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Abstract—The correlated bivariate generalized-𝐾 (𝐾𝐺) dis-
tribution, with not necessarily identical shaping and scaling
parameters, is introduced and studied. This composite distribu-
tion is convenient for modeling multipath/shadowing correlated
fading environments when the correlations between the signal
envelopes and their powers are different. Generic infinite series
expressions are derived for the probability density function
(PDF), the cumulative distribution function (CDF) and the
joint moments. Assuming identical shaping parameters, simpler
expressions for the PDF, CDF and the characteristic function
(CF) are provided, while the joint moments are derived in closed
form. Furthermore, the PDFs of the product and ratio of two
correlated 𝐾𝐺 random variables are obtained. Capitalizing on
these theoretical expressions for the statistical characteristics
of the correlated 𝐾𝐺 distribution, the performance analysis of
various diversity reception techniques, such as maximal ratio
combining (MRC), equal gain combining (EGC) and selection
diversity (SD), over bivariate 𝐾𝐺 fading channels is presented.
For the SD, the outage probability is studied, while for the
MRC and EGC the average bit error probability is obtained.
The proposed analysis is accompanied by numerical results,
clearly demonstrating the usefulness of the theoretical approach
as well as the appropriateness of the 𝐾𝐺 distribution to model
multipath/shadowing fading channels.

Index Terms—Bit error probability, bivariate generalized-𝐾
distribution, correlated multipath-shadowing fading, equal gain
combining (EGC), maximal ratio combining (MRC), outage
probability, product-ratio of correlated RVs, selection diversity.

I. INTRODUCTION

SEVERAL statistical channel models have been used in
the past for the analysis of communication systems in

the presence of the composite propagation environment that
appears when multipath fading and shadowing occur simul-
taneously [1]. Well known and frequently used distributions
for modeling short term fading (multipath) are the Nakagami-
𝑚, Rice, and Rayleigh distributions, while for modeling
long term fading (shadowing) the lognormal distribution is
typically used. It thus comes without surprise that the most
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commonly used distributions for modeling composite propa-
gation environments are the Rayleigh-, Rice-, and Nakagami-
lognormal (NL) [1]–[4]. Unfortunately these lognormal-based
fading/shadowing channel models, due to their complex math-
ematical nature, are rather inconvenient for analytically evalu-
ating the performance of digital communication systems in
the presence of such fading channels. An alternative and
mathematical more convenient channel model, which has been
shown to accurately approximate shadowing phenomena, is
the gamma distribution [5], [6]. By employing the gamma
distribution, new families of composite fading distributions
have been proposed, most notably the 𝐾 and generalized-
𝐾 (𝐾𝐺) distributions [7]–[9]. The main advantage of these
two distributions is their relatively simple mathematical form
allowing an integrated performance analysis of digital commu-
nication systems operating in composite fading environments.
Such propagation environments exist in land-mobile satellite
systems [3], and in metropolitan areas with slow moving
users [1]. Hence, capitalizing on the convenient mathematical
form of the 𝐾𝐺 distribution, the outage probability (OP),
capacity, and several diversity reception techniques over such
fading/shadowing channels have been studied in [10]–[13].

Independent of the channel fading distribution, the received
diversity signals could be correlated resulting in a degradation
of the achievable diversity gain [1]. Typically, such signal
correlation exists in relatively small size mobile terminals,
where usually the distance between the diversity antennas
is small. The open research literature concerning bivariate
(correlated) distributions is quite extensive, e.g., [14]–[22]. In
[14] the bivariate Nakagami-𝑚 was introduced, and in [15]
infinite series representations for the bivariate Rayleigh and
Nakagami-𝑚 were presented. In [16] the bivariate Nakagami-
𝑚 with arbitrary fading parameters was derived, while ex-
pressions for multivariate Rayleigh generated from correlated
Gaussian random variables (RV)s have been obtained in [17].
In the same reference the bivariate case was also introduced
and applied to the performance analysis of maximal ratio
combining (MRC). In [18], the bivariate Rice was presented
and based on this, in [19], the performance of dual-branch
switch diversity receivers was studied. In [20] an infinite
series representation for the bivariate Rice probability density
function (PDF) was presented, while in [22] the multivariate
Weibull distribution originated from Gaussian random pro-
cesses was introduced and studied. As a general observation it
is mentioned that the previously published papers, dealing with
correlated fading channel models, consider only small scale

0090-6778/$20.00 c⃝ 2008 IEEE

Authorized licensed use limited to: National Observatory of Athens. Downloaded on July 11, 2010 at 13:08 from IEEE Xplore.  Restrictions apply. 



2656 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 57, NO. 9, SEPTEMBER 2009

effects despite the fact that the lognormal statistics, and hence
the gamma statistics, become dominant when shadowing is
present.

