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ABSTRACT

We model nanoflare heating of extrapolated active-region coronal loops via the acceleration of electrons and
protons in Harris-type current sheets. The kinetic energy of the accelerated particles is estimated using semi-
analytical and test-particle-tracing approaches. Vector magnetograms and photospheric Doppler velocity maps
of NOAA active region 09114, recorded by the Imaging Vector Magnetograph, were used for this analysis. A
current-free field extrapolation of the active-region corona was first constructed. The corresponding Poynting fluxes
at the footpoints of 5000 extrapolated coronal loops were then calculated. Assuming that reconnecting current
sheets develop along these loops, we utilized previous results to estimate the kinetic energy gain of the accelerated
particles. We related this energy to nanoflare heating and macroscopic loop characteristics. Kinetic energies of
0.1–8 keV (for electrons) and 0.3–470 keV (for protons) were found to cause heating rates ranging from 10−6 to
1 erg s−1 cm−3. Hydrodynamic simulations show that such heating rates can sustain plasma in coronal conditions
inside the loops and generate plasma thermal distributions that are consistent with active-region observations. We
concluded the analysis by computing the form of X-ray spectra generated by the accelerated electrons using the
thick-target approach. These spectra were found to be in agreement with observed X-ray spectra, thus supporting
the plausibility of our nanoflare-heating scenario.
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1. INTRODUCTION

A strong candidate mechanism to explain coronal heating
is the formation of small-scale, still-undetected reconnection
events called nanoflares (Parker 1988). Reconnection events are
sites where coronal magnetic energy is transformed into energy
of accelerated particles, eventually producing heating. Solar
flares constitute a well-documented case where accelerated
particles, through reconnection, attain higher and higher kinetic
energies, thus raising the plasma temperature while creating at
the same time particle beams of supra-thermal kinetic energies
(Birn & Priest 2007).

Particle acceleration and the thermodynamic response of the
plasma to heating are phenomena that were typically studied
in isolation. In fact, a unifying study of particle acceleration,
direct coronal heating, and the thermodynamic response of the
observed plasma structures such as coronal loops seems hardly
tractable, given the wide range of spatial and/or temporal scales
involved. Indeed, these scales range from the dissipation scale
(i.e., the scale of the current sheet thickness, which is of the
order of centimeters or meters), to the scale of macroscopic
phenomena taking place in the observed coronal structures (on
the order of several tens to �100 Mm; Klimchuk 2006).

In the present work, we report on the results of an attempt to
connect direct coronal heating, and its thermodynamic response,
to particle acceleration. To this end, we use several simplifying
assumptions in the theoretical and numerical treatment of each
individual process considered. Furthermore, we empirically
constrain our assumptions by exploiting available observational
information such as measurements and estimates of the magnetic
and the velocity field vectors in a particular active region (AR).

As a starting point, we adopt Parker’s hypothesis (Parker
1972) that plasma motions at the photospheric level stress,

twist, and entangle the coronal magnetic field lines. This process
converts the plasma kinetic energy at the footpoints of coronal
loops to non-potential (free) magnetic energy stored in the
coronal magnetic fields. According to Parker (1988), when
the magnetic field stress reaches a critical point, the stored
free magnetic energy should be released to the plasma via
reconnection events. For quantitative calculations, one equates
the work rate done by the photospheric motions to the observed
radiated energy in the corona. One thus finds an estimate of
the mean critical inclination of flux tubes with respect to the
direction normal to the solar surface at which a reconnection
event should take place. The resulting inclination angle, called
the Parker angle, is derived through numerical simulations or
analytical estimations. For ARs, the Parker angle takes values
in the range of 5◦–20◦, depending on the applied physical
mechanism (Galsgaard & Nordlund 1996; Klimchuk 2006;
Rappazzo et al. 2007). The reason why the Parker angle
appears preferentially in the above range (instead of taking
values below 1◦ or around 90◦) has been interpreted in some
numerical simulations as an effect of the temporal evolution
of a reconnecting current sheet undergoing tearing instability
(Dahlburg et al. 2005).

Numerical simulations can also help us to understand how
coronal magnetic fields are stretched and twisted due to pho-
tospheric plasma motions. These magnetic fields develop com-
plex, unstable current sheets (see, for example, Galsgaard &
Nordlund 1996). In some cases, it was found that there is a
statistical equilibrium established between the energy supplied
at the loop footpoints and the energy released throughout the
whole structure of coronal loops via current sheets (Galsgaard
& Nordlund 1996; Hendrix et al. 1996). The simulated current
sheets are of various types, scales, and forms. In particular, they
vary from large monolithic structures extending over the loop’s
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length (Galsgaard & Nordlund 1996) to cascades of smaller
structures exhibiting a range of different sizes and spatial dis-
tributions (Galsgaard & Nordlund 1996; Hendrix et al. 1996;
Rappazzo et al. 2007).

The above simulations show the dependence of the Parker
angle on the loop parameters. However, they still present a high
degree of idealization which may affect the computed Parker
angle values. These include the simplified representation of
the region between the photosphere and the corona (Klimchuk
2006), as well as the omission of the flux-tube divergence with
height.

As our basic mechanism to explain the magnetic energy
release during flares and nanoflares, we adopt the acceleration of
particles inside reconnecting current sheets. A crucial parameter
for achieving a viable simulation of this type is the “guide”
magnetic field, i.e., a magnetic field component parallel to the
electric field that accelerates the particles. The main effect of
the guide magnetic field is to change the trajectories of the
charged particles, thus enhancing motion parallel to the electric
field (Litvinenko & Somov 1993; Litvinenko 1996; Litvinenko
2000). In a previous work (Efthymiopoulos et al. 2005), these
particles’ motions were studied for the case of a Harris-type
reconnecting current sheet model by means of a Hamiltonian
formalism. The result was a general formula predicting the
maximum kinetic-energy gain of accelerated particles as a
function of the initial energy of the particles and the parameters
of the current sheet (thickness, field strengths). This formula is
used in the present work to estimate the kinetic energy of the
accelerated particles in the extrapolated coronal loops. We also
note that, as found in Gontikakis et al. (2007) and Anastasiadis
et al. (2008), the kinetic-energy distributions of accelerated
particles through single or multiple current sheets (Harris type
or X-point) are subject to upper limits due to the existence of a
maximum possible kinetic-energy gain of the particles.

Another input of our present analysis is estimates of the
current sheet thicknesses in these reconnection events. For this,
we exploit results of recent particle-in-cell studies, in which the
magnetic reconnection in solar flares takes place in the presence
of a guide magnetic field (Hesse et al. 1999; Cassak et al. 2008).
One then finds that the thickness of the diffusive current sheet
is of the order of the electron gyroradius.

Considering now the response of the coronal plasma to
nanoflares, we rely on time-dependent hydrodynamic simula-
tions (Patsourakos & Klimchuk 2005; Patsourakos et al. 2004).
In these models, the cumulative effect of a large number of
nanoflares, releasing energy in a coronal loop, is simulated in
a way that allows a direct comparison between simulations and
observations from telescopes such as the Transition Region and
Coronal Explorer (Handy et al. 1998) or the Atmospheric Imag-
ing Assembly (Lemen et al. 2012) on board the Solar Dynamic
Observatory.

