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S U M M A R Y
We present a theory and conceptual examples for fibre-optic deformation sensing based on
phase changes of transmitted light. As a first result, we establish an exact relation between
observable phase changes and the deformation tensor along the fibre. This relation is nonlin-
ear and includes effects related to both local changes in fibre length and deformation-induced
changes of the local refractive index. In cases where the norm of the deformation tensor is
much smaller than 1, a useful first-order relation can be derived. It connects phase changes
to an integral over in-line strain along the fibre times the local refractive index. When spatial
variations of the refractive index are negligible, this permits the calculation of phase change
measurements from distributed strain measurements, for instance, from distributed acoustic
sensing (DAS). An alternative form of the first-order relation reveals that a directional sensi-
tivity determines the ability of a point along the fibre to measure deformation. This directional
sensitivity is proportional to fibre curvature and spatial variability of the refractive index. In
a series of simple conceptual examples, we illustrate how a seismic wavefield is represented
in a phase change time-series and what the role of higher-order effects may be. Specifically,
we demonstrate that variable curvature along the fibre may lead to a multiplication of seismic
waves, meaning that a single seismic wave appears multiple times in a recording of optical
phase changes. Furthermore, we show that higher-order effects may be observable in specific
scenarios, including deformation exactly perpendicular to the fibre orientation. Though higher-
order effects may be realized in controlled laboratory settings, they are unlikely to occur in
seismic experiments where fibre geometries are irregular and waves asymptotically propagate
in all directions with all possible polarizations as a consequence of 3-D heterogeneity. Our
results provide the mathematical foundation for the analysis of emerging transmission-based
fibre-optic sensing data, and their later use in seismic event characterization and studies of
Earth structure.

Key words: Computational seismology; Seismic instruments; Seismic tomography; Theo-
retical seismology; Wave propagation.

1 I N T RO D U C T I O N

Distributed acoustic sensing (DAS) is a family of technologies to
measure deformation along a fibre-optic cable using interferometry
of backscattered laser light (Hartog 2017). Following early applica-
tions in perimeter security or traffic and pipeline monitoring (e.g.
Owen et al. 2012; Hill 2015), DAS became a widely used tool in

seismic exploration and monitoring, where optical cables are often
pre-installed in boreholes (e.g. Dean et al. 1996; Mateeva et al.
2013; Daley et al. 2013; Mateeva et al. 2014; Daley et al. 2014;
Li et al. 2015; Daley et al. 2016; Hornmann 2016). The ability of
DAS to record deformation in a broad frequency range from mHz to
kHz with dense spatial sampling at metre scale (e.g. Lindsey et al.
2020; Paitz et al. 2021), makes it attractive also for seismological
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applications. The possibility to piggy-back on existing fibre-optic
telecommunication infrastructure has led to novel applications in
urban seismology, with a focus on seismic hazard in densely pop-
ulated areas, where large numbers of conventional seismic instru-
ments may be difficult or expensive to deploy (e.g. Lindsey et al.
2017; Martin et al. 2017; Biondi et al. 2017; Ajo-Franklin et al.
2019; Spica et al. 2020; Yang et al. 2021). The relative ease of
deploying fibre-optic cables in challenging terrain, enables seismo-
logical studies on glaciers (Walter et al. 2020; Klaasen et al. 2021),
volcanoes (Klaasen et al. 2021; Currenti et al. 2021; Klaasen et al.
2022) and avalanche-prone slopes (Fichtner et al. 2021) that would
not have been possible without DAS. In parallel, theoretical de-
velopments improved our understanding of how DAS data may be
exploited, for instance, by ambient field interferometry (Paitz et al.
2019).

