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Dual Diversity over Correlated Ricean Fading Channels
Petros S. Bithas, Nikos C. Sagias, and P. Takis Mathiopoulos

Abstract: The performance of dual diversity receivers operat-
ing over correlated Ricean fading channels is analyzed. Using a
previously derived rapidly converging infinite series representa-
tion for the bivariate Ricean probability density function, analyt-
ical expressions for the statistics of dual-branch selection combin-
ing, maximal-ratio combining, and equal-gain combining output
signal-to-noise ratio (SNR) are derived. These expressions are em-
ployed to obtain novel analytical formulae for the average output
SNR, amount of fading, average bit error probability, and outage
probability. The proposed mathematical analysis is used to study
various novel performance evaluation results with parameters of
interest the fading severity, average input SNRs, and the correla-
tion coefficient. The series convergence rate is also examined veri-
fying the fast convergence of the analytical expressions. The accu-
racy of most of the theoretical performance evaluation results are
validated by means of computer simulations.

Index Terms: Correlated fading, equal-gain combining (EGC),
maximal-ratio combining (MRC), mobile satellite communica-
tions, Ricean distribution, selection combining (SC).

I. INTRODUCTION

Wireless communication systems are subject to severe multi-
path fading that can seriously degrade their performance. One of
the simplest and yet most efficient techniques to improve their
performance is diversity. There are several diversity reception
methods employed in digital communication receivers including
maximal-ratio combining (MRC), equal-gain combining (EGC),
and selection combining (SC) [1]. MRC is the optimal combin-
ing scheme, but comes at the expense of increased complex-
ity. EGC provides an intermediate solution for improved perfor-
mance and low implementation complexity, while SC is the least
complicated, since only the selectively chosen single branch is
processed. Consequently, SC gives much poorer performance
in fading channels than MRC and EGC when the number of
branches is large. The performance of these diversity techniques
depends on the characteristics of the multipath fading envelopes.

There are different models describing the statistical behav-
ior of the multipath fading envelopes depending on the nature
of the radio propagation environment. The Ricean distribution
is oftenly used to model propagation paths consisting of one
strong direct line-of-sight (LOS) component and many random
weaker components and is typically observed in microcellular,
urban land mobile communications, and mobile satellite radio
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links [1]–[3]. Especially for satellite mobile communications,
the Ricean distribution can be used to accurately characterize the
satellite channel for the single-state [4], the clear state [5], and
the multi-state model [6]. However, despite the obvious prac-
tical importance of studying the performance of dual diversity
receivers operating over correlated Ricean fading channels, this
research topic has not been adequately investigated. Reasons for
this include the complicated form of the bivariate Ricean proba-
bility density function (PDF) and the absence of alternative ex-
pressions for the multivariate distribution.

Past work concerning the performance of dual diversity re-
ceivers operating over correlated fading channels can be found
in [7]– [14]. In [7], the average output signal-to-noise ratio
(SNR), the amount of fading (AoF), and the outage probabil-
ity (OP) have been investigated in correlated lognormal fad-
ing. In [8], Karagiannidis et al. have derived a convergent in-
finite sum expression for the characteristic function of two cor-
related Nakagami-m variables, which has been applied to EGC
diversity receivers. In [9], useful expressions for the OP and
average bit error probability (ABEP) have been presented for
dual selection diversity systems with correlated Rayleigh and
Nakagami-m fading. In [10], considering correlated Weibull
fading channels, analytical expressions for several performance
criteria, such as average output SNR, AoF, ABEP, and OP, have
been derived in closed form, while in [11], the exact OP us-
ing dual EGC is analytically derived for correlated Nakagami-m
fading. As far as the Ricean fading channel is concerned, a stu-
dy for dual branch EGC in slow, correlated, Ricean time se-
lective fading has been presented in [12] for the special case
of non-coherent detection of orthogonal binary frequency shift
keying (BFSK). Moreover, a performance analysis limited to the
noncoherent reception of orthogonal M -ary FSK with postde-
tection EGC over correlated fading channels has been presented
in [13]. In [14], the cumulative distribution function (CDF) of
the SC output SNR in equally correlated Rayleigh, Ricean, and
Nakagami-m fading channels has been derived.