The structure of the paper is as follows. In Section 2, we
discuss the observational data used to compute the structure of
the magnetic field in the AR corona. Section 3 presents our
modeling of coronal loops, leading to a derivation of values for
the field strengths and the footpoint velocities of the field lines
forming the loops. Section 4 explains our main assumptions
used to derive needed values of the current sheet parameters.
Section 5 presents the particle acceleration results. These are
used as an input to compute, in Section 6, the overall loop heating
caused by particle acceleration. In Section 7, we present a
simulation of what the X-ray spectra of the accelerated electrons
would look like under a thick-target model. Section 8 contains

Figure 1. (a) Modulus of the velocity v =
√

v2
x + v2

y computed with the MSR
vector. The gray scale is set to range from 0.3 to 4.5 km s−1. (b) Modulus of
the magnetic field from the vector magnetogram. The gray scale is set to range
from 10 to 500 G.

comprehensive results on loop heating via nanoflares, as well as
on the thermodynamic response of the plasma in the modeled
coronal loops. Section 9 offers a discussion of our results and
the limitations and validity of our modeling. Finally, Section 10
summarizes the basic conclusions of the study.

2. OBSERVATIONS AND DATA TREATMENT

The Imaging Vector Magnetograph (IVM) of the University
of Hawaii’s Mees Solar Observatory recorded a time series of
12 vector magnetograms of the AR 09114 spanning a �4.5 hr
period on 2000 August 8 with a cadence of 20 minutes. These
magnetograms have a field of view of 280′′× 280′′and a spatial
resolution of 0.′′55 (Mickey et al. 1996). The IVM recorded the
Stokes vector of the Fe i 6302.5 Å photospheric spectral line.

Starting from the above data, we first resolve the azimuthal
180◦ ambiguity in each magnetogram using the non-potential
magnetic field calculation method of Georgoulis (2005), as re-
fined in Metcalf et al. (2006). Then, we compute a mean vector
magnetogram as well as a map of the associated photospheric
horizontal velocity, calculated by means of the minimum struc-
ture reconstruction (MSR) technique (Georgoulis & LaBonte
2006; see Figure 1).

Expressing the photospheric magnetic field vector in the local
heliographic reference system, we can now perform a current-
free (potential) field extrapolation using the method proposed
by Alissandrakis (1981). This computation was done in a cube
up to an altitude of 70′′, or �50 Mm, while the potential field
extrapolation was performed on a 2 × 2 binned magnetogram.

3. CORONAL LOOP MODELING

Using the extrapolated potential fields, we now define the
coronal loops and several associated quantities. We proceed via
the following steps.

1. Coronal loop identification. We selected about 5000 ex-
trapolated magnetic field lines all closing within the photo-
spheric field of view. These magnetic field lines are identi-
fied as closed coronal loops. The loops’ lengths (denoted by
L hereafter) range from 8 to 180 Mm. The loops’ maximum
heights range from 2.5 Mm to 50 Mm.

2. Magnetic field strength. We computed a mean value B̄ of the
magnetic field along each coronal loop as in Mandrini et al.
(2000) and Gontikakis et al. (2008). The mean magnetic
field is found to statistically decrease with increasing loop
length, with short loops (L < 20 Mm) yielding an average
B̄ � 180 G while long loops (L > 100 Mm) yield an

2



The Astrophysical Journal, 771:126 (15pp), 2013 July 10 Gontikakis et al.

Figure 2. Scatter plots for several loop parameters as a function of loop length. These are (a) the mean field strength, (b) the Poynting flux at both footpoints of each
loop, (c) the loop volume, and (d) the volumetric heating rate due to the Poynting flux. In panel (c), a fit is also shown.

average B̄ � 60 G. Figure 2(a) shows the mean magnetic
field strength for each loop as a function of the loop’s length.

3. Electric field strength. For each coronal loop, we calculate
the photospheric electric field values at both footpoints
Ephot = −(1/c)vphot × B or

Ephot = 1

c
(vy Bzx − vx Bz y). (1)

In Equation (1), vx and vy are the calculated horizontal
components of the photospheric velocities, Bz is the per-
pendicular magnetic field component, and x and y are the
corresponding unit vectors. Equation (1) does not include
vz because, in the MSR method, the vertical (cross-field)
velocity component is assumed to be negligible.

4. Poynting flux through loops and supply of free magnetic
energy. As an immediate consequence of step (3) above, we
can deduce values of the Poynting flux normal to the solar
surface at the loops footpoints. These values are expressed
as

Sfoot = c

4π
(Ex By − Ey Bx)z, (2)

where Ex = (1/c)vy Bz and Ey = −(1/c)vx Bz are
the photospheric electric field components. For each loop,
two Poynting fluxes Sfoot1 and Sfoot2 are computed at
the positions of the respective footpoints (1 or 2). We

should emphasize that while we have the information
about the direction of the velocity vectors at the points
of the observational grid, the local direction of small-
scale motions at the footpoints of each coronal loop is
inaccessible. For this reason, we ignore signs indicating
an in or out Poynting flux through the loop and define,
instead, the absolute sum Sphot = |Sfoot1 + Sfoot2| as a
rough measure of the Poynting flux supplied to the loop
due to photospheric motions. For a single, isolated loop,
the supply of free magnetic energy should be considered
a result of the relative plasma motions at both footpoints,
since both distort the magnetic field. In fact, this distortion
results in currents inside the loops, whose magnetic field
now becomes non-potential. Furthermore, Equation (2)
is not exact as it does not precisely resolve the relative
motions at the footpoints. However, it arguably gives the
correct order of magnitude for the Poynting flux. Finally,
Equation (2) neglects the changes of the magnetic field due
to the emergence or submergence of magnetic flux (Harra
et al. 2012). This is justified in the case of AR 09114, since
this is a fully developed and non-decaying AR at the time
of the observations.

The calculated Sphot (Figure 2(b)) has an average of 7 ×
107 erg s−1 cm−2 and a standard deviation of �108 erg s−1 cm−2.
Ninety-five percent of its calculated values are in the range
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5 × 105–5 × 108 erg s−1 cm−2, regardless of the loop length.
In Figure 2(d), we show the loop heating hPoynt that would be
produced if all the magnetic field energy input corresponding
to the Poynting flux Sphot was converted to thermal energy. This
quantity is computed for comparison with the heating terms
derived using particle acceleration and presented in Section 6.
As hPoynt is an average value over time and space, it does not
simulate the intermittent nature of nanoflares. It is given as

hPoynt = Aphot (|Sfoot1 + Sfoot2 |)
Vloop

. (3)

In Equation (3), Aphot is the cross section at the footpoints of
each loop. These cross sections are equal to the square of the
magnetogram’s binned pixel size, i.e., 0.6 Mm2. Vloop is the loop
volume (Figure 2(c)). Here, Vloop is calculated by integrating the
volume of infinitesimal cylinders corresponding to the different
cross sections along the loop. We note that in subsequent
calculations, the cross section is allowed to vary along each
loop in order to conserve the magnetic flux passing through
it. The constant magnetic flux of each loop equals the average
magnetic flux calculated at its two footpoints. In Figure 2(c),
we performed a logarithmic fit that shows that the volume as a
function of the loop length is described by Vloop = 0.07 L1.85.
This expression is used in Section 6 to describe a loop heating
function.

In Figure 2(d), we see that hPoynt is in the range of 10−5 to
0.4 erg s−1 cm−3. Moreover, hPoynt is decreasing as a function of
loop length L due to the latter’s inverse dependence on the loop
volume Vloop. In the following, hPoynt will be compared with the
heating rates computed by the particles’ acceleration.

We finally note that instead of the sum |Sfoot1 + Sfoot2|, we
have also made calculations using |Sfoot1| + |Sfoot2| as an upper
estimate of the total Poynting flux Sphot through a loop. Both
expressions lead to quite similar results. Hereafter, we will only
refer to calculations performed using |Sfoot1 + Sfoot2|.