In the past, the correlated 𝐾-distribution has gained in-
creased interest since it was considered as an appropriate
model for electromagnetic scattering from physical media such
as tropospheric propagation of radio waves, various types of
radar clutter, and phenomenological description of sea clutter
[23]–[25]. For example in [24], the joint PDF and moments
of the bivariate 𝐾-distribution are derived, assuming identical
shaping and scaling parameters. Additionally, in [25], the
power of the clutter amplitudes were considered correlated,
assuming again identical parameters. In [26], extending these
works the bivariate 𝐾 distribution with non identical param-
eters was studied. However, it should be noted that for the
bivariate (correlated) 𝐾𝐺 distribution very few publications
exist in the open technical literature. For example in a recent
paper [27], the PDF at the output of a hybrid diversity
scheme, where MRC receiver is considered at the micro
diversity level and selection diversity (SD) receiver at the
macro diversity level, operating over identical distributed (id)
𝐾𝐺 fading channels was presented. For this special diversity
reception technique, the PDF was derived in infinite series
expressions. All in all, to the best of the authors knowledge, a
thorough and detailed analysis of the bivariate 𝐾𝐺 distribution
and the performance of digital communications systems over
such composite fading channels, is not available in the open
research literature, and thus is the subject of the current work.

Motivated by the preceding, in this paper the most important
statistical properties for the bivariate 𝐾𝐺 fading distribution
with non identical shaping and scaling parameters are pre-
sented and applied to the performance analysis of diversity
receivers. The remainder of the paper is organized as follows.
In Section II, the PDF, cumulative distribution function (CDF),
and characteristic function (CF) are derived in infinite series
representation, while a closed-form expression for the joint
moments is presented. In the same section, the product and
the ratio of two correlated 𝐾𝐺 RVs are also studied. In
Section III, the CDF of SD, the moments generating function
(MGF) of MRC and the CF of equal gain combining (EGC)
operating over correlated 𝐾𝐺 fading channels are derived.
These expressions are used to obtain numerous analytical
performance evaluation results presented in Section IV. The
conclusions of the paper are given in Section V.

II. STATISTICAL CHARACTERISTICS

Let 𝑌ℓ (ℓ = 1, 2) represent the envelopes of Nakagami-𝑚
fading processes, with joint PDF given by [16, eq. (12)]

𝑓𝑌1,𝑌2(𝑦1, 𝑦2) = 4(1− 𝜌𝑁 )𝑚2

∞∑
𝑡=0

(𝑚1)𝑡𝜌
𝑡
𝑁

𝑡!

× 1𝐹1

[
𝑚2 −𝑚1;𝑚2 + 𝑡;

𝜌𝑁 𝑚2 𝑦
2
2

𝑊2(1− 𝜌𝑁 )

]

×
2∏

ℓ=1

[
𝑚ℓ

𝑊ℓ(1 − 𝜌𝑁)

]𝑚ℓ+𝑡 𝑦
2(𝑚ℓ+𝑡)−1
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exp

[
− 𝑚ℓ 𝑦

2
ℓ

(1− 𝜌𝑁 )𝑊ℓ

]
(1)

where 𝑚ℓ ≥ 1/2 is the Nakagami-𝑚 shaping parameter,
𝜌𝑁 is the power correlation coefficient between 𝑌 2

1 and

𝑌 2
2 , and 𝑊ℓ is the average fading power 𝑊ℓ = 𝔼⟨𝑌 2

ℓ ⟩,
with 𝔼⟨⋅⟩ denoting expectation. Furthermore, 1𝐹1(⋅; ⋅; ⋅) is the
confluent hypergeometric function [28, eq. (9.210/1)], (⋅)𝑝
is the Pochhammer’s symbol [28, p. xliii], with 𝑝 ∈ ℕ,
and Γ(⋅) is the gamma function [28, eq. (8.310/1)]. When
multipath fading is superimposed on shadowing, the powers
of the multipath components, 𝑊ℓ, randomly vary1, modeled
in the following analysis with the gamma distribution [1,
Chapter 2]. Furthermore, by considering correlation between
the RVs 𝑊1 and 𝑊2, and by using [16, eq. (12)], the PDF
of the bivariate distribution that governs 𝑊1 and 𝑊2 can be
mathematically expressed as

𝑓𝑊1,𝑊2(𝑊1,𝑊2) = (1− 𝜌𝐺)
𝑘2

∞∑
ℎ=0
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]{ 2∏
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𝑊−1
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exp