Recently in [15], infinite series representations have been de-
rived for the Ricean PDF, CDF, covariance, and characteristic
function of two correlated Ricean random variables (RVs). It
was also depicted that these infinite series expressions converge
rapidly and some limited performance results for the OP of SC
receivers have been derived. Moreover in [16], capitalizing on
[17], another form of infinite series representation for the joint
CDF of two Ricean correlated RVs has been presented. Moti-
vated by the previously reported approaches, in this paper we
extend the work of [15] by presenting a detailed analysis of the
performance of SC, EGC, and MRC receivers operating over
correlated Ricean fading channels.

The organization of the paper is as follows. After this in-
troduction, in Section II a brief description of the system and
channel model is presented. Based upon this model, novel in-
finity series representations of the joint Ricean PDF, CDF, mo-
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ments generating function (MGF), and moments output SNR are
derived. In Section III, important performance criteria of dual-
branch SC, EGC, and MRC diversity receivers are studied. In
Section IV, various numerical performance evaluation results
are presented and discussed. Finally, concluding remarks are
given in Section V.

II. SYSTEM AND CHANNEL MODEL

Let us consider a dual-branch diversity receiver operating
over a correlated Ricean fading channel. The baseband received
signal in the �-th (� = 1, 2) antenna is z� = s h� + n�, where s
is the transmitted complex symbol of energy Es = E〈|s|2〉 with
E〈·〉 denoting expectation and | · | absolute value, n� is the com-
plex additive white Gaussian noise (AWGN) with single sided
power spectral density N0 identical to all branches, and h� is
the channel complex gain. The n�’s are assumed to be uncor-
related and by considering slowly varying fading the h�’s are
assumed to be known at the receiver [1]. The fading envelopes
R1 = |h1| and R2 = |h2| are modeled as correlated Ricean RVs
and the instantaneous SNR per symbol at the �-th input branch
is X� = R2

� Es/(2N0). The joint PDF of X1 and X2 is given
by [18]

fX1,X2(x1, x2) =
(1 + K)2

2πγ2 (1 − ρ2)

× exp
[
− 2K

1 + ρ
− (1 + K) (x1 + x2)

(1 − ρ2) γ

]

×
∫ 2π

0

exp
[
2
ρ (1 + K)

√
x1 x2 cos θ

(1 − ρ2) γ

]

× I0

⎡
⎣
√

4K(1 + K)
(
x1 + x2 + 2

√
x1x2 cos θ

)
γ (1 + ρ)2

⎤
⎦ dθ

(1)

where γ is the average SNR per symbol at both input branches,
i.e., γ = ΩEs/(2N0), Ω = E〈R2

1〉 = E〈R2
2〉, K is the Ricean

factor defined as the ratio of the specular signal power to the
scattered power, and I0 (·) is the zeroth-order modified Bessel
function of the first kind [19, eq. (8.406)]. By using differ-
ent values for K, the Ricean distribution spans the range from
Rayleigh fading, i.e., K = 0, to no fading, i.e., K → ∞.
The Ricean distribution can be closely approximated by the
Nakagami-m using a mapping between K and m [1, eq. (2.25)].
In (1), ρ denotes the Ricean correlation coefficient between R1

and R2. To the best of our knowledge, the relation between the
envelopes correlation coefficients ρ and ρray , which is the cor-
relation coefficient between two correlated Rayleigh RVs is not
available.1 Such an expression is presented in the appendix of
this paper.