4. CURRENT SHEET MODELING

We now proceed to model current sheets formed along our
extrapolated coronal loops. While a reasonable assumption is
that each loop should include several current sheets at sub-
resolution scales, it will be shown below that the resulting
coronal heating by the cumulative result of multiple current
sheets distributed inside the loop is equivalent to the heating
from a single “average” current sheet extending from footpoint
to footpoint and consisting of a tangential discontinuity with
a variable magnetic field vector across its surface. Figure 3
presents a schematic view of a stretched-out cylindroidal coronal
loop that contains one such current sheet. Since the magnetic
flux is conserved along each loop, the loop’s cross section
increases as we move from one of the footpoints toward the
loop’s apex. The current sheet is on the reconnection plane
(dashed cut), which includes the cylindroid’s axis. In Figure 3,
the reconnection plane extends through the entire cylindroid.
As shown in Section 5, this does not influence the resulting
heating. The plane of the current sheet coincides with the plane
of the discontinuity formed due to shearing motions at the
photospheric level that presumably lead to the formation of
two distinct magnetic-flux domains within the loop volume.

The magnetic field vectors in Figure 3 are depicted with
different orientations above and below the reconnection plane.
The angle θD formed between two adjacent flux tubes at the
discontinuity is assumed to be equal to twice the Parker angle.

Figure 3. Stretched cylindroidal coronal loop. The lateral areas Aphot correspond
to the loop footpoints. The current sheet is formed at a reconnection plane
parallel to the cylindroid’s main axis. The magnetic field changes orientation
in the half-cylindroids defined by the reconnection plane. The magnetic
field projection perpendicular to the cylinder’s axis forms the reconnecting
component Brec while the projection parallel to the axis forms the parallel
magnetic field component B‖. The component B⊥ is perpendicular to the current
sheet plane.

These magnetic flux tubes, which form individual coronal
loops, have a linear cross section smaller than 100–200 km
(Cirtain et al. 2013; Chen et al. 2013). Our magnetogram data,
binned to 1.′′1, cannot resolve these sub-resolution structures;
i.e., we do not have any observational evidence on the value
of the angle θD . Given this limitation, in the present study, we
assigned a value of the angle θD to each loop by picking from
a uniform distribution between 8◦ and 50◦. The minimum value
8◦ corresponds to the upper limit of the mean inclination of
magnetic fields in simulations of MHD turbulence (Rappazzo
et al. 2007) while the upper value includes (twice the) Parker
angles of 40◦ and 45◦ derived from numerical simulations
(Dahlburg et al. 2009; Galsgaard & Nordlund 1996). Moreover,
the distribution includes the typical value of 40◦ found from
energy considerations (Klimchuk 2006). We also attempted to
calculate θD using the scaling law derived in Rappazzo et al.
(2007). The results of the various calculations are discussed in
detail in Section 6.

We assume that the shearing and twisting motions at the
photospheric level are oriented such that the Poynting flux
Sphot is injected inward, i.e., into the sheet. For simplicity, we
also assume that the current sheet is described by a Harris-
type geometry. In this geometry, two out of the three sheet’s
magnetic field components can be derived from the loop mean
magnetic field B̄ and θD: (1) the magnetic field component
perpendicular to the loop axis and parallel to the current sheet
plane is assumed to increase linearly with distance from the
current sheet surface. Its maximum value Brec, at the edges of
the current sheet (see Figure 3), is given by Brec = B̄ sin(θD/2).
(2) The magnetic field component parallel to the loop axis
B|| corresponds to the current sheet’s guide field component.
This component is assumed to be constant at each point inside
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the current sheet, and it is expressed as B‖ = B̄ cos(θD/2).
The dimensionless parameter ξ‖ = B‖/Brec is important in the
current sheet literature (Efthymiopoulos et al. 2005; Litvinenko
2000). In the present modeling, it is given by ξ‖ = cot(θD/2).
According to the above definitions, for θD = 0, the tangential
discontinuity vanishes as Brec = 0 and B‖ = B̄. For θD = π ,
we end up with an anti-parallel reconnection with B‖ = 0 and
Brec = B̄. For the adopted range of θD between 8◦ and 50◦, we
end up with ξ‖ between 14.3 and 2.15, respectively. With the
above settings, the injected Poynting flux Srec is expressed by
the energy conservation equation as

2 SrecArec = Aphot (|Sfoot1 + Sfoot2|). (4)

In Equation (4), Arec is the current sheet area and the factor
of two accounts for the fact that the Poynting flux is injected
from both sides of the current sheet. Therefore, in Figure 3,
Arec corresponds to the area of the dashed current sheet. Arec is
calculated along each loop by integration, taking into account
that the loop diameter normal to the loop’s axis varies along the
loop. Arec takes values in the range 10–760 Mm2, with longer
loops exhibiting larger values of Arec.

The inflowing Poynting flux is directly related to the induced
electric field Erec that accelerates particles inside the current
sheet. The electric field is given by

Erec = −1

c
(vinflow × Brec), (5)

where vinflow is the velocity of the plasma injected in the current
sheet. The velocity vinflow can be derived from the expression of
the injected Poynting flux Srec via

Srec = c

4 π
(vinflow × Brec) × Brec. (6)

Figure 4 presents the results of the above calculations.
Figure 4(a) shows that the injected Srec values are in the range
104–2 × 109 erg s−1 cm−2. Furthermore, Srec decreases with
increasing loop length because it is inversely proportional to
Arec. For short loops (L < 30 Mm), the mean injected Poynting
flux is Srec � 7.5 × 107 erg s−1 cm−2. For intermediate size
loops (30 Mm < L < 100 Mm), we find Srec � 2.2 ×
107 erg s−1 cm−2. While for long loops (L > 100 Mm), Srec �
7× 106 erg s−1 cm−2. Here we assume that in an electron–proton
plasma at thermal equilibrium, electrons will be accelerated
practically without friction (due to Coulomb interactions with
the protons), because the electric field applied to the plasma is
much larger than the Dreicer electric field computed for standard
coronal temperatures and plasma densities (Dreicer 1959; Benz
1993). In general, it is expected that electric fields appearing
during solar-flare reconnection events are much larger than the
Dreicer electric field (Martens & Young 1990). An explicit
computation of the Dreicer field values of our model is given at
the end of this section.

As seen in Figure 4(b), 99% of the electric field values
are between 0.01 and 100 V m−1. The electric fields are also
decreasing with increasing loop length. Moreover, 96% of the
inflow velocity values are in the range 0.1–100 km s−1 (see
Figure 4(c)) but there appears to be no correlation between
vinflow and loop length.

The next important parameter to compute is the magnetic field
component B⊥ that is perpendicular to the plane of the current
sheet (see Figure 3). Assuming consistency between the current

Figure 4. Scatter plots of (a) the injected Poynting flux, (b) the reconnecting
electric field, and (c) the plasma velocity inflow inside each of our considered
current sheets.
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derived from Ampére’s law and the electric current produced
by the accelerated protons (since they carry most of the particle
energy), one finds (Eastwood 1972; Martens & Young 1990;
Litvinenko 1996)

vAB⊥ =
√

2vinflowBrec, (7)

where vA is the Alfvén speed. The above equation is valid for
ξ‖ = 0. In the absence of a guide component, the reconnecting
component Brec equals the average magnetic field B̄ so that
in Equation (7) the Alfvén speed can be expressed as vA =
Brec/

√
4πmpne. Equation (7) differs from the one found in

Eastwood (1972), Martens & Young (1990), or Litvinenko
(1996) by a factor of

√
2. This numerical factor is introduced

because we estimate the proton kinetic energy as being twice as
large as in the above-mentioned works, for reasons explained in
Section 5. For ξ‖ 	= 0, on the other hand, the reconnecting field
component is not equal to the mean magnetic field. Therefore, B̄
should replace Brec in the Alfvén speed expression through the
definition Brec = B̄ sin(θD/2). Inserting sin(θD/2), Equation (7)
becomes

vAB⊥ = vinflowBrec

√
2

sin θD

2

. (8)

We note that in the limit θD = π (anti-parallel reconnection),
Equation (8) becomes identical to Equation (7).

