W = znc4,n+1 + T H (zn, c4,n+1) (A4)

where T = 2π/ω2. The mapping is given by the canonical equations

zn+1 = ∂W
∂c4,n+1

, c4,n = ∂W
∂zn

(A5)

The final mapping reads

żn+1 = żn − T ξ 2
⊥zn + T ε

zn+1 = zn + T żn+1 + T
y2

a

4

(A6)

where c4 = ż on the Poincaré section.
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