Since a PDF in the form of (1) is very difficult, if not impos-
sible, to be used for the performance analysis of dual-branch
diversity receivers, an alternative approach would be to em-
ploy an infinite series representation for this PDF, such as the

1It is noted that the relation between the power correlation coefficient of
Ricean correlated RVs and the correlation coefficient of their underlying com-
plex Gaussian RVs has been presented in [1, Appendix 9C] and [20].

one presented in [15]. Hence, using the infinite series repre-
sentation for the I0(·) [19, eq. (8.445)], a term of the form
[x1 + x2 + 2

√
x1x2 cos(θ)]i appears. Using the multinomial

identity this term can be simplified and after some mathematical
manipulations the joint PDF of X1 and X2 can be expressed in
sums, i.e., without the integrals, as

fX1,X2 (x1, x2) =
∞∑

i,h=0
v1+v2+v3=i

A exp [−β1 (x1 + x2)]

×
(
B xβ2−1

1 xβ3−1
2 + C γ−1 x

β2−1/2
1 x

β3−1/2
2

) (2)

with

A =
2v3+2h−1(1 + K)1+β4ρ2h

[
K/(1 + ρ)2

]i
√

π γ1+β4 (1 − ρ2)1+2h
v1! v2! v3! i!

exp
(−2K

1 + ρ

)
,

B =
[1 + (−1)v3 ] Γ [h + (1 + v3)/2]

Γ (h + 1 + v3/2) Γ (1 + 2h)
,

C =
[−1 + (−1)v3 ] 2ρ(1 + K) Γ (1 + h + v3/2)

(ρ2 − 1) Γ(2 + 2h)Γ [h + (3 + v3)/2]
,

β1 =
(1 + K)

(1 − ρ2) γ
, β2 = v1 +

v3

2
+ h + 1,

β3 = v2 +
v3

2
+ h + 1, and β4 = i + 2h + 1

where Γ(·) is the Gamma function [19, eq. (8.310/1)].
By substituting (2) in the definition of the joint MGF of X1

and X2 [21, eq. (5.62)]

MX1,X2 (s1, s2) = E〈exp (−s1 X1 − s2 X2)〉 (3)

and using [19, eq. (3.381/4)],MX1,X2 (s1, s2) can be expressed
as

MX1,X2 (s1, s2) =
∞∑

i,h=0
v1+v2+v3=i

A (β1 − s1)
−β2

(β1 − s2)
β3

×
[
B Γ(β2) Γ(β3) +

C Γ (1/2 + β2) Γ (1/2 + β3)
γ
√

(β1 − s1) (β1 − s2)

]
.

(4)

An expression for the joint moments of X1 and X2, defined
as μX1,X2(k, λ) = E〈Xk

1 Xλ
2 〉 [21, eq. (5.38)], can be derived,

by substituting (2) in this definition and using again [19, eq.
(3.381/4)], as

μX1,X2(k, λ) =
∞∑

i,h=0
v1+v2+v3=i

A
{
Bβ1Γ (λ + β2) Γ (k + β3)

β
(2+λ+k+β4)
1

+
CΓ (1/2 + λ + β2) Γ (1/2 + k + β3)

γ β
(2+λ+k+β4)
1

}
.

(5)

The joint CDF of X1 and X2 can be obtained using
FX1,X2 (x1, x2) =

∫ x1

0

∫ x2

0
fX1,X2(x1, x2) dx1dx2 [21, eq.

(6.6)]. Substituting (2) in the above equation and interchang-
ing the order of summations and integrations, some integrals
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of the form
∫ ξ

0
ya exp

(−Ξ y2
)
dy appear, where a, Ξ, and ξ

are real constants. These integrals can be efficiently solved after
applying the transformation t = Ξ y2 and using the definition
of the lower incomplete Gamma function [19, eq.(8.350/1)],
γ(α, x) =

∫ x

0
tα−1 exp(−t)dt. Following this and after some

straightforward mathematical simplifications, the joint CDF of
X1 and X2 can be expressed in sums as

FX1,X2 (x1, x2) =
∞∑

i,h=0
v1+v2+v3=i

A
{
Bγ (β2, β1x1) γ (β3, β1x2)

(β1)
β4+1

+
C γ (β2 + 1/2, β1x1) γ (β3 + 1/2, β1x2)

γ (β1)
β4+2

}
.

