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GSC Diversity Receivers over Generalized-Gamma Fading Channels
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Abstract— A detailed performance analysis of generalized-
selection combining GSC(2, L) receivers operating over
generalized-Gamma fading channels is presented. For this class
of receivers, a novel closed-form expression for the moments out-
put signal-to-noise ratio is derived. Furthermore, infinite series
representations for the moments-generating and the cumulative
distribution functions are obtained. The proposed mathematical
analysis is accompanied by various performance evaluation
results. These theoretical results are complemented by equivalent
computer simulated results, which validate the accuracy of the
proposed analysis.

Index Terms— Generalized-selection combining (GSC), diver-
sity, generalized Gamma distribution, bit error rate (BER).

I. INTRODUCTION

GENERALIZED-selection combining (GSC) is consid-
ered as an alternative diversity scheme for bridging the

performance gap between the two classical diversity schemes
namely, maximal ratio combining (MRC) and selection com-
bining (SC) [1]. More specifically, as compared to MRC,
which is an optimal combining scheme, GSC has reduced
system complexity, while as compared to SC, which is one of
the simplest diversity schemes, it has improved performance.
In the past the performance of GSC diversity receivers has
been analyzed for various fading models, including Rayleigh,
Nakagami-m, and Weibull, e.g., [1]–[3]. Furthermore, special
attention is given to the practical important class of GSC(2, L),
e.g., [4], [5], where among L available resolvable paths the
two strongest are adaptively combined. Since this class of
receivers is an effective compromise achieving very good
performance with reduced implementation complexity, it is
considered also here in the context of generalized-Gamma
(GG) fading channels.

The GG distribution is a generic and versatile fading chan-
nel model since it not only includes the Rayleigh, Nakagami-
m, and Weibull distributions as special cases but also can
describe the lognormal as a limiting case. Furthermore, it
is considered to be mathematically tractable, as compared
to various lognormal-based models, and recently has gained
increased interest in the field of digital communications over
fading channels [6]–[8]. For example, in [6] the outage prob-
ability (OP) of dual-branch SC was obtained, while in [7] the

Manuscript received July 3, 2007. The associate editor coordinating the
review of this letter and approving it for publication was Prof. Hsiao-Hwa
Chen.

P. S. Bithas and P. T. Mathiopoulos are with the Institute for Space
Applications and Remote Sensing, National Observatory of Athens, Metaxa
& Vas. Pavlou Street, Palea Penteli, 15236 Athens, Greece (e-mail: {pbithas,
mathio}@space.noa.gr).

N. C. Sagias is with the Institute of Informatics and Telecommunications,
National Centre for Scientific Research–“Demokritos,” Agia Paraskevi, 15310
Athens, Greece (e-mail: nsagias@ieee.org).

Digital Object Identifier 10.1109/LCOMM.2007.071095.

performance analysis of switch and stay combining diversity
receivers was studied. However, the performance of GSC(2, L)
receivers over GG fading channels has not been yet studied
in the open technical literature and thus is the subject of this
letter.

II. THE GG FADING MODEL

Let us consider a diversity receiver operating over L identi-
cally distributed (i.d.) GG flat fading channels. The probability
density function (PDF) of the instantaneous signal-to-noise ra-
tio (SNR) per symbol at the �th input branch (� = 1, 2, . . . , L)
is [7, eq. (1)]
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where β > 0 and m = 1, 2, . . . are two parameters related to
the fading severity, γ is the average input SNR per symbol,
and τ = (m − 1)!/Γ(m + 2/β), with Γ(·) being the Gamma
function [9, eq. (8.310/1)]. By using different values of β and
m, (1) can describe a great variety of short- and long-term
(shadowing) fading conditions [7]. Moreover, the cumulative
distribution function (CDF) of γ� can be expressed as
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while the nth order moment of γ� is given by

µγ�
(n) = (τ γ)n Γ(m + 2n/β)

(m − 1)!
. (3)

III. GSC(2, L) RECEIVER SNR OUTPUT STATISTICS

Let us order the γ�’s as γ(1) ≥ γ(2) ≥ · · · ≥ γ(L). The
instantaneous SNR per symbol at the output of a GSC(2, L)
receiver is γgsc = γ(1) + γ(2). The joint PDF of this ordered
set can be mathematical expressed as [2, eq. (15)]

fγ(1),γ(2)(γ1, γ2) =
L!

(L − 2)!
fγ1(γ1)fγ2(γ2) [Fγ2(γ2)]

L−2
.