In order to compute the Alfvén speed, we use the Rosner
et al. (1978) scaling laws to determine the electron density for
each loop assuming a maximum temperature of Tmax = 106 K.
These scaling laws are valid in the strict sense for hydrostatic
atmospheres. Their use in the present context will be discussed
in Section 9. Because of the relatively low value of Tmax, we
also have low electron densities in the range 2 × 108 cm−3 up
to 6 × 109 cm−3.

Figure 5(a) shows the Alfvén speed for all our current sheets.
The values of vA range from 103 to 1.6 × 104 km s−1; these are
expected values for the coronal plasma. From Equation (8), we
compute B⊥ for all the current sheets (Figure 5(b)), with 80% of
the values in the range 0.01–1 G. The average B⊥ is 0.3 G and its
standard deviation is 0.85 G. Moreover, for the dimensionless
quantity ξ⊥ = B⊥/Brec, 98% of the values are in the range of
10−5 to 1.

Finally, we estimate the current sheet thickness as follows:
according to Cassak et al. (2008), a current sheet becomes
collisionless and susceptible to reconnection when its thickness
a becomes of the order of the ion gyroradius. However, when
the guide magnetic field component is non-zero, instability
leading to reconnection occurs when the current sheet thickness
becomes of the order of the Hall scale a = vs(T )/ωci (Cassak
et al. 2007), where vs is the sound speed calculated for a
plasma temperature T = 106 K and ωci is the ion-cyclotron
frequency. The current sheet thickness can also be expressed as
a = 5.69 × 10−8vsB̄

−1(mp/me). The resulting thickness turns
out to be of the order of the electron gyroradius. Figure 5(c)
shows that the computed thicknesses in our current sheet sample
range from 0.01 to 1 m, with the longer loops supporting thicker
current sheets. Using the electron density ne and temperature
T = 106 K, we also calculated the Dreicer electric field, which
is given by the expression ED = 6.06 × 10−6ne/T V m−1

(Benz 1993). Our computed electric fields Erec are larger than
the Dreicer electric fields by factors ranging from 1 up to 104

for 97% of the cases. We conclude that the assumption of
collisionless acceleration of the particles in our modeled current
sheets is consistent with the adopted plasma parameters.

Figure 5. Scatter plots of (a) the Alfvén speed, (b) the perpendicular component
B⊥, and (c) the current sheet thickness, as a function of the loop length, for all
current sheets considered.

5. PARTICLE ACCELERATION

In this section, we compute estimates of the kinetic-energy
gain of electrons and protons accelerated through the loop cur-
rent sheets considered in the previous section. In our approach,
charged particles enter the current sheet with a velocity vinflow
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and are accelerated by the induced DC electric field Erec. In-
side the current sheet, particles follow a trajectory that depends
on the initial velocity and strength of the electric and magnetic
fields. Particles are ejected before they can travel along the total
length of the current sheet, which in our case is equal to the
loop length. Ejection is due to the Lorenz force created by the
B⊥ component (Speiser 1965). For current sheets with ξ‖ > 1,
particles will follow adiabatic orbits with a very small amount of
chaos (Efthymiopoulos et al. 2005). In the present study, we did
not examine the possibility of a particle interacting with more
than one current sheet. Therefore, after being ejected from the
current sheet, particles move along the magnetic field lines with-
out any further acceleration. The particles’ kinetic-energy gain
is proportional to the electric field strength multiplied by the fi-
nal acceleration length (along the electric field; see Figure 3). As
the electric fields Erec are super-Dreicer, collisions are ignored.
Therefore, to estimate the final kinetic energy, one needs to com-
pute the orbit as long as the particle is under the influence of the
current sheet electric and magnetic fields. Efthymiopoulos et al.
(2005) derived an analytical expression for the kinetic-energy
range Ek of accelerated particles inside a Harris-type current
sheet as a function of the initial particle energy Ek0 and the
current sheet’s parameters (field strengths and thickness). This
expression reads

Ekj = Ek0 +
Erec

B2
⊥

(
e B‖B⊥a + mjErec

±
√

2e mj a B‖B⊥Erec + m2
jE

2
rec + 2 mj B2

⊥Ek0

)
. (9)

j represents the particle species (electrons or protons). The two
values for the ± sign define the energy range around a mean
kinetic energy. In the following, we consider only the upper limit
of the particles’ kinetic-energy range (plus sign in Equation (9)).
Furthermore, we consider that the initial particle energies obey
a Maxwellian distribution at a temperature of 106 K.

In Efthymiopoulos et al. (2005), the analytical expression
is more cumbersome than Equation (9). In this prior work,
the expression includes explicitly I2, an integral of the motion
of particle orbits. I2 results from the translational symmetry
of the Harris-type sheet geometry along Erec (see Figure 3;
Efthymiopoulos et al. 2005; Litvinenko & Somov 1993). In
Equation (9), we assume for simplicity that I2 = 0. However,
even with this assumption, Equation (9) gives a good estimate
of the final kinetic energy of the particles. The first two terms in
Equation (9)

Eke = Ek0 +
eErecB‖a

B⊥
(10)

are sufficient to describe the electrons’ average final kinetic
energy (Litvinenko 2000). For the protons, the kinetic en-
ergy is well described by the expression (Litvinenko 2000;
Efthymiopoulos et al. 2005)

Ekp = 2mpc2
(Erec

B⊥

)2
. (11)

The factor of two arises because in Equation (9), the mpErec

term occurs twice and results in the
√

2 factor in Equations (7)
and (8). The initial particle kinetic energy, corresponding to a
Maxwellian kinetic energy for the selected temperature of the
order of 0.04 keV, is, on average, 40 and 800 times smaller than
the final kinetic energy of the electrons and protons, respectively,
after the acceleration process. The final electron kinetic energies

are of the order of 0.1–8 keV while the final proton kinetic
energies are in the range 0.3–470 keV (Figure 6).

Figure 6(a) shows the kinetic-energy distribution of electrons
while Figure 6(b) shows the kinetic-energy distribution of
protons. The largest kinetic energies are found for loops with
lengths ranging between 15 and 30 Mm. In Figures 6(a) and
(b), the kinetic-energy scatter plots for electrons and protons
have a similar shape. This is because the kinetic energy of
electrons depends on the Alfvén velocity while the kinetic
energy of protons depends on the square of the Alfvén velocity.
This dependence on the Alfvén velocity, which is implicit in
Equations (10) and (11), comes from the definition of B⊥
in Equation (7). This dependence becomes explicit after the
following calculation. Combining Equations (5), (6), (8), (10),
and (11), as well as the definitions of the thickness a and the B‖
component, we obtain the dependence of the sum of electron
and proton kinetic-energy gain on the initial parameters:

Ek = e ErecB‖a
B⊥

+ 2 mpc2
(Erec

B⊥

)2

= e

c
√

2
B̄ cos

θD

2
avA sin

θD

2
+ 2mpc2

(vA sin θD

2

c
√

2

)2

⇒ Ek = e

c 2
√

2
c1vs(T )vA sin θD + mpv2

A sin2 θD

2
. (12)