While backscattering allows DAS to achieve distributed measure-
ments with an effective channel spacing in the centimetre range, it
also limits the length of the fibre that can be interrogated, typically
to a few tens of kilometres. Light intensity loss with increasing
propagation distance along the fibre decreases the signal-to-noise
ratio. Though emerging amplifier technologies may help to reduce
this problem, the installation of amplifiers along existing telecom-
munication cables or in harsh terrain may not always be possible.
Emerging alternative systems overcome this limitation by measur-
ing deformation-induced changes in the phase (Marra et al. 2018;
Bogris et al. 2021; Marra et al. 2022; Bogris et al. 2022; Bowden
et al. 2022) or the polarization (Mecozzi et al. 2021) of transmitted
laser light. The ability of transmission-based systems to achieve in-
terrogation distances of hundreds or thousands of kilometres opens
new opportunities to investigate seismic activity and Earth struc-
ture in remote regions where conventional seismic instrumentation
is sparse, including, most importantly, the oceans and polar regions.
The main drawback of transmission-based systems, however, lies
in the averaging of deformation along the fibre. Phase or polariza-
tion changes are accumulated along the fibre, apparently erasing
information about the location where the underlying deformation
occurred. Hence, in contrast to DAS, the measurement is not dis-
tributed but integrated. As a consequence, it may be more challeng-
ing to use transmission measurements to infer Earth structure or
earthquake locations.

Though few transmission-based sensing systems have recently
become operational, it has not yet been investigated how exactly
their measurements relate to deformation of the Earth or some other
medium of interest. The primary intention of this work is to fill this
gap.

In the following sections, we develop a theory for the calcula-
tion of observed optical phase changes caused by fibre deformation.
Section 2 sets the general stage and leads to an approximation-free
equation that relates the deformation field to phase change mea-
surements. For typical seismic wavefields, where strain is much
smaller than 1, this relation can be linearized, thereby producing
various first-order approximations that can be found in Section 3.
One of these approximations allows us to easily forward model
phase change measurements and to synthesize them from DAS
data, thereby enabling a comparison of the two measurement sys-
tems. Another approximation highlights the role of cable curvature,
showing that the sensitivity of a fibre segment to deformation is
proportional to the local curvature. The more a fibre is curved, the
better it records deformation. Finally, in Section 4.2, we investigate
under which conditions higher-order effects may be observable,
coming to the conclusion that they can safely be ignored in most
seismological applications.

2 G E N E R A L D E V E L O P M E N T S

We begin with the derivation of an exact relation between the de-
formation tensor F(x, t) along the fibre and the traveltime T(t) of a
pulse that propagates from the beginning to the end of the fibre. The
only assumption is that T(t) is much smaller than the characteristic
timescales of deformation, meaning that the fibre does not deform
significantly while a pulse is propagating. To ease calculations, we
adopt a parametrized representation of the fibre, with its position
x̂(s) given in terms of the arc length s. The latter ranges between 0
and the total length of the fibre L, as shown in Fig. 1.

2.1 Reference case of an undeformed fibre

Our starting point is the (hypothetical) reference case where the
fibre is not deformed. The time it takes for a pulse to travel from
fibre location x̂(s) to the neighbouring location x̂(s) + d x̂(s) is given
by

dT = |d x̂(s)|
c[x̂(s)]

, (1)

where c[x̂(s)] is the potentially space-dependent speed of light along
the fibre. The coordinate x̂ is interpreted as a Lagrangian coordinate,
meaning that it co-moves with the deforming fibre instead of being
attached to the static reference frame. By definition of the arc length,
we can express the total traveltime of the pulse through the fibre as

T =
L∫

s=0

ds

c[x̂(s)]
, (2)

which is the integral over all differential traveltimes along the fiber.

2.2 Traveltimes under an arbitrary deformation field

Under deformation, position x̂ moves to a new position x̂ + u(x̂, t),
where u(x̂, t) is the displacement field, as illustrated in Fig. 1.
To avoid clutter, we omit dependencies on s for the moment.
The neighbouring point at the original position x̂ + d x̂ moves to
x̂ + d x̂ + u(x̂ + d x̂, t). It follows that the traveltime of the pulse
within the deformed segment of the cable is now

dT (t) = |d x̂ + u(x̂ + d x̂, t) − u(x̂, t)|
c[x̂, u(x̂, t)]

. (3)

The denominator accounts for the fact that the speed of light may be
a function of the deformation of the fibre. Since d x̂ is infinitesimally
small, we can rewrite the numerator as

u(x̂ + d x̂, t) − u(x̂, t) = F(x̂, t) d x̂ , (4)

where the Cartesian components of the deformation tensor F are
defined by

Fi j = ∂ui

∂x j
. (5)

In terms of the deformation tensor, we can rewrite eq. (3) as

dT (t) = |d x̂ + F(x̂, t) d x̂|
c[x̂, u(x̂, t)]