[
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(1− 𝜌𝐺)Ωℓ

]}
(2)

where 𝑘ℓ > 0 is the shaping parameter, Ωℓ is the aver-
age power, and 𝜌𝐺 is the correlation coefficient between
𝑊1 and 𝑊2. By using different values of 𝑘ℓ, (2) approximates
several shadowing conditions, e.g., from severe shadowing
(𝑘ℓ → 0), to no shadowing (𝑘ℓ → ∞). The bivariate 𝐾𝐺

PDF can be obtained (see Appendix for details) as follows

𝑓𝑋1,𝑋2(𝑥1, 𝑥2) =
∞∑

𝑡,ℎ,𝑏,𝑑=0

16 (𝑚2 −𝑚1)𝑏 (𝑘2 − 𝑘1)𝑑
Γ (𝑚2 + 𝑡+ 𝑏) Γ (𝑘2 + ℎ+ 𝑑)

× (𝑚1)𝑡 (𝑘1)ℎ 𝜌
𝑡+𝑏
𝑁 𝜌ℎ+𝑑𝐺

𝑡!ℎ! 𝑏! 𝑑! Γ (𝑚1 + 𝑡) Γ (𝑘1 + ℎ)

×

[
2∏
ℓ=1

(√
𝑚ℓ/Ωℓ𝑥ℓ

)𝜁ℓ
𝐾𝜓ℓ

(
2
√

𝑚ℓ/𝜎ℓ𝑥ℓ

)]
(1− 𝜌𝐺)

𝜉1/2+𝑡+ℎ (1− 𝜌𝑁 )
𝜉2/2+𝑡+ℎ 𝑥1𝑥2

(3)

where

𝜎ℓ = (1− 𝜌𝑁 ) (1− 𝜌𝐺)Ωℓ,

𝜉ℓ = 𝑘1 + (−1)ℓ𝑘2 +𝑚1 + (−1)ℓ+1𝑚2 + 𝑏+ 𝑑,

𝜓ℓ = 𝑘ℓ + ℎ−𝑚ℓ − 𝑡+ (ℓ − 1)(𝑑− 𝑏),

𝜁ℓ = 𝑘ℓ +𝑚ℓ + 𝑡+ ℎ+ (ℓ − 1)(𝑏+ 𝑑)

with 𝐾𝜈(⋅) being the second kind modified Bessel function
of order 𝜈 [28, eq. (8.407/1)]. For Ω1 = Ω2, 𝑘1 = 𝑘2,
and 𝑚1 = 𝑚2 = 1, (3) simplifies to a previously known
expression, i.e., the PDF of the correlated 𝐾-distribution with
identical parameters [25, eq. (29)]. Assuming identical shaping
parameters, i.e., 𝑚 = 𝑚1 = 𝑚2 and 𝑘 = 𝑘1 = 𝑘2, using [30,
eq. (19)], [28, eq. (8.445)] and following a similar procedure
as for deriving (3), a simplified expression for 𝑓𝑋1,𝑋2(𝑥1, 𝑥2)

1This type of shadowing is also referred to as “multiplicative shadow
fading" [29].
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can be obtained as

𝑓𝑋1,𝑋2(𝑥1, 𝑥2) =
16

Γ(𝑚)Γ(𝑘)

∞∑
𝑏,𝑑=0

𝑚𝜉 𝜌𝑏𝑁 𝜌𝑑𝐺
Γ (𝑚+ 𝑏) Γ (𝑘 + 𝑑)

×

[
2∏
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(
𝑥ℓ/

√
Ωℓ

)𝜉
𝐾𝜓

(
2
√
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)]
𝑏!𝑑! (1− 𝜌𝑁 )

𝑘+𝑏+𝑑
(1− 𝜌𝐺)

𝑚+𝑏+𝑑
𝑥1𝑥2

(4)

where 𝜉 = 𝑘 + 𝑚 + 𝑏 + 𝑑, 𝜓 = 𝑘 + 𝑑 − 𝑚 − 𝑏. For Ω1 =
Ω2, 𝑚 = 1, and 𝜌𝐺 = 0, (4) further simplifies to another
previously known expression, i.e., the special case of the PDF
of the correlated 𝐾 distribution with identical parameters [24,
eq. (12)].

In the following subsections, important statistical properties
of the correlated 𝐾𝐺 distribution, namely the product mo-
ments, the cumulative distribution and characteristic functions,
as well as, the PDFs of the product and ratio of two correlated
𝐾𝐺 RVs, will be presented.