Equation (12) holds for 0 < θD < π since, for θD = 0, we
have no current sheet while for θD = π the reconnection is anti-
parallel (ξ‖ = 0) and one should use Equation (9). Moreover,
we omitted the initial kinetic energy Ek0 from Equation (12). In
Equation (12), the constant c1 = 5.8 × 10−8(mp/me) originates
from the expression for the thickness a (Cassak et al. 2007),
introduced in Section 4. Equation (12) shows that the final
kinetic energy Ek of the accelerated particles depends on the
Alfvén velocity, the plasma density, and the discontinuity angle
θD . The sound velocity vs(T ) is introduced through the thickness
a of the current sheet. The kinetic energy Ek is implicitly related
to Srec, as seen in Figure 6(c), where we observe that Srec and
Ek are well correlated. Moreover, the electron kinetic energy
as a function of the mean magnetic field at the loop footpoints
is well fit by the power law Eke ∝ B̄0.65

foot . This means that
for a different AR with stronger photospheric magnetic fields,
reaching, for example, 5000 G, we expect that electron kinetic
energies can reach up to 10 keV. Another important aspect is that
Ek is independent of the surface area Arec of the current sheet.
This means that the initial selection of the current sheet to cover
the entire surface of the loop cross section does not influence the
resulting kinetic energies. This allowed us to choose, for each
loop, a single current sheet with a simple geometry to describe
the particles’ acceleration.

In addition, the acceleration length zmax of the particles is an
important parameter in our model. The acceleration length is
the distance along the electric field covered by the particles and
it is defined via the expression Ek = e Erec zmax for both particle
species. zmax must obviously be smaller than the current sheet
length or, equivalently, the coronal loop length. We found that
for electrons, the ratio zmax/L is between 10−7 and 10−3 in 97%
of cases, while for protons it is between 10−6 and 0.01 in 90%
of cases. For protons, the average value of zmax/L is 10−3 with
a standard deviation of 0.1. A short acceleration length relative
to the loop length reduces the electric current intensity which,
in turn, reduces the induced magnetic fields generated by the
electric current of the accelerated particles (Martens & Young
1990; Litvinenko 1996).
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Figure 6. Scatter plots of the final kinetic energy for electrons (panel (a)) and
protons (panel (b)). Panel (c) shows the total kinetic energy of electrons and
protons as a function of the Poynting flux entering the current sheet.

We performed test particle simulations for the acceleration
of electrons and protons similar to the ones presented in
Gontikakis et al. (2007) and Anastasiadis et al. (2008). In these
simulations, single particles, initially with a random 106 K
thermal velocity, enter a Harris-type current sheet with given
initial parameters (a, B‖, B⊥, Erec, Brec). Solving the equations
of motion, a particle’s orbit is traced until the particle leaves
the current sheet at a half-width distance from the inversion
surface. Running simulations for all 5000 current sheets used
in this study is unrealistic, given time constraints. Therefore,
we selected 10 representative values of the electric field Erec,
reconnecting parallel and perpendicular magnetic components
(B0, B⊥, B‖), and current sheet thicknesse a from our calculated
distributions. The resulting kinetic energies are in agreement
with Equation (9). All 1000 electrons used in each simulation
are accelerated to kinetic energies of the order inferred by
Equation (10). However, most protons cross the current sheet
with no energy gain and only roughly 10% of the protons are
accelerated. The accelerated protons are the ones that have an
initial velocity with a particular orientation relative to the current
sheet. The fact that only a fraction of protons are accelerated
was also found by Gontikakis et al. (2007).

To recapitulate, we use observations of photospheric magnetic
fields and inferences of the photospheric horizontal velocities to
estimate the particles’ kinetic energies. From the energies, we
calculate the photospheric Poynting flux Sphot (Equation (2)).
From a potential magnetic field extrapolation, we select 5000
closed loops, for each of which we calculate the mean magnetic
field B̄. From this and by virtue of the assumptions described
above, we calculate the parameters Brec, B‖, vinflow, Erec, a, and
B⊥ that are necessary and sufficient to calculate the kinetic
energies of accelerated particles.

6. LOOP HEATING DUE TO ACCELERATED PARTICLES

We compute the heating of coronal loops assuming that heat is
produced solely by the ensuing thermalization of the accelerated
particles. We assume that both electrons and protons participate
in this process, since both particles’ energy is released once they
hit the dense chromospheric layer. Protons with energies ranging
between 100 keV and 5 MeV can produce chromospheric
evaporation, thus participating in coronal heating (Emslie et al.
1996). In our simulation, only 10% of the protons’ kinetic
energies are above 100 keV. Nevertheless, we assume that even
protons with kinetic energies less than 100 keV participate in
the loop heating.

The thermalization of the accelerated particles is a complex
process that we do not model in detail. Instead, we use the
following phenomenological expression for the heating rate:

Q = (Eke + f Ekp)ne

trec

Vrec

Vloop
. (13)

The heating rate Q of a loop with a pre-nanoflare electron
density ne corresponds to the thermalization of current-sheet-
accelerated electrons and protons to kinetic energies Eke and
Ekp, respectively. A neutral, fully ionized plasma (ne = np)
is assumed. Here, Vrec = 2 vinflow trec Arec is the plasma volume
injected inside the current sheets of total surface Arec during
the reconnection time trec. We define the reconnection time as
the duration of the reconnection event. The fraction Vrec/Vloop
indicates that the heating produced inside the current sheets
is redistributed to the loop volume Vloop. The efficiency factor
f = 0.1 means that only 10% of the protons are accelerated,
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Figure 7. Heating rates produced by electrons (panel (a)), protons (panel (b)), and by both particle types (panel (c)) as a function of loop length. Panel (d) shows the
ratio of proton heating to electron heating as a function of loop length. Panel (c) also shows a linear fit to the log of the heating rate distribution.

as found by the test particle simulations presented at the end of
Section 5.

In subsequent calculations, we use Equations (4), (5), and (12)
and assume that the loop volume is Vloop = C4L

−p, where
C4 = 50.1, L is the loop length, and p = 1.85 as found by the
fit to the calculated loop volumes in Figure 2(c). The heating Q
is expressed (in erg s−1 cm−3) as

Q = 4π

c

(
e

c 2
√

2
c1 sin θD vs(T )vA

+ f mpv2
A sin2 θD

2

)
neS̄footAphot

B2
recC4Lp

. (14)

Here, S̄footAphot is the average photospheric Poynting flux times
the footpoint cross section. In Equation (14), we can see that the
heating rate Q does not depend on trec and that the electron and
proton terms have different dependencies on vA. We can also
express Q as a function of L if we replace the electron density ne
by the expression given in Rosner et al. (1978). The individual
heating rates due to electrons and protons have a power-law
dependence on L but slightly different exponents:

Qe ∝ S̄foot
cot θD

2 T vs(T )

B̄L
1+2p

2

(15)

Qp ∝ S̄foot
1

Lp
. (16)

Figure 7 shows the heating rates due to electrons (Figure 7(a)),
protons (Figure 7(b)), and both types of particles (Figure 7(c))
as a function of loop length. Despite the larger scatter, a similar
power-law dependence of the heating produced by each type of
particle, shown in Equation (15), is also visible in the scatter
plots of Figures 7(a)–(c). The heating-flux ratio Qp/Qe seen
in Figure 7(d) takes values in the range 0.1–5 with 50% of
the values larger than 1. The heating rate function from the
two particle species (Figure 7(c)) is in the range of 10−4 to
1 erg s−1 cm−3. We also show a linear fit to the logarithm of
the values in the scatter plot. The calculated power-law index
is c2 = −1.5. This index differs from p = 1.85, the exponent
of L in Equation (15). The reason is that S̄foot, which appears in
Equation (15), also has a weak dependence on L with a positive
power-law index a = 0.35. This dependence influences the
resulting fit. In Mandrini et al. (2000), the heating rate deduced
from loops observed in X-rays with the soft X-ray telescope on
Yohkoh has a power-law relation with the loop length. Exponents
are in the interval [−4.5,−1] and the most probable value is
�−2. Therefore, the exponent value of −1.5 presently derived
is fairly consistent with observations. In Figure 8, we plot the
ratio of the total heating Qp+e = Qp + Qe due to electrons
and protons over the value of the Poynting flux function hPoynt
injected inside the loops (plotted in Figure 2). We observe that
95% of the values Qp+e/hPoynt are in the range 9–50 with an
average of 21.