(6)

III. PERFORMANCE ANALYSIS

In this section, capitalizing on the previously derived formu-
lae, expressions for various performance measures of the three
diversity receivers under consideration will be obtained.

A. SC Receivers

A.1 Average Output SNR and AoF

By denoting the instantaneous SNR at the output of the SC
receiver as Xsc = max(X1,X2) [21, eq. (6.54)], the CDF of
Xsc is expressed as Fsc(x) = FX1,X2 (x, x) [1]. By differen-
tiating this CDF, the PDF of Xsc, fsc(x), can be easily derived
as

fsc(x) =
∞∑

i,h=0
v1+v2+v3=i

Aβ−β2
1 exp(−β1 x)

×
{
B [xβ3−1 γ (β2, β1 x) + βv1−v2

1 xβ2−1 γ (β3, β1 x)
]

+
1√
β1 γ

C
[
xβ3−1/2 γ (β2 + 1/2, β1 x)

+βv1−v2
1 xβ2−1/2 γ (β3 + 1/2, β1 x)

]}
.

(7)

By substituting (7) in the definition of the n-th moment of
Xsc and interchanging the order of summation and integration,
integrals of the following form need to be solved

I =
∫ ∞

0

ya exp(−ξ y) γ(u,Ξ y) dy (8)

where a, ξ, u, and Ξ are positive constants. Representing the
lower incomplete Gamma function as [19, eq. (8.351)]

γ(u,Ξ y) =
(Ξ y)u

u
1F1(u;u + 1;−Ξ y) (9)

the integral in (8) can be solved using [19, eq. (7.621/4)] as

I =
Ξu

ξα+u+1 u
Γ (α + u + 1) 2F1

(
u, α + u + 1;u + 1;−Ξ

ξ

)
(10)

where 2F1 (·, ·; ·; ·) is the Gauss hypergeometric function [19,
eq. (9.100)]. Hence, using (10), the n-th moment of Xsc,
μsc (n), can be expressed as

μsc (n) =
∞∑

i,h=0
v1+v2+v3=i

A γ

ββ5
1

{
B Γ (β5)

×
[

2F1 (β2, β5;β2 + 1;−1)
β2

+ 2F1 (β3, β5;β3 + 1;−1)
β3

]

+
Γ (1 + β5)
C−1γ β1

[
2F1 (β2 + 1/2, β5 + 1;β2 + 3/2;−1)

β2 + 1/2

+ 2F1 (β3 + 1/2, β5 + 1;β3 + 3/2;−1)
β3 + 1/2

]}

(11)

where β5 = i + 2h + n + 2. From the above equation, the
average output SNR, γsc, can be obtained by setting n = 1.
Furthermore, the AoF, AF , can be easily obtained since

AF =
var (Xsc)

γ2
sc

=
μsc (2)

γ2
sc

− 1. (12)

A.2 ABEP Performance

The MGF of the SC output SNR is defined as Msc(s) =
E〈exp (−sXsc)〉 which by substituting (7) results integrals of
the form (8). Thus, following a similar procedure used for de-
riving (11), the MGF of Xsc can be expressed as

Msc(s) =
∞∑

i,h=0
v1+v2+v3=i

AΓ(β4 + 1)
(β1 − s)β4+1

×
{
B
[

2F1 [β2, β4 + 1;β2 + 1;−β1/(β1 − s)]
β2

+ 2F1 [β3, β4 + 1;β3 + 1;−β1/(β1 − s)]
βv1−v2

1 β3

]
+

C (β4 + 1)
γ(β1 − s)

×
[

2F1 [β2 + 1/2, β4 + 2;β2 + 3/2;β1/(s − β1)]
β2 + 1/2

+ 2F1 [β3 + 1/2, β4 + 2;β3 + 3/2;β1/(s − β1)]
βv1−v2

1 (β3 + 1/2)

]}
.