A. Product Moments

From the definition of the product moments of 𝑋1 and 𝑋2

of order 𝑛1 + 𝑛2, 𝜇𝑋1,𝑋2(𝑛1, 𝑛2) ≜ 𝔼⟨𝑋𝑛1
1 𝑋𝑛2

2 ⟩ [31, eq.
(7.18)], using (3) and by applying first [28, eq. (6.561/16)] and
then the definition of the generalized hypergeometric function
[28, eq. (9.14/1)], the following expression for 𝜇𝑋1,𝑋2(𝑛1, 𝑛2)
can be obtained

𝜇𝑋1,𝑋2(𝑛1, 𝑛2) =
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2

×
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2
(𝑘2 + 𝑑)𝑛2

2

(1− 𝜌𝐺)−(𝑛1+𝑛2)/2−𝑘2(1− 𝜌𝑁 )−(𝑛1+𝑛2)/2−𝑚2

× 𝜌𝑏𝑁𝜌𝑑𝐺
𝑏! 𝑑!

2𝐹1

(
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2
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2
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)
× 2𝐹1

(
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2
,𝑚2 + 𝑏+

𝑛2

2
;𝑚2 + 𝑏; 𝜌𝑁

)
(5)

where 2𝐹1 (⋅, ⋅; ⋅; ⋅) is the Gauss hypergeometric function [28,
eq. (9.100)]. It is noted that for the special case of identi-
cal shaping parameters the above equation simplifies to the
following closed-form expression

𝜇𝑋1,𝑋2(𝑛1, 𝑛2) =

[
2∏
ℓ=1

Γ (𝑚+ 𝑛ℓ/2) Γ (𝑘 + 𝑛ℓ/2)Ω
𝑛ℓ/2
ℓ

Γ(𝑚) Γ(𝑘)𝑚𝑛ℓ/2

]

× 2𝐹1

(
−𝑛1

2
,−𝑛2

2
;𝑚; 𝜌𝑁

)
2𝐹1

(
−𝑛1

2
,−𝑛2

2
; 𝑘; 𝜌𝐺

)
.

(6)

By definition, the 𝐾𝐺 power correlation coefficient between
𝑋2

1 and 𝑋2
2 is given by [31, eq. (7.8)]

𝜌 ≜ 𝔼⟨𝑋2
1𝑋

2
2 ⟩ − 𝔼⟨𝑋2

1 ⟩𝔼⟨𝑋2
2 ⟩√

𝔼⟨𝑋4
1 ⟩ − 𝔼2⟨𝑋2

1 ⟩
√

𝔼⟨𝑋4
2 ⟩ − 𝔼2⟨𝑋2

2 ⟩
. (7)

Using [8, eq. (7)]

𝔼⟨𝑋𝑛𝑖

𝑖 ⟩ =
(
Ω𝑖

𝑚

)𝑛𝑖/2 Γ (𝑘 + 𝑛𝑖/2)Γ (𝑚+ 𝑛𝑖/2)

Γ(𝑚) Γ(𝑘)
(8)

and (6) in (7), after some straight forward mathematical
manipulations the following closed-form expression for 𝜌 is
obtained

𝜌 =
(𝑚+ 𝜌𝑁 )(𝑘 + 𝜌𝐺)−𝑚𝑘

(𝑘 + 1)(𝑚+ 1)−𝑚𝑘
. (9)

It is noted that the above expression relates 𝜌 with the
correlation coefficients of Nakagami-𝑚, 𝜌𝑁 , and gamma, 𝜌𝐺,
bivariate distributions.

B. Cumulative Distribution Function (CDF)

The joint CDF of 𝑋1 and 𝑋2 is given by ℱ𝑋1,𝑋2(𝑥1, 𝑥2) =∫ 𝑥1

0

∫ 𝑥2

0 𝑓𝑋1,𝑋2(𝑥1, 𝑥2)𝑑𝑥2𝑑𝑥1 [31, eq. (6.6)]. Substituting
(3) in this expression, representing 𝐾𝜈(⋅) as in [32, eq.
(03.04.26.0006.01)] and using [33, eq. (26)] the following
generic expression for the joint CDF can be obtained

ℱ𝑋1,𝑋2(𝑥1, 𝑥2) =
∞∑

𝑡,ℎ,𝑏,𝑑=0
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𝑡!ℎ! 𝑏! 𝑑! Γ (𝑚1) Γ (𝑚2 + 𝑡+ 𝑏) Γ (𝑘1) Γ (𝑘2 + ℎ+ 𝑑)

×
{

2∏
ℓ=1

(√
𝑚ℓ

Ωℓ
𝑥ℓ

)𝜁ℓ
𝒢2,1
1,3

[
𝑚ℓ 𝑥

2
ℓ

𝜎ℓ

∣∣∣∣ 1−𝜁ℓ/2
𝜓ℓ/2,−𝜓ℓ/2,−𝜁ℓ/2

]}

(10)

where 𝒢𝑚,𝑛
𝑝,𝑞 [⋅∣⋅] is the Meijer’s 𝐺-function [28, eq. (9.301)].