Thus, the heating rate found in our model considering particle
acceleration overestimates the one recovered from the Poynting
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Figure 8. Ratio of the heating rates due to particles over hPoynt, the energy rate
corresponding to the Poynting flux.

flux by an average factor of �20. This appears at first as a large
inconsistency. However, as pointed out by Rosdahl & Galsgaard
(2010) and Birn & Priest (2007, p. 287), this inconsistency
should be regarded as a consequence of the inherent lack of
self-consistency in all methods estimating particle acceleration
via the trajectories of test particles. In fact, in MHD simulations
of coronal heating (Hendrix et al. 1996; Galsgaard & Nordlund
1996; Rappazzo et al. 2007), one finds Qp+e/hPoynt � 1.
However, in such simulations, the balance is restored partly
due to an additional feedback mechanism caused by the on-
going twisting and relaxation of magnetic fields. On the other
hand, the effects of magnetic reconnection on the acceleration
of particles cannot be captured by such simulations. At any rate,
our present results show that the thermalization of the loops
is indeed possible, at least as shown by order of magnitude
estimates, via the conversion of magnetic energy to particles’
kinetic energy during magnetic reconnection.

One more feature to note is that the possible lifetime of a
single current sheet could be of the order of the Alfvén crossing
time, which is equal to the fraction of the current sheet length
over the Alfvén speed (Klimchuk 2006). In our model, this
time ranges from 1–135 s. On the other hand, hydrodynamic
simulations of nanoflares consider a storm of many nanoflares
with a duration of 50–500 s (Klimchuk 2006). Let us note that
the ratio Vrec/Vloop is less than 1 for 95% of our current sheets,
if we set their lifetimes equal to the Alfvén crossing time. This
means that for 5% of the loops, reconnection would practically
end because of the lack of sufficient plasma inflow. For the
other cases, only a fraction of the total number of particles
stored in each loop was able to cross the current sheet during the
reconnection event. Moreover, the time needed for an individual
particle to cross the current sheet is much smaller than any of the
above timescales. For electrons, the particle acceleration time
is in the range 10−6 to 0.01 s, while for protons it is in the
range 10−4 to 1 s. In 98% of the cases, the acceleration times of
protons turn out to be smaller than one tenth of the corresponding

current sheet lifetime. This justifies our assumption that the
particles interact with a quasi-stationary environment during
the acceleration phase.

An additional remark is that our computed accelerated par-
ticles’ kinetic energies and heating functions are still valid if,
instead of a monolithic current sheet per loop, we assumed a
large number of current sheets. However, we require that these
sheets are formed by the same discontinuity angle θD and the
same magnetic field components Brec, B⊥, B‖. Furthermore, the
sheets must have the same thickness and they must be longer
than the corresponding acceleration length zmax. Moreover, we
only consider particles interacting with a single current sheet
during their travel inside the loop. Thus, Equation (13) describes
the heating per current sheet, which is proportional to a fraction
SfootAphot of the heating rate supplied. In Section 8, we will
calculate the hydrodynamic response of the studied loops under
the effect of a number of current sheets producing the same
collective heating effect as that described in Equation (13).

To summarize the results of Sections 5 and 6, Figure 9 shows
some model parameters as a function of θD . These parameters
were presented in previous figures as a function of the loop
length. The inflow velocity vinfow (Figure 9(a)) has higher values
for a lower θD . In Figure 9(b), the kinetic energies of electrons
decrease with increasing θD according to Equation (12), where
the first term in the last sum depends on sin θD . On the other
hand, Qe is higher for lower θD (Figure 9(c)), as expected from
Equation (15). Finally, in Figure 9(d), one can see that for higher
θD , Qe+p/hPoynt tends asymptotically to a lower limit of �8.

We also calculated θD according to a scaling law given in
Equation (10) in Rappazzo et al. (2007). The main parameter
in this equation is the ratio of photospheric velocity vph over
the Alfvénic velocity vA. For our data, the derived θD were in
all cases less than 4◦. The small θD values are due to the low
ratio of photospheric to Alfvénic velocities in our model. Alfvén
velocities are high due to the low ne calculated using the scaling
law of Rosner et al. (1978) with a relatively low temperature of
106 K. As shown in Figure 9, such small θD values correspond
to even larger Qe+p/hPoynt ratios. However, as pointed out in
Rappazzo et al. (2007), Equation (10) should be regarded only
as a lower limit of the Parker angle, as it does not take into
account the current sheet formation. On the other hand, much
higher values of θD are predicted by Hendrix et al. (1996) and
Galsgaard & Nordlund (1996).

7. THE AVERAGE THICK-TARGET X-RAY
SPECTRUM FROM NANOFLARES

In this section, we attempt to model the expected form of the
thick-target spectrum produced by the electrons in the AR loops.
We first calculate the distribution of the accelerated electrons’
kinetic energy. The total number of electrons, Ne, produced by
each loop is given by the product of the loop electron den-
sity ne (given by Rosner et al. 1978) multiplied by the plasma
volume Vrec entering the current sheet during the reconnection
time trec. Therefore, Ne = 2vinflowtrecneArec. We assume that
the kinetic-energy distribution in each loop lies in the energy
range ΔE = [Ekin (min), Ekin (max)], where Ekin (min) and Ekin (max)
are the energy limits calculated by Equation (9). The ampli-
tude of the kinetic-energy distribution of each loop is equal to
g = Ne/ΔE and is assumed to be constant inside ΔE. To com-
pute the kinetic-energy distribution of all selected loops, we
divide the energy E from 0.1 keV to 7 keV in 100 energy bins
of δE = 0.07 keV. For each energy bin, at a given energy E, we
take the sum of the individual loop distribution amplitudes gj
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Figure 9. Some key quantities of our model as a function of θD . Panel (a) shows the vinflow velocity, panel (b) shows the final kinetic energy of electrons, panel (c)
shows the heating due to the accelerated electrons, and panel (d) shows the ratio of heating due to accelerated electrons and protons over the heating corresponding to
the supplied Poynting flux. In all panels, the horizontal axis shows θD values for each loop.

