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Abstract—1In this work, a flexible distribution, called as
Generalized-K, is used for fading channel modeling. Starting
from its probability density function (PDF), useful closed-form
expressions for the cumulative distribution function, moments-
generating function, moments, and average Shannon’s channel
capacity are derived. These expressions are used to study impor-
tant performance criteria such as the capacity, amount of fading,
outage performance and bit error probability for a great variety
of modulation formats. The proposed mathematical analysis is
accompanied with various performance evaluation results which
demonstrate the usefulness and flexibility of the proposed model.

I. INTRODUCTION

Radiowave propagation through wireless channels is a
complicated phenomenon characterized by various effects in-
cluding multipath fading and shadowing. Multipath fading is
introduced due to the constructive and destructive combination
of randomly delayed, reflected, scattered, and diffracted signal
components. Depending on the nature of the radio propaga-
tion environment, there are different models describing the
statistical behavior of multipath fading [1]. Relatively new
models in communications over fading channels are the K
and the Generalized-K distributions [2], which in the past
have been widely used in radar applications [3], [4]. The
Generalized-K distribution has two shaping parameters, and
as a consequence includes the K distribution as a special case.
Moreover, it is sufficiently generic as it is able to incorporate
most of the fading and shadowing effects observed in wireless
communication channels and hence seems to be appropriate
for the generic modeling of fading channels.

Representative past work concerning the K distribution can
be found in [5]-[7]. In [5], Iskander et al. have proposed
a method that combines the maximum likelihood and the
method of moments for estimating the parameters of the K
distribution. In [6], Abdi and Kaveh have shown that the
K model provides similar performance to the well-known
Rayleigh-Lognormal (R-L) model with the former being also
mathematically tractable. The same authors in [7] have derived
in closed-form the bit error rate of differential phase-shift
keying (DPSK) and minimum-shift keying operating over K
fading channel. Moreover, in the same work they presented a
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close agrement between the derived results and those based
on the R-L distribution.

In [2], the generalized-K distribution was presented as
analytically simpler than the Nakagami-lognormal or Suzuki
distributions and general enough to approximate them, as
well as several others including Rayleigh and Nakagami-m.
Moreover, in the same work, the Amount-of-Fading (Ar) and
the Average Bit-Error-Rate (ABER) for the special case of the
binary phase swift keying (BPSK) modulation, were derived.
However, detailed performance analysis for the SNR statistics
of a receiver operating over Generalized-K fading channel has
not yet been published in the open technical literature and this
is the topic of the current work.

In this paper, after this introduction, the Generalized-K sys-
tem and channel model is studied and closed-form expressions
for its statistics are derived in Section II. In Section III the
performance analysis of a single receiver is investigated, while
in Section IV several numerical evaluated results are discussed.

II. THE GENERALIZED-K FADING CHANNEL MODEL

The probability density function (PDF), fx (-), of the en-
velope X under the Generalized-K fading conditions is [2]

k+m-—1
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where k£ and m are distribution’s shaping parameters,
Ky (-) is the modified Bessel function of order (k — m)
[8, eq. (9.6.1)], ' () is the Gamma function [8, eq. (6.1.1)],
b =24/m/Q and Q is the mean power and can be derived by
using [2, eq. (7)] as Q@ = E (X?) /k. Since the Generalized-
K is a two parameters distribution (1) is able to describe a
great variety of fading and shadowed models. For example,
for m — oc and k — oo, (1) approaches hte Additive White
Gaussian Noise (AWGN), no fading, channel, for k¥ — oo, it
approaches to the well-known Nakagami-m PDF, [2], while
for m = 1, it reduces to the R-L PDF [6], [7].

The instantaneous signal-to-noise (SNR) per symbol is
defined as ¥ 2 X2E,/No, where E, = E(|s|?), with
E (-) denoting expectation and |.| absolute value and Ny is
the single-sided power spectral density of the AWGN. Using
the instantaneous SNR, the corresponding average SNR % =
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Qk Es /Ny, [9, eq. (03.04.21.0008.01)] and (1) the cumulative
distribution function (CDF) of « can be easily derived as
F, (v) =mcsce[m (k — m)]
5 [(m_k)m Y™ Fy (m;1+m—k,1+m;mky/7)
5 T(RT(1+m—k)T(1+m)
- <m_k)k Y Fy (k;1 —m 4k, 1+ k;mky/7)
T(m)T(1—m+ k)T (1+Fk)
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@
where ,F,(-) is the generalized hypergeometric function,
[10, eq. (9.14/1)], with p, ¢ integers. Differentiating (2) with
respect to x, the PDF of 7 can be derived as
mesc[m(k—m
o =TS k)
YL (k)T (m)
L (mE ™ ymoFy (14 m — k;mky/7)
2 rdl+m-—k)
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By using (3) and [10, eq. (7.522/9)], the moments-
generating function (MGF) can be easily obtained as
M, (s) =mesc[r (k —m)]
y { <m_k)m 1F1 [m;1 4+ m —k;mk/ (s7)]
¥ sPT (k)T (1+m—k)
. (m_k)k 1Fulk; 1 —m+k;mk/ (s7)] }
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Moreover, starting with the definition of the nth order moment
[11, eq. (5.38)] and using (3), integrals of the form Z; =
f0°° x™oF; (b;x)dx need to be solved. Z; can be solved
by using [10, eq. (7.811/4)] and expressing the confluent
hypergeometric function o F (-) as [9, eq. (07.17.26.0008.01)]