, (6)

which can be further simplified using the arc-length parametrization
of the position vector x. In fact, we find

d x̂ = d x̂(s)

ds
ds = e(s) ds , (7)
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Figure 1. Schematic illustration of fibre deformation. The undeformed fibre, shown as black curve, is represented by the position vector x̂(s), which is
parametrized in terms of the arc length s. The cable starts at s = 0 and ends at s = L. Under a displacement field u(x̂, t), displayed as blue arrows, the Lagrangian
position x̂(s) along the undeformed fibre moves to x̂(s) + dx̂(s). The result is the deformed fibre, shown in grey. The local tangent vector e(s) is shown as a
thick black arrow.

where e(s) is the normalized tangent vector along the fibre. Thus,
we obtain

dT (t) = |[I + F(x̂, t)] e(s)|
c[x̂, u(x̂, t)]

ds , (8)

and the total, time-dependent traveltime of the pulse becomes

T (t) =
L∫

s=0

|[I + F(x̂, t)] e(s)|
c[x̂, u(x̂, t)]

ds . (9)

2.3 Phase changes in monochromatic signals

In the specific case of a monochromatic input with circular fre-
quency ω, the traveltime difference �T(t) = T(t) − T translates into
a phase difference

φ(t) = ω�T (t) , (10)

between the reference and the deformed state. Substituting eqs (2)
and (9), we obtain

φ(t) = ω

L∫
s=0

|[I + F(x̂, t)] e(s)|
c[x̂, u(x̂, t)]

ds − ω

L∫
s=0

ds

c[x̂(s)]
. (11)

In the special case of no deformation, we have u = 0 and F = 0.

Consequently, we obtain |[I + F(x̂, t)] e(s)| = |e(s)| = 1, and the
phase difference φ vanishes, as required. Taking the time derivative
of eq. (11), yields the phase changes ∂ tφ = θ with respect to time,

θ (t) = ω∂t

L∫
s=0

|[I + F(x̂, t)] e(s)|
c[x̂, u(x̂, t)]

ds . (12)

Eq. (12) is valid without any approximations, and it relates measured
phase changes of the monochromatic laser signal to the displace-
ment field u(x̂, t) along the fibre.

3 F I R S T - O R D E R A P P ROX I M AT I O N S

While being exact, eq. (12) is often too complicated to be practically
useful. It can be simplified considerably by the standard continuum
mechanics approach of excluding the seismic source region, that
is, by limiting the analysis to those regions where the norm of
the deformation tensor F is significantly smaller than 1. To avoid
clumsy notation, we work with a slight reformulation of eq. (12),
which uses the refractive index r = c0/c, where c0 is the speed of
light in vacuum.

3.1 Relation to the strain tensor and DAS measurements

To obtain a first-order relation between phase changes and fibre
deformation, we first note that

|[I + F] e|2 = eT (FT + IT )(F + I)e

= eT FT Fe + eT FT e + eT Fe + eT e . (13)

Neglecting the second-order term involving FT F and realizing that
eT e = 1 by definition of the unit tangent vector, we obtain

|[I + F] e|2 .= 1 + 2eT Ee , (14)

with the strain tensor E = (FT + F)/2 and
.= meaning correct to

first order in deformation quantities. Denoting the axial strain along
the fibre as ε = eT Ee and using the first-order relation

√
1 + 2ε

.=
1 + ε, we arrive at

θ (t)
.= ω

c0
∂t

L∫
s=0

r [x̂, u(x̂, t)] (1 + ε[x̂(s), t]) ds . (15)

The dependence of the refractive index r on the deformation of the
fibre is called the photoelastic effect, and it is primarily a dependence
on the axial strain ε. Using the first-order Taylor approximation
r (ε)

.= r0 + r ′ε, we obtain the relation

θ (t)
.= ω

c0
∂t

L∫
s=0

reff[x̂(s)] ε[x̂(s), t] ds , (16)

where reff = r0 + r′ is the effective refractive index, defined as the
sum of the static refractive index r0 and the axial strain derivative
r′, meaning that it takes the photoelastic effect into account. The
derivative r′ is commonly expressed in terms of the strain coefficient
ξ as r′ = r0(ξ − 1), with an experimentally determined value of ξ

≈ 0.78 (Bertholds & Dändliker 1988). Eq. (16) provides a direct
relation between phase changes θ measured by the transmission
system, and the axial strain rate ∂ tε.