(13)

By using (13) and following the MGF-based approach [1],
the ABEP can be readily evaluated for a variety of modulation
schemes as well as for arbitrary values of the fading severity
parameter K and average input SNR as follows:
• Using numerical integration of an integral involving (13),

for M -ary phase shift keying (PSK), binary PSK (BPSK),
M -ary quadrature amplitude modulation (QAM), and M -ary
differential PSK (DPSK), since integrals with finite limits are
obtained.

• Directly for non-coherent BFSK and differential binary PSK.

B. EGC Receivers

B.1 ABEP, Average Output SNR, and AoF

Extending [22] for the correlated Ricean fading, the
conditional SNR per symbol at the output of the dual-



4 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 9, NO. 1, MARCH 2007

branch EGC combiner is given by [1, eq. (9.46)], Xegc =
1
2

(√
X1 +

√
X2

)2
. By definition, the n-th moment of the EGC

output SNR is given by

E
〈
Xn

egc

〉
=E

〈[
1
2

(√
X1 +

√
X2

)2
]n〉

=
(

1
2

)n

E

〈(√
X1 +

√
X2

)2n
〉

.

(14)

Using the binomial theorem [19, eq. (1.111)], the n-th moment
of Xegc can be expressed as

μegc (n) =
(

1
2

)n 2n∑
k=0

(
2n

k

)
E

〈
X

k/2
1 X

(2n−k)/2
2

〉
. (15)

By substituting (5) in (15), the moments of the EGC output SNR
can be derived as

μegc (n) =
2n∑

k=0

∞∑
i,h=0

v1+v2+v3=i

(
2n

k

)
Aβ

−(1+β5)
1 2−n

×
[
B β1 Γ

(
2n − k

2
+ β2

)
Γ
(

k

2
+ β3

)

+
C
γ

Γ
(

1 + 2n − k

2
+ β2

)
Γ
(

1 + k

2
+ β3

)]
.

(16)

Since direct evaluation of the MGF output SNR for the EGC
receiver is a very difficult task, an alternative method to approxi-
mate it and consequently evaluate the ABEP must be used. Such
method is the so-called Padé approximants [23], which has been
used in the past to study the performance of EGC [24] and gener-
alized selection combining (GSC) [25] diversity receivers and as
well as to approximate PDFs [26]. Its main advantage is that due
to the form of the produced rational approximation, the ABEP
can be calculated directly using simple expressions. Hence, the
MGF can be represented as a formal power series (e.g., Taylor),
using (16), as

Megc(s) =
∞∑

n=0

μegc (n)
n!

sn. (17)

Although μegc (n) can be evaluated in closed form, the above
infinite series does not always converge. However, using Padé
approximants only a finite number of terms W can be used, thus
truncating the series in (17). In our analysis, Megc(s) is approx-
imated using sub-diagonals (R[A/A+1](s)) Padé approximants
(B = A+1), since it is only for such order of approximants that
the convergence rate and the uniqueness can be assured [23],
[24]. By obtaining accurate approximation expressions for the
MGF of EGC output SNR and using the MGF-based approach,
the ABEP of EGC can be derived.

C. MRC Receivers

C.1 ABEP Performance

The MGF of the instantaneous SNR at the output of a MRC
receiver, Xmrc, can be obtained, using (4), as Mmrc(s) =
MX1,X2(s, s). Hence, similarly to the SC receivers, the ABEP
can be calculated using the Mmrc(s) in a straightforward man-
ner.

C.2 Outage Probability

The CDF of Xmrc, Fmrc(x), can be derived as

Fmrc(x) = L−1

{Mmrc(s)
s

;x
}

s=0

(18)

where L−1 {·; ·} denotes inverse Laplace transformation.
Hence, after some straightforward mathematical manipulations
Fmrc(x) can be obtained as

Fmrc(x) =
∞∑

i,h=0
v1+v2+v3=i

A
[
BΓ(β2) Γ(β3) γ (1 + β4, xβ1)

β1+β4
1 Γ (1 + β4)

+
C Γ (1/2 + β2) Γ (1/2 + β3) γ (2 + β4, xβ1)

β1+β4
1 γ β1 Γ (2 + β4)

]
.