Furthermore, for the identical shaping parameters case, i.e.,
using (4), and with the aid of [32, eq. (03.04.21.0007.01)],
(10) simplifies to

ℱ𝑋1,𝑋2(𝑥1, 𝑥2) =
𝜋2

Γ(𝑚)Γ(𝑘)

∞∑
𝑏,𝑑=0

𝑚2(𝑚+𝑏) csc2 (𝜋𝜓)

Γ(𝑚+ 𝑏)Γ(𝑘 + 𝑑)

× 𝜌𝑏𝑁 𝜌𝑑𝐺 (1− 𝜌𝐺)
𝑘−2(𝑚+𝑏)

𝑏! 𝑑! (1− 𝜌𝑁 )
𝑚+2𝑏

[
2∏

ℓ=1

(
𝑥2
ℓ

Ωℓ

)𝑚+𝑏

𝒬
(
𝑚𝑥2

ℓ

𝜎ℓ

)]

(11)

where

𝒬(𝑥) = Γ(𝑚+ 𝑏)𝑃𝐹𝑄 (𝑚+ 𝑏; 1− 𝜓,𝑚+ 𝑏+ 1;𝑥)

− 𝑥𝜓Γ(𝑘 + 𝑑)𝑃𝐹𝑄 (𝑘 + 𝑑;𝜓 + 1, 𝑘 + 𝑑+ 1;𝑥)

and 𝑃𝐹𝑄 (⋅; ⋅; ⋅) is the regularized generalized hypergeometric
function [32, eq. (07.32.02.0001.01)].

C. Characteristic Function (CF)

Since the joint CF of 𝑋1 and 𝑋2 is given by
Φ𝑋1,𝑋2(𝑠1, 𝑠2) = 𝔼⟨exp [−𝑗 (𝑠1𝑋1 + 𝑠2𝑋2)]⟩ [31, eq.
(7.23)], where 𝑗 =

√−1, and by using (4) and [28, eq.
(6.621/3)], the following expression for the joint CF can be
obtained

Φ𝑋1,𝑋2(𝑠1, 𝑠2) =
𝜋 (1− 𝜌𝑁 )𝑚 (1− 𝜌𝐺)

𝑘

Γ(𝑚)Γ(𝑘)

∞∑
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Γ (𝜉 + 1/2)

× 2𝐹1

[
2(𝑘 + 𝑑), 𝜓 +

1

2
; 𝜉 +

1

2
;
𝑗𝑠ℓ

√
𝜎ℓ − 2

√
𝑚

𝑗𝑠ℓ
√
𝜎ℓ + 2

√
𝑚

]}
.

(12)
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D. Product and Ratio of Two Correlated 𝐾𝐺 RVs

From the statistical point of view, in order to present a
thorough analysis of the bivariate 𝐾𝐺 distribution, the PDF
of the product and the ratio of two correlated 𝐾𝐺 RVs will
be studied.

1) Product: Let 𝒜 denote a RV defined as
𝒜 ≜ 𝑋1𝑋2. The PDF of 𝒜 is given by
𝑓𝒜(𝑥) =

∫∞
0 𝑓𝑋1,𝑋2 (𝑥1, 𝑥/𝑥1) /∣𝑥1∣𝑑𝑥1, [31, eq. (6.74)],

with ∣ ⋅ ∣ denoting absolute value. Substituting (4) in
this expression, representing again 𝐾𝜈(⋅) as in [32, eq.
(03.04.26.0006.01)], using [33, eq. (21)] and after some
mathematical manipulations, the following expression for
𝑓𝒜(𝑥) can be obtained

𝑓𝒜(𝑥) =
2

Γ(𝑚)Γ(𝑘)

∞∑
𝑏,𝑑=0

𝑚𝜉 𝜌𝑏𝑁 𝜌𝑑𝐺
Γ (𝑚+ 𝑏) Γ (𝑘 + 𝑑) 𝑏!𝑑!

× (1− 𝜌𝐺)
−𝑚−𝑏−𝑑

𝑥𝜉−1

(1− 𝜌𝑁 )𝑘+𝑏+𝑑 (Ω1Ω2)
𝜉/2

× 𝒢0,4
4,0

[
𝜎1 𝜎2

(𝑚𝑥)2

∣∣∣∣ 1−𝜓/2,1+𝜓/2,1−𝜓/2,1+𝜓/2−

]
.