Eq. (16) is particularly interesting because it enables a direct and
quantitative comparison of distributed strain measurements by DAS
and integrated strain measurements by transmission-based systems
such as the Microwave Frequency Fibre Interferometer (MFFI) of
Bogris et al. (2021, 2022) or the ultrastable laser interferometer of
Marra et al. (2018). In fact, when the effective refractive index is
roughly constant along the fibre, it suffices to integrate DAS mea-
surements of ∂ tε along the fibre in order to synthesize transmission
measurements of θ . Such a quantitative comparison of the MFFI
system Bogris et al. (2021, 2022) and DAS can be found in Bowden
et al. (2022).
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3.2 Illustrative and educational examples

To understand the consequences of the first-order approximation
(16), we continue with a series of simple examples. While they may
not be realized exactly in practice, they still appear educationally
valuable and insightful.

3.2.1 Deformation states

If a phase change is of first or second order in displacement u or
deformation F, depends on the geometry of fibre deformation. As a
simple illustration, we consider the example in Fig. 2(a), where the
displacement u = u2e2 is localized and perpendicular to the fibre
direction e1. The length of the undeformed fibre is L, and the length
of the deformed fibre is

L ′ = 2
√

(L/2)2 + u2
2 . (17)

Expanding L
′

into a Taylor series around u2 = 0, yields

L ′ = L + 2

L
u2

2 + O(u3
2) . (18)

Eq. (18) implies that local deformation perpendicular to the fibre
orientation is of second order in the displacement. Hence, there
is no first-order effect on traveltimes and phase changes, and the
second-order effect may be the only one observable, provided that
u2 is large enough to raise the observation above the noise level. An
observable consequence of a dominant second-order effect is fre-
quency doubling. To see this, we consider a harmonic deformation,
u2 = sin (2π ft), where f is frequency. Substituting u2 into eq. (18),
we find

L ′(t) = L + 1

L
[1 − cos(4π f t)] + ... , (19)

It follows that the resulting length and phase changes oscillate with
twice the frequency, 2f, of the actual deformation.

We contrast the above example with a deformation style where
the displacement is parallel to the fibre orientation, u = u1e1, as
shown in Fig. 2(b). The length of the deformed fibre is

L ′ = L + u1 . (20)

Hence, deformation along the fibre orientation has a first-order ef-
fect in u on length and phase changes. In the case of a harmonic
deformation, the observed phase changes will have the same fre-
quency as the deformation.

3.2.2 Fibre geometry

When second-order effects and changes in the refractive index
throughout the fibre can be ignored, we merely need to solve the
integral

I =
L∫

s=0

ε[x̂(s), t] ds , (21)

to predict phase changes. To start simple, we let the fibre follow
a straight line from x̂(0) = 0 to x̂(L) = Le1, where e1 is the unit
vector in x1-direction and therefore also the tangent vector e. This
fibre geometry is shown in Fig. 3(a). Evaluating eq. (21) gives

I =
L∫

s=0

∂

∂x1
u1(se1)ds =

L∫
s=0

∂

∂x1
u1(x1e1)dx1

= u1(Le1) − u1(0) . (22)

For a perfectly straight fibre, it follows that only the displacement
at the beginning and the end of the fibre are measured, correct to
first order. Hence, if the perturbation of interest is only present
in between these two points, not affecting the beginning and end
points, nothing can be measured.

In the second example, we again consider a fibre parallel to the
e1 direction, which, however, returns to its starting point, as shown
in Fig. 3(b). The parametrization of the fibre is now x̂(s) = se1 for
the first half, with s between 0 and L/2. For the second half, it is
x̂(s) = Le1 − se1, with s between L/2 and L. Using this to evaluate
the integral (21), we find

I = 2u1(Le1/2) − 2u1(0) . (23)

Hence, we again observe that only the start and the end point make
a contribution to the measurement.

The fibre in our final example, shown in Fig. 3(c), features a 90◦

kink half way between the start and end points. The parametrization
is x̂(s) = se1 for s between 0 and L/2. For the second part, it is ŝ =
Le1/2 + (s − L/2)e2. Again evaluating the integral (21), yields

I = u1(Le1/2) − u1(0) + u2(Le1/2 + Le2/2)

− u2(Le1/2) . (24)

Interestingly, in addition to the end points x̂(0) = 0 and x̂(s) =
Le1/2 + Le2/2, also the kink point at x̂(L/2) = Le1/2 now makes
a contribution, suggesting that curvature of the cable may play some
role.