(4)
Starting with (2), using first the binomial theorem [9, eq.
(1.111)], then the multinomial identity [10, eq. (24.1.2)], and
after some mathematical simplifications, [Fγ2(γ2)]L−2 in (4)
can be expressed as
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A. Moments

The nth order moment of a GSC diversity receiver output
SNR is given by µgsc(n) = E〈γn

gsc〉, with E 〈·〉 denoting
expectation. Using the binomial theorem [9, eq. (1.111)], it
can be written as

µgsc(n) =
n∑

p=0

(
n

p

)
E

〈
γp
(1)γ

n−p
(2)

〉
. (6)

Hence, by substituting (1), (4) and (5) in (6),
and after making a change of variables, integrals
of the following form need to be solved I =∫ ∞
0

γc
1 exp (−Cγ1)

∫ γ1

0
γd
2 exp (−Dγ2) dγ2dγ1, with C,

D being positive integers. Using [9, eqs. (3.381/1) and
(6.455/2)], I can be solved in closed form and consequently,
the moments of the GSC output SNR can be expressed as
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where G(a, b) = a
[
(m + b/β) +

∑m−1
i=0 i ni/2

]
and

2F1(·, ·; ·; ·) is the Gauss hypergeometric function [9, eq.
(9.100)]. It should be noted that by setting m = n = 1 in
(7), the expression for µgsc simplifies to a previously known
result [3, eq. (8)], i.e., the average output SNR of a GSC
receiver operating over Weibull fading channels.

For the special case of MRC, by considering not necessarily
i.d. GG fading conditions, i.e., each channel is characterized
by different fading parameters m� ≥ 1/2, β� > 0 and average
input SNR per symbol γ�, a general result can be obtained. By
substituting the output of the MRC receiver, γmrc =

∑L
�=1 γ�,

in µmrc(n) = E〈γn
mrc〉, using (3) and the multinomial identity,

the moments of the MRC output SNR can be expressed as

µmrc(n) = n!
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with τ� = Γ(m�)/Γ(m� + 2/β�).

B. Moments-Generating Function (MGF)

Since the MGF of γgsc is given by Mγgsc(s) =
E〈exp[−s(γ(1) + γ(2))]〉, substituting (1), (4), and (5) in
Mγgsc(s) and using an infinite series representation for the
exponential functions [9, eq. (1.211/1)], similar integrals to
I appear. Hence, using [9, eqs. (3.381/1) and (6.455/2)],
Mγgsc(s) can be obtained in terms of an infinite series repre-

sentation as
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C. Cumulative Distribution Function (CDF)

Applying the inverse Laplace transform in (9), i.e.,
L −1

[
Mγgsc(s)/s; γ

]
, and after some straight-forward math-

ematical simplifications, the CDF of γgsc can be obtained as
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IV. PERFORMANCE EVALUATION AND DISCUSSION

A. Amount of Fading (AoF)

The AoF, can be expressed in terms of the first- and second-
order moments as AF = µgsc(2)/µ2

gsc(1)−1. In Fig. 1, AoF is
plotted as a function of β, for GSC(2, 3) and MRC (L = 3)
and for several values of m. As illustrated, for m = 1 the
AoF of GSC and MRC receivers is almost identical, while
for higher values of m small performance differences are
observed.

B. Average Bit Error Probability (ABEP)

Using (9) and following the MGF-based approach [1] the
ABEP is evaluated. More specifically the ABEP has been
obtained and is plotted in Fig. 2 as a function of the average
input SNR per bit, γb = γ/ log2(M), with M being the
modulation order. Gray-encoded M -ary Phase Shift Keying
(PSK), Binary PSK (BPSK), and Differential BPSK (DBPSK)
are assumed, for GSC(2, 3) and GSC(2, 4), while m = 2
and β = 3. As expected, in all cases, GSC(2, 4) outperforms
GSC(2, 3). It should be noted that the infinite series expres-
sions of the MGF converge rapidly, especially for increased
values of the average input SNR. It is also depicted in Fig. 2
that the theoretical results are in excellent agreement with the
equivalent performance evaluation results obtained by means
of computer simulations, thus verifying the analysis presented
in Section III.
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Fig. 1. AoF vs. shaping parameter β, for several values of m and for
GSC(2, 3) and MRC (L = 3).

Fig. 2. ABEP of DBPSK, BPSK, Gray-encoded 8-PSK and 16-PSK signaling
vs. γb, for GSC(2, 3) and GSC(2, 4).

C. Outage Probability (OP)

The OP is defined as the probability that the GSC output
SNR falls below a given outage threshold γth and can be
obtained as Pout(γth) = Fγgsc(γth). Using (10), Pout(γth) is
plotted in Fig. 3 as a function of the normalized outage thresh-
old, γth/γ, for GSC(2, 3) and GSC(2, 4), different values of
m and β = 3. It is depicted that for low values of γth/γ,
GSC(2, 4) for m = 2 has almost the same performance as
GSC(2, 3) for m = 3. Note again the excellent agreement
between the theoretical and computer simulation results.

Fig. 3. Pout vs. normalized outage threshold, for GSC(2, 3) and GSC(2, 4)
and several values of m and β.
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