(13)

2) Ratio: Let ℬ denote a RV defined as ℬ ≜ 𝑋1/𝑋2. The
PDF of ℬ is given by 𝑓ℬ(𝑥) =

∫∞
0

∣𝑥2∣𝑓𝑋1,𝑋2(𝑥2𝑥, 𝑥2)𝑑𝑥2

[31, eq. (6.43)]. Substituting (4) in this expression and using
[28, eq. (6.576/4)], the following expression for 𝑓ℬ(𝑥) can be
obtained

𝑓ℬ(𝑥) =
2

Γ(𝑚)Γ(𝑘)

∞∑
𝑏,𝑑=0

𝜌𝑏𝑁 𝜌𝑑𝐺 (1− 𝜌𝑁 )
𝑚
(1− 𝜌𝐺)

𝑘

𝑏!𝑑!Ω−𝑘−𝑑
1 Ω𝑘+𝑑

2 Γ [2𝜉]

× Γ [2 (𝑘 + 𝑑)] Γ [2 (𝑚+ 𝑏)] Γ2 (𝜉)

Γ (𝑚+ 𝑏) Γ (𝑘 + 𝑑)

× 𝑥−2(𝑘+𝑑)−1
2𝐹1

[
2 (𝑘 + 𝑑) , 𝜉; 2𝜉; 1− Ω1

Ω2
𝑥−2

]
.

(14)

It should be noted that the last two expressions are useful
for several communication theory research areas such as multi-
hop transmissions [34], and diversity reception techniques
[35]. For example in [35], the product of generalized-gamma
RVs has been used to obtain upper bounds for the OP
and average bit error probability (ABEP) of EGC diversity
receivers operating over such fading channels.

III. DUAL BRANCH DIVERSITY RECEIVERS STATISTICS

Let us consider a dual-branch diversity receiver operating
over correlated 𝐾𝐺 fading/shadowing channels. The equiva-
lent baseband received signal at the ℓth (ℓ = 1 and 2) antenna
is expressed as 𝑧ℓ = 𝑠ℎℓ + 𝑛ℓ, where 𝑠 is the transmitted
complex symbol with energy 𝐸𝑠 = 𝔼⟨∣𝑠∣2⟩, 𝑛ℓ is the complex
additive white Gaussian noise (AWGN) with single sided
power spectral density 𝑁0 assumed identical to both branches,
and ℎℓ is the channel complex gain, i.e., 𝑋ℓ = ∣ℎℓ∣. Similar
to other works, e.g., [1, Chapter 9],[22], the 𝑛ℓ’s are assumed
to be uncorrelated. Furthermore, by considering ideal phase
estimation, only the distributed fading envelope affects the
received signal. The instantaneous signal-to-noise ratio (SNR)
per symbol at the ℓth input branch, 𝛾ℓ, and the corresponding

average SNR, 𝛾ℓ, can be expressed as

𝛾ℓ = 𝑋2
ℓ

𝐸𝑠

𝑁0
(15a)

𝛾ℓ = 𝔼⟨𝑋2
ℓ ⟩

𝐸𝑠

𝑁0
= Ωℓ 𝑘

𝐸𝑠

𝑁0
(15b)

respectively. In the following subsections, important statistical
metrics for the diversity receivers under consideration, namely
SD, MRC and EGC, will be presented.

A. Selection Diversity (SD)

Since the instantaneous SNR at the output of the SD
receiver is 𝛾sd = max (𝛾1, 𝛾2) its CDF can be expressed as
ℱ𝛾sd(𝛾) = ℱ𝛾1,𝛾2(𝛾, 𝛾) [31, eq. (6.54)]. Using this equation
and by making a change of variables in (11), of the form given
in (15), ℱ𝛾sd(𝛾) can be expressed as

ℱ𝛾sd(𝛾) =
𝜋2

Γ(𝑚)Γ(𝑘)

∞∑
𝑏,𝑑=0

(𝑚𝑘)2(𝑚+𝑏) csc2 (𝜋𝜓) 𝜌𝑏𝑁 𝜌𝑑𝐺
Γ(𝑚+ 𝑏)Γ(𝑘 + 𝑑) 𝑏! 𝑑!

× (1− 𝜌𝐺)
𝑘−2(𝑚+𝑏)

(1− 𝜌𝑁 )𝑚+2𝑏

[
2∏
ℓ=1

(
𝛾

𝛾ℓ

)𝑚+𝑏

𝒬
(
𝑚𝑘𝛾

𝜎𝛾ℓ

)]

(16)

where 𝜎𝛾ℓ = (1− 𝜌𝑁) (1− 𝜌𝐺) 𝛾ℓ.
The OP is defined as the probability that the SD output

SNR falls below a predetermined outage threshold 𝛾th. By
employing (16), the OP of dual-branch SD can be obtained
by replacing 𝛾 with 𝛾th in (16) as 𝑃out = ℱ𝛾sd(𝛾th).