3.3 The role of fibre curvature and directional fibre
sensitivity

To gain deeper understanding of these results, we go a few steps
back and return to eq. (3). Denoting by û(s, t) = u[x̂(s), t] the dis-
placement field along the fibre, we obtain

|d x̂ + u(x̂ + d x̂, t) − u(x̂, t)| = |d x̂ + û(s + ds, t) − û(s, t)|
= |e(s) + ∂s û(s, t)| ds , (25)

where ∂ s = ∂/∂s denotes the derivative with respect to the arc length
s. Using a similar development as in eqs (13) and (14), we may now
obtain a first-order version of the approximation-free eq. (12). For
this, we employ the first-order relation

|e(s) + ∂s û(s, t)| = 1 + e(s)T ∂s û(s, t) , (26)

and combine it with the Taylor expansion of the refractive index,
r (ε)

.= r0 + r ′ε. Recalling the definition reff = r0 + r
′
ε, then yields

θ (t)
.= ω

c0
∂t

L∫
s=0

r̂eff(s) e(s)T ∂s û(s, t) ds , (27)

where we defined, for convenience, r̂eff(s) = reff[x̂(s)]. Using the
product rule,

r̂eff(s) e(s)T ∂s û(s, t) = ∂s

[
r̂eff(s) e(s)T û(s, t)

]
− ∂s

[
r̂eff(s) e(s)T

]
û(s, t) , (28)
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(a) (b)

Figure 2. Simple examples of fibre deformation. (a) Deformation of an originally straight fibre perpendicular to its orientation, that is, by an amount u2 in e2

direction. (b) Deformation of a straight fibre in the direction of its orientation, that is, by an amount u1 in e1 direction.

(c)(b)(a)

Figure 3. Simple examples of fibre geometries and corresponding arc length parametrizations.

and substituting back into eq. (16), we find

θ (t)
.= ω

c0

[
r̂eff(s) e(s)T v̂(s, t)

]∣∣s=L

s=0︸ ︷︷ ︸
start/end point contribution

− ω

c0

L∫
s=0

∂s

[
r̂eff(s) e(s)T

]
v̂(s, t) ds

︸ ︷︷ ︸
curvature contribution

, (29)

with the displacement velocity v̂ = ∂t û. Eq. (29) has two contribu-
tions to the observed phase changes. The first one originates from
the displacement at the start and end points of the fibre. It vanishes
when the start and end points are not affected by deformation, which
may happen in cases of rather localized deformation that only hap-
pens along a smaller section of the fibre or when the start and end
points are mechanically isolated, for example, on an anti-vibration
table.

The second contribution results from changes of the tangent vec-
tor and the refractive index along the fibre. In fact, the term

a(s) = − ω

c0
∂s [r̂eff(s) e(s)] (30)

plays the role of a directional fibre sensitivity. Assuming that defor-
mation does not significantly affect the end points, we may use the
directional sensitivity to rewrite eq. (29) as

θ (t)
.=

L∫
s=0

a(s)T v̂(s, t) ds . (31)

The amplitude of the directional sensitivity is proportional to
changes of the refractive index along the fibre and to changes of the
tangent vector e. The latter is equivalent to the fibre being curved.
Hence, strongly curved fibre segments have an inherently larger
sensitivity to deformation than segments that are nearly straight.
The strongest phase change signals will result from waves with po-
larization parallel to the directional sensitivity of a certain segment.
In contrast, waves with polarization perpendicular to the directional
sensitivity cannot be recorded by the respective segment.

4 C O N C E P T UA L N U M E R I C A L
E X A M P L E S

The following examples are intended to (1) provide intuition for the
relation between fibre deformation and phase change measurements
θ (t), and (2) to estimate the second-order contributions that are dif-
ficult to quantify analytically. All examples are conceptual in nature
and simplified, leaving complexities such as attenuation, anisotropy,
heterogeneous coupling and fibre heterogeneities to future studies
with actual data and concrete fibre layouts. We make the plausible
assumption that the effective refractive index r̂eff(s) is constant over
a seismic wavelength, that is, O(10) km in our examples, thereby
allowing us to ignore its derivative. Not trying to mimic a specific
acquisition system, we set ωr̂eff/c0 = 1 m−1 for simplicity. With
this setting, we have

ω

c0

L∫
s=0

∂s

(
r̂eff(s) e(s)T

)
v̂(s, t) dt =

L∫
s=0

n(s)T v̂(s, t) ds , (32)

where n(s) is the non-normalized normal vector d
ds e(s). To avoid

any complications, the elastic medium for our calculations is un-
bounded, isotropic and perfectly elastic, with P velocity α =
8000 m s−1, S velocity β = 5000 m s−1 and density ρ = 3000 kg m−3.
Well-known analytical solutions for moment tensor and single force
sources may be found, for example, in Aki & Richards (2002).