Figure 10. Average kinetic-energy distribution from the 5000 selected loops (panel (a)) and the corresponding X-ray spectrum (panel (b)) calculated according to the
thick-target approximation.

for which (Ekin (min) j < E < Ekin (max) j ). Also, for each energy
bin, we take the sum of the volumes Vloop j of the corresponding
loops. Finally, the average kinetic-energy distribution F (E)dE
is calculated at each energy bin i as F (Ei) = Σgj/ΣVloop j

in units of electrons cm−3 keV−1. Note that this distribution

assumes that nanoflares from all loops are triggered simultane-
ously, which is one more simplification. Our derived AR kinetic-
energy distribution is shown in Figure 10(a). We performed a
power-law fit of the form F = GEb and found an exponent
b � −4 and a proportionality factor G = 3.3×109 cm−3 keV−1.
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We used the derived fit parameters to compute the X-ray spec-
trum assuming the thick-target approximation (Brown 1971)
using the Fortran code developed by Holman (2001). We as-
sumed that the area of the radiating source function equals the
sum of the loop footpoint areas (A = 7 × 1019 cm2). The
resulting X-ray spectrum is seen in Figure 10(b). The X-ray
spectrum is divided by the number of loops (5000) assuming
that on average only one nanoflare is active at a time. There-
fore, the computed X-ray flux represents a lower limit of the
nanoflare emission. The computed X-ray flux per loop has a
maximum of 10−2 photons s−1 keV−1 cm−2 at 3 keV and falls
to 10−4 photons s−1 keV−1 cm−2 at 7 keV. Our derived X-ray
spectrum exhibits a narrow energy range because of the narrow
energy range of the electron kinetic energies. For this reason, a
comparison of the spectrum shape with low solar activity X-ray
observed spectra, such as the RHESSI data presented in McTier-
nan (2009) or the SphinX data presented in Miceli et al. (2012),
was not attempted. However, our computed X-ray flux is of the
same order of magnitude as the upper limits measured in the
quiet Sun with RHESSI (Hannah et al. 2011, p. 278, their Figure
12, left panel).

8. LOOP HYDRODYNAMIC RESPONSE
TO NANOFLARES

In this section, we employ the heating rates computed via
Equation (13) as an input to hydrodynamic loop simulations.
This allows us to determine the thermal response (differential
emission measure, DEM) to the heating resulting from our
model. As the DEM can also be deduced by observations,
a comparison between simulated and observed DEMs is a
standard test for coronal models.

We assume that each loop is heated due to the activation
of several current sheets of sub-telescopic sizes, which inject
beams of accelerated particles into the loops. Each current sheet
is activated for a duration of the order of the Alfvén crossing time
along the loop, but the nanoflare cascade duration is different
and subject to parameterization.

We also assume that after the particles (electrons and protons)
are accelerated somewhere along the loop, they exit the current
sheet and deposit their kinetic energy, via Coulomb collisions,
to the lower and denser parts of the loop (i.e., the thick-target
model of electron beams; e.g., Brown 1971). However, the
general characteristics (e.g., maximum temperature and density)
of loops submitted to thermal (i.e., direct) and non-thermal (i.e.,
particle) heating do not substantially differ for the same total
energy release (e.g., Warren & Antiochos 2004). Differences
could arise in the ultra-hot plasma (>5 × 106 K), during the
early stages of impulsive heating (e.g., Klimchuk et al. 2008) or
in the mass flows from the loop footpoints, which are however
not considered here. Instead, particle heating is treated here as
thermal heating. Finally, the particle beams follow the magnetic
field lines directly connected to their individual current sheet,
whereas the macroscopic loop is heated due to the collective
effect of all individual current sheets.

In order to study the loop plasma response to the calculated
heating rates, we use the EBTEL model of Klimchuk et al.
(2008). EBTEL is a zero-dimensional model, i.e., it considers
spatially averaged properties and uses analytical approximations
to solve the time-dependent hydrodynamic equations. It was
found to be in good agreement with simulations using far
more complex, yet computationally expensive, one-dimensional
models. By definition, the heating is assumed to be spatially
uniform in EBTEL. Allowing for different scenarios of the

Figure 11. Histogram of temperatures achieved at the maximum of each loop
time-averaged DEM distribution. This calculation is performed for theat = 100 s.

spatial localization of the heating leaves distinct signatures
only during the early stages of the hydrodynamic evolution,
when the loop is at very high temperatures (e.g., Patsourakos &
Klimchuk 2005). For a given heating profile, loop length, and
initial temperature and density conditions, EBTEL calculates at
any instance the coronal temperature and density as well as the
transition region (footpoint) and coronal DEM. The application
of our model to the observations of NOAA 09114 described
in the previous paragraphs supplies each loop hydrodynamic
simulation with the length and the corresponding heating rate.
Given that the model is zero dimensional and analytical, it can
calculate numerous solutions in reasonable time.

Our hydrodynamic calculation starts with initial conditions
determined according to the scaling law of Rosner et al. (1978).
We presume a coronal temperature of 1 MK. (However, note
that this scaling law is derived in the hydrostatic limit. For the
use of this approximation, see Section 9.) Then, at the initial
timestep (t = 0 s), each loop was impulsively heated according
to Equation (13). Each loop is heated impulsively by the
corresponding heating rate given in Figure 7. The heating took
the form of a step function with a duration of theat. Numerical
simulations (Georgoulis et al. 1998) predict a wide distribution
for the duration of heating events in nanoflares. Therefore, theat
is a free parameter for our model, and we run simulations with
values of theat = 15, 50, 100, 250, and 500 s for all the loops.
We also considered the case of theat equal to the Alfvén crossing
time for each loop. Since theat is in general longer than the
Alfvén crossing time, this computation corresponds to a storm
of nanoflares when different fragments of the loop current sheet
are activated at different times. The employed theat values are
comparable to the duration of small-scale impulsive energy
release events found in MHD simulations of coronal heating.
For each loop, the corresponding simulations lasted 5000 s to
allow us to follow both the heating and cooling of the plasma.

In Figure 11, we plot the histogram of the temperatures of the
peak of the temporally averaged DEM of each loop computed
for theat = 100 s. The vertical axis represents the number of
loops per temperature bin. We can see that the particle heating
creates an almost uniform distribution of temperatures. The peak
of the distribution at 106 K corresponds to loops that are not
significantly influenced by heating; these loops maintain their
initial temperature. For theat = 50 s, the temperature histogram
is very similar to the one shown in Figure 11. For theat = 500 s,

12



The Astrophysical Journal, 771:126 (15pp), 2013 July 10 Gontikakis et al.

Figure 12. Differential emission measure calculated assuming that the heating
is caused by particle acceleration. The plot is shown for different theat values.

(A color version of this figure is available in the online journal.)

the distribution exhibits a plateau in the range of 2 MK up to
7 MK, while for theat = 15 s, the histogram shows a higher
probability of temperatures lower than 2 MK.

In Figure 12, we plot the time-averaged DEMs for all the
considered loops in NOAA AR 09114. The plotted DEMs
correspond to both the coronal and footpoint parts of the
modeled loops. This is legitimate because we deal with averages
over the entire AR that would obviously include contributions
from both the coronal and footpoint regions. The latter are
known to supply most of the low-temperature emission at around
1 MK, particularly in AR cores.

DEMs provide the amount of plasma present at each tempera-
ture bin and therefore offer an idea of the thermal distribution of
the region or feature in question. Several remarks are now in or-
der from Figure 12. The deduced DEMs have maximum values
of 9 × 1020, 2 × 1021, 4 × 1021, 1022, and 1.5 × 1022 cm−5 K−1

for theat of 15, 50, 100, 250, and 500 s, respectively. The tem-
perature of the maximum DEM value rises for higher heating
durations; the maximum log(T) is in the range of 6.4–6.6.

Observationally deduced DEMs (e.g., Landi & Landini 1997;
O’Dwyer et al. 2011: their Figures 4 and 14, respectively) exhibit
a broad peak from log(T) = 6–6.5 at a value of a few times
1021 cm−5 K−1. At both limits of this plateau, DEMs drop off
rapidly. Therefore, the DEMs from our model can reproduce the
features of observed AR DEMs. Once again, we emphasize that
in the framework of our proof-of-concept calculations, we are
not aiming to reproduce any particular observational details.