1/2
oFi (2) =70 0) 61§ [al |77 ] 5)
where G'7t [z] %52 7] is the Meijer’s G-function [10,
eq. (9.301)]. Hence, the nth order moment of ~ output SNR,
t~ (n), can be easily derived after some straight-forward
mathematical manipulations as

2 (m_k)_" csc [x (k —m)]

py(n)=m
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Using (3) in the definition of the average channel capacity C
[12], in Shannon’s sense, integrals of the form appear
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Average Bit Error Probability (ABEP)
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Fig. 1. ABEP of DBPSK, BPSK, Gray-encoded 16-PSK and 16-QAM

signaling versus 7 for several values of k and m.

By expressing In(1+z) = G35 [z|{’ ¢ and oFy () as in
(5), I, can be solved with the aid of [13] and C can be
obtained in closed-form as

mesc [w (k —m)] BW
2T (k)T (m)

mk m 3,1 mk 1-m
x {(—7—> Ga [‘7 0, —m, _m,k_m] ®)

mk k 3,1 mk —k, 1-k
“\ =) G| = 0, —k, —k,m—k
7 ¥ |0k =k,

where BW is signal’s transmission bandwidth.

C=

III. PERFORMANCE ANALYSIS

In this section the performance of a single receiver operating
over the Generalized-K fading channel will be investigated.
The received baseband signal is z = sh + n, where s is the
transmitted complex symbol, n is the complex AWGN, and h
is the channel complex gain. One of the most commonly used
performance criterion for telecommunications systems operat-
ing over fading channels is the bit-error probability. By using
(4), and following the MGF based approach, [1], the average
bit-error probability (ABEP) can be readily evaluated for a
variety of modulation schemes [1]. Hence, the ABEP can be
calculated ¢) directly for non-coherent binary frequency-shift
keying and differential binary phase-shift keying (DBPSK)
and #1) via numerical integration for binary phase-shift keying
(BPSK), M-PSK, M-ary quadrature amplitude modulation
(M-QAM) and M-DPSK since single integrals composed of
elementary (i.e., exponential and trigonometric) functions and
with finite limits are obtained.
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Fig. 2. P,y as a function of the normalized outage threshold for several
values of k and m.

Another standard performance criterion is the outage proba-
bility, P,,:, which is defined as the probability that the output
SNR falls below a given threshold, ~y;,. Hence, Poyt(7y:n) can
be simply obtained as

Pout ('Yth) = F‘f (7th) . (9)

Moreover, Ap, which is another important statistical char-
acteristic of fading channels, can be easily obtained by using,

(11,

_var(y)

AF — /""Y (2) _ 1_

W2 72

Finally, the normalized average channel capacity is directly
related to the bandwidth efficiency and denotes the amount

of data transmitted in a given spectrum allocation. It can be
easily obtained, by using (8), as C/BW, in terms of b/s/H z.

(10)

IV. NUMERICAL RESULTS

In order to demonstrate the usefulness of the theoretical
value and based on the proposed formulation, the performance
of a receiver operating over the Generalized-K fading channel
is presented in Figs. 1-4.

More specifically, in Fig. 1, the ABEP is plotted for DBPSK,
BPSK, 16-PSK and 16-QAM signaling with Gray encoding, as
a function of the average input SNR per bit, 7, = 7/ log(M),
for several values of m and k. As expected, the ABEP im-
proves as 7, increases, while for a fixed value of %,, ABEP
also improves with an increase of k and/or m. Fig. 2 shows
P,,+ versus normalized outage threshold for several values
of k£ and m. P,,; decreases (i.e., the outage performance
improves) with an increase of k¥ and/or m. However the gap
among the curves decreases as k and/or m increase. Notice

Amount of Fading (A)
w £ w (=)

[ S
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Fig. 3. Ap as a function of m for several values of k.
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Fig. 4. C/BW versus average SNR per Bit, for several values of m and k.

that for m = 1, the Generalized-K distribution approaches
the R-L one.

The Ar is presented as a function of the m parameter and
for several values of k. Note that as m and/or k& increase,
the Ar decreases in an exponential way. Moreover, it is more
clear in Fig. 3 that the variation of m, k has greater influence
at the channel’s performance when they have small values,
ie, m € [0,2] and k € (0.5,2). Finally, in Fig. 4 the
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normalized average channel capacity is plotted as a function
of the average SNR per bit for several values of m, k. For
comparison purposes, the normalized channel capacity for the
AWGN, ie., Cyaugn/BW = logy(1 +7,), and the Rayleigh
channels are also plotted. As it was expected, the average
capacity of the Generalized-K fading channel is always less
than the capacity provided by the AWGN channel. Moreover,
for m = k = 1 the provided capacity is less than Rayleigh’s,
and it improves as m and/or k increase.
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