4.1 Phase change measurements and fibre curvature

The influence of fibre geometry on the phase change recording θ (t)
is illustrated in Fig. 4, where a P and S wavefield deform a fibre in
the form of a sine curve. The directional sensitivity is proportional
to curvature. Therefore, it is largest at the extrema of the sine curve
and zero at the zero-crossings. Each of the high-curvature segments
produces a distinct P-type arrival Pi and a corresponding S-type
arrival Si in the phase change time series. In total, eight P- and
S-type arrivals can be distinguished, corresponding to the eight
high-curvature segments.
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1036 A. Fichtner et al.

Figure 4. Example wavefield and phase change recording. (a) P and S wavefield originating from the source marked by the black star. The cable in the form
of a sine curve is shown in black. Grey arrows are scaled versions of the directional sensitivity a(s). Its is parallel to the normal vector and has a length
proportional to curvature. Red arrows point towards the cable segments with the largest curvature, which produce the highest-amplitude signals in the phase
change recording. (b) The phase change recording consists of a sequence of pulses corresponding to the P- and S-wave arrivals at the high-curvature segments
of the cable. These arrivals are labelled P1, 2,... and S1, 2,... in both panels.

Even though the S-wave amplitude is larger than the P-wave am-
plitude, the S-type arrivals in θ (t) are comparatively small. This
effect is due to the S-wave polarization which, in contrast to the
P-wave polarization, is nearly perpendicular to the directional sen-
sitivity.

In summary, it follows that phase change measurements θ (t) may
effectively produce a multiplet of seismic waves, which each singlet
corresponding to a high-curvature segment of the cable and its wave
path from the source. Generally, the amplitudes of the singlets are
polarization-dependent and therefore not only related to the actual
wave amplitude.

4.2 Estimation of second-order effects

In our next example, summarized in Fig. 5, we consider a single
force acting in the z-direction. The cable, having the geometry
of a circular segment in the x–y-plane, therefore only records the
motion of an S wave, with polarization in z-direction. This scenario
corresponds to the example from Fig. 2(a), where we deformed
a fibre in the direction perpendicular to its orientation. There, we
found, as a consequence of Pythagorean Theorem, that this style of
deformation does not produce a first-order effect on the transmitted
phase. Therefore, the higher-order effects may be visible. In fact,
this is what we observe in Fig. 5(b). Using the exact, nonlinear
forward modelling eq. (12), we obtain a phase change time-series
that features an oscillation with frequencies much higher than the
0.1 Hz maximum frequency of the incoming wave. The signal starts
to be visible at the time when the S wave reaches the point of the
cable that is closest to the source. The amplitude of the signal then
decays rapidly but remains at high frequency. Using the first-order
approximation from eq. (29) does not reproduce this effect. Instead,
as expected in the absence of any first-order effects, it produces a
time-series that is identically zero for all times.

Figure 5. Exact solution versus first-order approximation. (a) Wavefield
amplitude snapshot for a source that only produces an S wave within the
x–y-plane where the fibre, shown as back curve, is located. The fibre has
the shape of a circular segement with non-zero curvature, to ensure that
the cable sensitivity is non-zero. The P-wave label with 0 cm amplitude is
near the position where the P-wave front would be at that time, had it been
excited. This pathological case is similar to the example in Fig. 2(a). The
amplitude of the S wave (10 cm) is chosen to be unrealistically large in order
to ensure that the second-order effect is not contaminated by floating-point
errors. (b) Phase change time-series for the exact solution (black) and the
first-order approximation (red).
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Figure 6. Exact solution versus first-order approximation. (a) Wavefield
amplitude snapshot for a source that produces a small P wave (0.5 cm
amplitude) and a large S wave (10 cm amplitude) within the x–y-plane where
the fibre, shown as black curve, is located. Despite the unrealistically large
amplitude of the S wave, which is responsible for the second-order effect,
the first-order P-wave contribution dominates the phase change time-series
in panel (b).