9. DISCUSSION

Since a rather large number of assumptions and/or approxi-
mations were introduced in our modeling of nanoflare heating
presented in the previous sections, we summarize here the main
limitations and conditions of validity of our model. We also
discuss possible future extensions.

9.1. Model Limitations

An important limitation of our model is that it does not
describe the initial transformation of the photospheric Poynting

flux into magnetic free energy. When a certain critical value
of the Parker angle is reached, this magnetic free energy
presumably is released back into the plasma, causing heating.
Here, we simply assumed that all loops reach the critical point
(Parker angle) at which the Poynting flux is transformed into
particle acceleration.

It should be noted that reconnection is a complex non-steady
phenomenon (Loureiro et al. 2007; Samtaney et al. 2009). The
presence of a guide magnetic field component has an important
influence that is not yet fully understood (Yamada et al. 2010;
Birn & Priest 2007). Another important approximation is the
use of a Harris-type analytical geometry to study the orbits
of accelerated particles. Such an approach does not take into
account either the perturbations caused by the accelerated
particles onto the fields or the more complex structures of the
magnetic field topology that we expect to be formed at the
reconnection sites.

The scaling laws of Rosner et al. (1978) were used in order to
compute initial conditions for our nanoflare simulations, as well
as for the calculation of kinetic energies and heating rates in the
previous sections. However, these formulae are valid in the strict
sense for hydrostatic atmospheres, while in reality all parameters
in our calculations should exhibit some time dependence. One
may remark, nevertheless, that the characteristic timescale of
evolution of the atmosphere is determined by the time tevap
needed by the chromospheric evaporation flows to fill the
loops with dense and hot plasma. According to some large
flare simulations (Yokoyama & Shibata 1998), chromospheric
evaporation flows propagate at 20–30% of the speed of sound, at
a temperature of �4 × 106 K. We find tevap = L/(0.4 vs) in the
range 100–500 s for 80% of our cases. The resulting timescales
are of the same order as the highest theat values used in our
calculations. At any rate, Yokoyama & Shibata (1998) argue
that a chromospheric evaporation flow should not influence the
reconnection rate at a flare’s X-point. In view of the above,
and since tevap is typically larger or at most equal to theat, we
conclude that the use of the Rosner et al. (1978) scaling laws
in our heating computations is an allowable approximation. A
more accurate computation would require a proper application
of a chromospheric evaporation particle heating rate feedback
model. This is proposed for future work.

9.2. Comparison with Other Models

Some words are necessary to explain our choice of a
hydrodynamic model. There are basically two approaches to
studying coronal loop heating based on (1) three-dimensional
MHD (e.g., Gudiksen & Nordlund 2005; Peter et al. 2006;
Dahlburg et al. 2012; Bingert & Peter 2011) or (2) one-
dimensional and zero-dimensional hydrodynamic simulations.
Three-dimensional MHD simulations supply a physics-based
heating function (e.g., ohmic heating at intense current sheets
formed at the interfaces of braided magnetic elements). How-
ever, three-dimensional MHD simulations lack the spatial reso-
lution available in one-dimensional hydrodynamic simulations.
A high resolution, on the other hand, is crucial for an accu-
rate description of the plasma thermodynamic response to a
given heating. Nevertheless, the heating functions selected in
one-dimensional hydrodynamic loop simulations are ad hoc;
i.e., they can be chosen arbitrarily. Finally, hydrodynamic de-
scriptions are far less computationally expensive than three-
dimensional MHD simulations, and thus are more appropriate
for extensive studies of thousands of loops.
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A future improvement concerns the geometry of our model.
Replacing the Harris current sheet with a more realistic geom-
etry would allow us to calculate test particle orbits for a range
of parameters pertinent to solar ARs, over a large number of
coronal loops. Of course, the ultimate improvement would be to
simulate the feedback of the plasma response due to the chro-
mospheric evaporation on the acceleration of the particles.

10. CONCLUSIONS

In the present study, we provide a set of calculations for
nanoflare heating in coronal loops. We base our calculations
on a composite model in which the heating term used for hy-
drodynamic simulations of nanoflares derives from considering
particle acceleration in reconnecting current sheets. Our main
steps and conclusions are the following.

1. Our calculations utilize observational data: (1) the general
structure of the magnetic field is deduced by means of
a current-free (potential) magnetic field extrapolation of
an observed AR’s (NOAA AR 9114) magnetogram. (2)
We selected 5000 closed magnetic field lines derived from
the extrapolation to represent coronal loops. We study the
nanoflares in these loops. (3) The Poynting flux is supplied
in current sheets, one for each coronal loop, produced by
photospheric motions at the loop footpoints. The Poynting
flux is calculated using the measured magnetic fields
and estimated values for the inductive velocities at the
photospheric level.

2. In our current sheets, reconnection always occurs because
we assume that the discontinuity in the magnetic field
configuration has reached a critical mis-alignment angle.
The mis-alignment angle, θD (twice the adopted Parker
angle), varies randomly from loop to loop in a uniform
distribution from 8◦ to 50◦. In this model, we compute
the physical conditions in the current sheets. The induced
electric field Erec is in the range of 0.01–100 V m−1 and is
larger than the Dreicer electric field that favors the direct
acceleration of particles. The plasma inflow velocity vinflow
is in the range of 0.1–100 km s−1.

3. The Poynting flux supplied by the photospheric motion is
entirely transformed into kinetic energy of the particles,
accelerated in the reconnecting current sheets. The final
kinetic energies of electrons and protons are calculated
using an analytic formula derived in test particle studies
(Efthymiopoulos et al. 2005; Litvinenko 1996). The elec-
tron kinetic-energy gain is up to 8 keV, while for protons
the gain is in the range 0.3–470 keV.

4. We consider the process of particles’ acceleration as the
unique source of plasma heating. This assumption is sup-
ported by the fact that at least in large flares, electron accel-
eration corresponds to 50% of the released energy (Birn &
Priest 2007). We use a simple phenomenological expression
(Equation (13)) to compute the heating rate produced by
accelerated electrons (Qe) and protons (Qp). The produced
heating rates are in the range of 10−4 to 1 erg s−1 cm−3

while the ratio Qp/Qe takes values in the range 0.1–5 and
is higher than 1 in 50% of the cases.
The power law of the computed heating rate as a function
of the loop length, derived both via a fit to the calculated
data and via an analytical derivation, has an exponent of
�−1.5. This value falls within the constraints derived from
observations (Mandrini et al. 2000). Moreover, we found a
linear dependence of the heating functions on the Poynting

flux at the footpoints and a trigonometric dependence on
the angle θD .

5. We computed the form of X-ray spectra generated by the
accelerated electrons from all loops, using the “thick-target”
approach. The derived spectrum has a peak intensity of
10−2 photons s−1 keV−1 cm−2 at 3 keV and decreases
with a power-law shape and an exponent equal to �−4.
This result is in agreement with upper limits derived from
observations (Hannah et al. 2011).

6. Finally, we performed hydrodynamic simulations using the
zero-dimensional EBTEL code to compute the character-
istic atmospheres of our loops. The constraints of the sim-
ulations are the derived heating rates and the loop length
while the heating event duration is kept as a free parame-
ter. The deduced DEMs have maximum values in the range
9×1020–1.5× 1022 cm−5 K−1 for temperatures from 6.4 to
6.6 in log(T ). These derived values are in agreement with
DEMs derived from observations (Landi & Landini 1997;
O’Dwyer et al. 2011).

7. We discuss the various limitations of our model and
propose a number of possible future extensions as well
as comparisons with other models in the literature.
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