(19)

Using (19), the OP can be obtained as Pout (xth) = Fmrc (xth) .

C.3 Average Output SNR and AoF

The PDF of Xmrc can be obtained by differentiating (19) as

fmrc(x) =
∞∑

i,h=0
v1+v2+v3=i

AKi xβ4 exp (−xβ1)
(1 + ρ)2i

×
[BΓ(β2) Γ(β3)

Γ (1 + β4)
+

CΓ (1/2 + β2) Γ (1/2 + β3) x

γ Γ (2 + β4)

]
.

(20)

Hence, using (20) the n-th moment of Xmrc can be expressed
as

μmrc (n) =
∞∑

i,h=0
v1+v2+v3=i

Aβ
−(2+n+β4)
1

2nΓ (1 + β4) Γ (2 + β4)

×
[
BΓ(β2) Γ(β3)β1 Γ (2 + β4) Γ (β5)

+
C
γ

Γ
(

1
2

+ β2

)
Γ
(

1
2

+ β3

)
Γ (1 + β4) Γ (1 + β5)

]
.

(21)

Setting n = 1 in (21), the average output SNR, γmrc, can be
obtained, whereas the AoF can be also easily derived using (12)
and (21).

IV. NUMERICAL RESULTS AND DISCUSSION

In this section, using the previously derived analytical expres-
sions, we present representative numerical performance eval-
uation results, such as AoF, ABEP, and OP for the consid-
ered SC, EGC, and MRC receivers. We have investigated these
performances under a wide range of channel conditions, e.g.,
0 < ρ < 1, 0 < K < 10 dB, and −5 dB < γ < 20 dB, thus
considering both terrestrial and satellite communication scenar-
ios. It should be noted that for all considered ranges of values
quick convergence of the series has been observed.

Using (11) for SC, (16) for EGC, and (21) for MRC as
well as (12), the AoF performances have been obtained. These
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Fig. 2. EGC performance for DBPSK and M -ary PSK signals: ABEP
versus γb for K = 1 and 10 dB.

results can be found in Fig.1 and are presented as functions
of K for several values of ρ. They show that as ρ increases
and/or K decreases the AoF, i.e., the severity of the fading, in-
creases. Clearly, MRC provides the best performance and SC the
worst. However, the difference in performances are not signif-
icantly large. Moreover, as the correlation coefficient increases
the diversity gain of MRC, as compared to EGC and SC, de-
creases.

In Figs. 2 and 3, the ABEP performance of dual-branch EGC
(see Section III-B.1) and MRC (see Section III-C.1) receivers
are plotted as a function of the average input SNR per bit,
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Fig. 3. MRC performance for DPSK and M -ary PSK signals: ABEP
versus γb for K = 1 and 10 dB.
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Fig. 4. SC performance for 16-QAM signals: ABEP versus γb for K =
1, 5 and 10 dB and ρ = 0.1 and 0.7.

γb = γ/ log2 M , for DBPSK and M -ary PSK (with Gray en-
coding), for ρ = 0.5 and several values of K. As expected, the
ABEP improves as γb increases, while for a fixed value of γb

it also improves as K increases. Similar behavior is observed
in Figs. 4–6 for the SC (see Section III-A.2), MRC (see Section
III-C.1), and EGC (see Section III-B.1), respectively. In these
figures, the ABEP of a 16-QAM modulation scheme (with Gray
encoding) is plotted again as a function of γb for several values
of K and ρ. Note that as ρ increases, the ABEP decreases and
MRC has slightly better ABEP as compared to the other two
diversity reception techniques. In Fig. 7, using (19) the OP ver-
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Table 1. Minimum number of terms (imin, hmin) of (13) required for obtaining seven significant digits accuracy for the ABEP of DBPSK.