The calculation of higher-order effects can be a numerical chal-
lenge because they can be so small that floating point errors start to
be important. This is also the case here, mostly because of the term
|(I + F) e|, which requires us to compute the square root of a num-
ber that differs from 1 only by a number that is usually many orders
of magnitude smaller than 1. To avoid this problem, the amplitude
of the S wave in this example is unrealistically large, on the order
of 10 cm. Such large displacements can only be observed near the
epicentres of large earthquakes. Displacements in the micrometre
range, would have been a more sensible choice from a seismological
perspective.

In the next step, we slightly change the orientation of the single
force source, to have a small component in x–y-direction, such that it
produces a P wave recorded by the fibre in the x–y-plane, as shown
in Fig. 6(a). Though the P wave has an amplitude that is around
20 times smaller than the amplitude of the S wave, it does produce
a first-order effect that completely overwhelms the higher-order
effects induced by the S wave, which are already unrealistically
large. The agreement between the exact forward model (12) and the
linear approximation (29) confirms the validity of the latter, even
for displacement fields that are large compared to the majority of
earthquake wavefields.

5 D I S C U S S I O N

In the following, we provide additional discussion on simplifica-
tions and their range of validity, possible complications related to
imperfect fibre coupling, the importance of higher-order effects and
the possibility of mimicking a distributed sensing system.

5.1 Simplifications

The relation between observed optical phase changes θ and fibre de-
formation F is already complicated by the geometry of the fibre and
the potential relevance of nonlinearity. While these mathematical
complexities can be handled with reasonable effort and simplifi-
cations, there is also a range of practical issues that contribute to
measurement errors in actual experiments, and that may be more
challenging to control or quantify.

Often, the geometry of the fibre is only known to within metres or
tens of metres. Fibre-optic cables deployed on glaciers or unstable
slopes, for instance, may move considerably during the experiment.
Telecommunication cables in particular may follow highly irregular
paths that can only be estimated by coarse tap testing. The length
and curvature of tightly wrapped cable segments, commonly used
to provide some buffer that prevents tearing of the cable under long-
term strain, may also not be well constrained, though they can make
a significant contribution to the measurements, as shown in eq. (29).

A whole family of optical effects are likely to make an addition
to the measurement errors., too. Optical fibres exhibit variations in
the shape of their core along the fibre length, and they may expe-
rience non-uniform stress that breaks their cylindrical symmetry.
The result is quasi-random and frequency-dependent birefringence
that leads to polarization-mode dispersion (PMD) and an average
differential group delay (DGD) �τ between the two different po-
larization axes. For fibre lengths �1 km, DGD can be expressed as
�τ = D

√
�, where D is the PMD coefficient and � the length of the

fibre segment (e.g. Agrawal 2012). For modern telecommunication
fibres, D should be below 0.5 ps km−1/2 (ITU 2022), thereby provid-
ing a quantitative measure of optical fibre heterogeneity that may
be compared to the effect of fibre curvature on a case-by-case basis.
Experimental research suggests that PMD at least plays a negligible
role compared to the photoelastic effect (Butter & Hocker 1978).

5.2 Fibre coupling

A convenient but potentially profound simplification in our devel-
opments is the assumption that deformation of the medium, for
example, the Earth, equals deformation of the fibre. Such perfect
coupling is unlikely to be realized in practice, where the layout of
fibre-optic cables must conform to the boundary conditions of a
potentially harsh field site. Telecommunication cables, evidently,
are not deployed for seismic experiments. Therefore, coupling may
be somewhat random, and good coupling may to some extent be a
matter of luck.