B. Maximal Ratio Combining (MRC) and Equal Gain Com-
bining (EGC)

1) Moments of the Output SNR: The instantaneous output
SNR per symbol of EGC and MRC receivers can be expressed
as

𝛾out = 𝜃𝛿,1
𝐸𝑠

𝑁0

(
2∑
𝑖=1

𝑋−𝛿+2
𝑖

)𝛿+1

(17)

where 𝜃𝛿,𝑎 = (2−𝑎 − 1) 𝛿 + 1, 𝑎 ∈ ℕ. Clearly from (17) for
𝛿 = 0 and 𝛿 = 1, 𝛾out represents the output for MRC and
EGC diversity receivers, respectively. The 𝑛th-order moment
of 𝛾out can be obtained by averaging 𝛾𝑛out, i.e., 𝜇𝑛 = 𝔼⟨𝛾𝑛out⟩,
yielding

𝜇𝑛 = 𝜃𝛿,𝑛

(
𝐸𝑠

𝑁0

)𝑛
𝔼

〈(
𝑋−𝛿+2

1 +𝑋−𝛿+2
2

)𝑛(𝛿+1)
〉
. (18)

Hence, using the binomial identity [28, eq. (1.111)], making
a change of variables in (6) and after some straight forward
mathematical manipulations, 𝜇𝑛 at the output of the MRC and
EGC diversity receivers can be obtained in closed form as

𝜇𝑛 = 𝜃𝛿,𝑛

𝑛(𝛿+1)∑
𝑖=0

(
𝑛(𝛿 + 1)

𝑖

)
Γ (𝑘 + 𝑛− 𝑖𝛿) Γ (𝑚+ 𝑛− 𝑖𝛿)

Γ(𝑚)2 Γ(𝑘)2 (𝑘𝑚)
𝑛

× Γ (𝑚+ 𝑖𝛿) Γ (𝑘 + 𝑖𝛿) 2𝐹1 (𝑚+ 𝑖𝛿,𝑚+ 𝑛− 𝑖𝛿;𝑚; 𝜌𝑁)

(1− 𝜌𝑁 )
−𝑚−𝑛

(1− 𝜌𝐺)
−𝑘−𝑛

× 𝛾 𝑖𝛿
1 𝛾 𝑛−𝑖𝛿

2 2𝐹1 (𝑘 + 𝑖𝛿, 𝑘 + 𝑛− 𝑖𝛿; 𝑘; 𝜌𝐺)
(19)

where 𝑖𝛿 = 𝑖/(𝛿 + 1).
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TABLE I
NUMBER OF TERMS, 𝑁𝜏 , FOR CONVERGENCE OF (16) IN RANGE OF ± 0.5%.

𝛾 = −5 dB 𝛾 = 0 dB 𝛾 = 5 dB

𝜌𝑁 = 0.2

𝜌𝑁 = 0.7

𝜌𝐺 = 0.2

𝜌𝐺 = 0.7

𝜌𝐺 = 0.2

𝜌𝐺 = 0.7

𝑘 = 1, 𝑚 = 1

𝑘 = 3, 𝑚 = 4

𝑘 = 1, 𝑚 = 1

𝑘 = 3, 𝑚 = 4

𝑘 = 1, 𝑚 = 1

𝑘 = 3, 𝑚 = 4

𝑘 = 1, 𝑚 = 1

𝑘 = 3, 𝑚 = 4

2

3

4

14

7

14

9

17

2

5

7

20

9

20

11

22

3

5

11

23

11

22

14

25

By employing (19) useful performance metrics, including
the average output SNR and the amount of fading (AF), for
the EGC and MRC receivers can be derived in closed form.
The AF is unified measure of the fading severity of a particular
channel model [1]. As well known, using the first and second
order moments of (19), the AF can be expressed in closed
form as AF = 𝜇2/𝜇

2
1 − 1.

2) Moments Generating and Characteristic Functions:
a) Maximal Ratio Combining (MRC): Using (15) to

make a change of variables in (4), the bivariate 𝐾𝐺 PDF of
𝛾ℓ can be expressed as

𝑓𝛾1,𝛾2(𝛾1, 𝛾2) =
4

Γ(𝑚)Γ(𝑘)

∞∑
𝑏,𝑑=0

(𝑚𝑘)𝜉 𝜌𝑏𝑁 𝜌𝑑𝐺
Γ (𝑚+ 𝑏) Γ (𝑘 + 𝑑)

× (1− 𝜌𝐺)
−𝑚−𝑏−𝑑

𝑏!𝑑! (1− 𝜌𝑁 )
𝑘+𝑏+𝑑

[
2∏
ℓ=1

𝛾
𝜉/2−1
ℓ

𝛾
𝜉/2
ℓ

𝐾𝜓

(
2

√
𝑘𝑚

𝜎𝛾ℓ
𝛾
1/2
ℓ

)]
.