ρ = 0.2 ρ = 0.7

γ (dB)
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28 13

26 11
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8 1

K = 1 dB K = 7 dB
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13 28

11 20

9 14
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15 20
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Fig. 5. MRC performance for 16-QAM signals: ABEP versus γb for
K = 1, 5 and 10 dB and ρ = 0.1 and 0.7.

sus γb/xth for several values of K and ρ is illustrated. Clearly,
the OP deteriorates with increasing ρ, while it improves with in-
creasing K. In order to verify the validity of the theoretically
derived formulae, equivalent computer simulated results (repre-
sented by circles, squares, and triangles signs) are also included
in all ABEP performance results presented in Figs. 2–6. The ex-
cellent agreement between simulated and analytical results ver-
ifies the correctness of the theoretical derivations.

Finally, the rate of convergence of the infinite series expres-
sions has also been investigated. In Table 1, the minimum values
for the i and h terms, imin and hmin, which guarantee seven
significant figure accuracy (i.e., ≤ 10−7) are presented for the
ABEP of DBPSK signals (see (13)) versus γb for different val-
ues of ρ and K. It is noted that by increasing K and/or ρ, larger
values for the i or h terms are required, respectively. It is also
clear that only a relatively small number of terms is necessary to
achieve an excellent accuracy and compared to the Nakagami-m
channel, the required number of terms is significantly smaller
for a similar target accuracy [27], [28]. Our research has also
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Fig. 6. EGC performance for 16-QAM signals: ABEP versus γb for K =
1, 5 and 10 dB and ρ = 0.1 and 0.7.

shown that almost identical results, in terms of the rate of con-
vergence, were also obtained by using other modulation formats,
such as M -ary QAM and M -ary PSK.

V. CONCLUSIONS

In this paper, an analytical performance study of dual-branch
diversity receivers operating over correlated Ricean fading chan-
nels has been presented. Based on an infinite series expression
of the bivariate Ricean PDF, analytical formulae for the CDF,
MGF, and the moments of dual-branch SC, EGC, and MRC out-
put SNR were derived. Using these expressions, novel analyti-
cal formulae for the average output SNR, AoF, ABEP, and OP
have been obtained in infinite series form. The proposed formu-
lae were used to obtain various novel performance evaluation
results having as variables fading severity, average input SNR,
and Ricean correlation coefficient. The accuracy of most of the
theoretical results has been verified by means of computer sim-
ulation.
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Fig. 7. MRC performance: OP versus γb/xth for several values of
K and ρ.

APPENDIX: RELATION BETWEEN RAYLEIGH AND
RICEAN CORRELATION COEFFICIENTS

In this appendix, a closed-form expression relating the
Ricean, ρ, and the Rayleigh, ρray , correlation coefficients of the
envelopes is derived. These correlation coefficients are signifi-
cantly different due to the different statistical behavior of their
multipath fading envelopes [29]. The Ricean complex channel
fading h1 and h2 are related to the complex Gaussian random
variables g1 and g2 by

h1 = g1 + A and h2 = g2 + A (A-1)

where A denotes the power ratio of the LOS component to the
average power of the scattered component.

Substituting (A-1) in the definition of ρ, i.e.,

ρ =
E
〈(

R1 − R1

) (
R2 − R2

)〉
√

E 〈R2
1〉 − R

2

1

√
E 〈R2

2〉 − R
2

2

(A-2)

joint moments of the form E〈Rn
1 Rm

2 〉 appear. These joint mo-
ments can be solved, with the aid of [30], as

E〈Rn
1 Rm

2 〉 = (1 − ρray)1+(n+m)/2 Ωn/2
1 Ωm/2

2 Γ
(
1 +

n

2

)
× Γ

(
1 +

m

2

)
2F1

(
1 +

n

2
, 1 +

m

2
; 1; ρray

)
.

(A-3)

Hence, after some straightforward mathematical manipulations
the relation between ρ and ρray can be expressed in the follow-
ing compact form as

ρ =
π

4 − π

[
(1 − ρray)2 2F1

(
3
2
,
3
2
; 1; ρray

)
− 1

]
. (A-4)
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