At least from a mathematical perspective, the effect of imperfect
coupling can be incorporated easily into the theory presented above.
For small deformation, the frequency-domain displacement velocity
of the fibre, v̂(s, f ) and of the medium, v̂⊕(s, f ) are related by
a linear coupling operator C(s, f ) via v̂(s, f ) = C(s, f ) v̂⊕(s, f ),
where f is frequency. The resulting frequency-domain version of
eq. (31) is

θ ( f )
.=

L∫
s=0

a(s)T C(s, f ) v̂⊕(s, f ) ds . (33)

Field experiments indicate that careful cable coupling, for example,
by trenching and thermal insulation, may produce a coupling opera-
tor C(s, f ) that is usefully independent of s and close to unity over a
broad frequency range (Lindsey et al. 2020; Paitz et al. 2021), where
the notion of useful is of course application-specific. Depending on
the required measurement accuracy, calibration measurements to
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estimate C(s, f ) may be required, which could potentially defeat
the purpose of fibre-optic measurements to not rely on installations
of conventional point-localized sensors.

While it is certainly possible to reduce measurement errors by
improving our knowledge of cable geometry, coupling and opti-
cal properties, an equally important effort is the design of suitable
measurement functionals that honour the nature of the observational
errors. During the past three decades, numerous measurement func-
tionals have been developed for seismic inversion based on conven-
tional seismometer recordings (e.g. Luo & Schuster 1991; Gee &
Jordan 1992; Fichtner et al. 2008; Brossier et al. 2009; van Leeuwen
& Mulder 2010; Bozdağ et al. 2011; Rickers et al. 2012). This effort
may now need to be repeated for fibre-optic seismology.

5.3 Higher-order effects

As illustrated by eq. (12), a fibre-optic phase transmission system
exhibits a nonlinear relation between the displacement field u and
the observed output signal θ . The higher-order effects are charac-
terized by higher frequencies, and they may be observable in cases
where first-order effects are absent. This may be achieved in labo-
ratory settings where the mode of deformation can be simple and
controlled. However, in seismological applications it seems unlikely
that first-order effects can be avoided, mainly for two reasons: (1)
realistic fibre geometries are not perfect, meaning that some fibre
segments are likely to be oriented such that the wavefield produces
a first-order effect. (2) The seismic wavefield is complex, due to
the 3-D heterogeneity and the presence of the Earth’s surface with
topography. Asymptotically, the seismic wavefield equipartitions,
meaning that wave states with all possible propagation directions
and polarizations will eventually occur, thereby producing some
first-order effect.

Consequently, first-order effects will usually dominate the phase
change observations by far. This means that linear forward mod-
elling equations can be used, thereby facilitating the comparison
to DAS data, as well as the calculation of sensitivity kernels with
respect to Earth structure or source parameters.

5.4 Effective distributed sensing

The example in Section 4.1 illustrates that a single wave front may
appear as a multiplet in a phase change recording. Each singlet cor-
responds to a segment of the fibre with high curvature, which the
wave front reaches at different times. This suggests that a singlet
is a measure of localized deformation near a strongly curved fibre
segment that depends on Earth structure along the wave path be-
tween the source and the segment. In this sense, a curved fibre may
mimic a distributed strain sensing system. An in-depth analysis of
this effect can be found in a companion publication (Fichtner et al.
2022).

5.5 Earthquake location

An important corollary of our developments is that the cartoon-
based suggestion of Marra et al. (2018) to locate earthquakes with
phase-transmission fibre-optic measurements cannot be easily trans-
lated into practice. It operates under the incorrect assumption that
the onset time of the phase change signal is generally produced by
the fibre segment that is closest to the hypocentre. For example, in
the extreme case of a perfectly straight segment there would be no
measurement at all. Hence, earthquake location methods based on

phase transmission still require more mathematical developments
and a careful incorporation of the instrument response, which de-
pends on the details of the fibre geometry.

6 C O N C LU S I O N S

We have developed a theory for deformation sensing using mea-
surements of phase changes in transmitted laser pulses. Though
the exact relation between deformation and phase change measure-
ments is nonlinear, useful first-order approximations can be derived
and justified for seismological applications where strain is typically
much smaller than 1. The first of these relations connects phase
changes to an integral of axial strain along the fibre, thereby en-
abling a direct comparison to measurements of distributed strain,
for example, using DAS. The second relation establishes a link be-
tween the displacement field along the fibre and a directional fibre
sensitivity. This sensitivity is proportional to spatial changes in re-
fractive index and the curvature of the fibre. A possible consequence
of spatially variable directional sensitivity is the multiple appear-
ance of a single wave front in an optical phase change recording.
Each singlet of the multiplet corresponds to a high-curvature seg-
ment of the fibre, thereby providing the opportunity to effectively
mimic a distributed system with integrated strain sensing.
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