(20)

The instantaneous SNR at the output of the MRC receiver
is 𝛾mrc = 𝛾1 + 𝛾2. Since, the MGF of 𝛾mrc is defined as
ℳ𝛾mrc(𝑠) ≜ ℳ𝛾1,𝛾2(𝑠, 𝑠), using (20), with the aid of [28,
eq. (6.643/3)] and after some straight forward simplifications
ℳ𝛾mrc(𝑠) is obtained as

ℳ𝛾mrc(𝑠) =
1

Γ(𝑚)Γ(𝑘)

∞∑
𝑏,𝑑=0

(𝑚𝑘)𝜉−1 Γ(𝑘 + 𝑑)

𝑏! 𝑑! (1− 𝜌𝑁 )
𝑘+𝑏+𝑑−1

× Γ(𝑚+ 𝑏) 𝜌𝑏𝑁 𝜌𝑑𝐺 𝑠−(𝜉−1)

(1− 𝜌𝐺)
𝑚+𝑏+𝑑−1

(𝛾1𝛾2)
(𝜉−1)/2

×
[

2∏
ℓ=1

exp

(
𝑚𝑘

2𝑠𝜎𝛾ℓ

)
W−(𝜉−1)/2,𝜓/2

(
𝑚𝑘

𝑠𝜎𝛾ℓ

)]
(21)

where W𝜆,𝜇 (⋅) is the Whittaker function [28, eq. (9.220)].
Using (21) and following the MGF-based approach, the

ABEP of the MRC output SNR can be readily evaluated
for a variety of modulation schemes, e.g., phase shift
keying (PSK) and quadrature amplitude modulation (QAM),
[1]. More specifically, the ABEP can be calculated:
i) directly for non-coherent differential binary PSK
(DBPSK), i.e., 𝑃be = 0.5ℳ𝛾mrc(1); and ii) via numerical
integration for Gray encoded 𝑀 -ary PSK, i.e., 𝑃be =

[1/ (𝜋 log2 𝑀)]
∫ 𝜋−𝜋/𝑀
0

ℳ𝛾mrc

[
log2 𝑀 sin2 (𝜋/𝑀) / sin2 𝜙

]
𝑑𝜙.

b) Equal Gain Combining (EGC): The instantaneous
output signal envelope of a dual-branch EGC receiver is
given by 𝑋egc = (𝑋1 +𝑋2)

√
𝐸𝑠/(2𝑁0) and the CF

of 𝑋1 + 𝑋2 can be derived using [31, eq. (7.29)] as
Φ𝑋1+𝑋2(𝑠) = Φ𝑋1,𝑋2(𝑠, 𝑠). Thus, using Φ𝑋egc(𝑠) =

Φ𝑋1+𝑋2

(
𝑠
√

𝐸𝑠/(2𝑁0)
)

in conjunction with (12), the CF of
𝑋egc, is derived as

Φ𝑋egc(𝑠) =
𝜋 (1− 𝜌𝑁 )

𝑚
(1− 𝜌𝐺)

𝑘

Γ(𝑚)Γ(𝑘)

∞∑
𝑏,𝑑=0

24(𝜓+1)

𝑏! 𝑑!

× (2𝑘𝑚)2(𝑘+𝑑) 𝜌𝑏𝑁𝜌𝑑𝐺 Γ [2(𝑚+ 𝑏)]2 Γ [2(𝑘 + 𝑑)]2

Γ(𝑚+ 𝑏)Γ(𝑘 + 𝑑) Γ (𝜉 + 1/2)
2

×

⎧⎨
⎩

2∏
ℓ=1

2𝐹1

[
2(𝑘 + 𝑑), 𝜓 + 1

2 ; 𝜉 +
1
2 ;

𝑗𝑠
√
𝜎𝛾ℓ

−2
√
2𝑘𝑚

𝑗𝑠
√
𝜎𝛾ℓ

+2
√
2𝑘𝑚

]
(
𝑗𝑠
√
𝜎𝛾ℓ + 2

√
2𝑘𝑚

)2(𝑘+𝑑)
⎫⎬
⎭ .

(22)

Using (22) and employing the Parseval’s theorem ap-
proach [36], the average symbol error rate (ASER) can
be studied. Hence, the ASER of several 𝑀 -ary modula-
tion schemes with predetection EGC is given by 𝑃𝑠 =
(1/𝜋)

∫∞
0

ℜ{𝐺∗(𝑠)Φ𝑋egc(𝑠)
}
𝑑𝑠, where 𝐺∗(𝑠) is the com-

plex conjugate of the Fourier transform of the conditional
error probability. Although, in principal using the Parse-
val’s approach the ASER can be studied for many modu-
lation schemes, here we focus on DBPSK, where 𝐺(𝑠) =
0.5
[
(
√
𝜋/2) exp

(−𝑠2/4
)
+ 𝑗 (𝑠/2) 1𝐹1

(
1; 3/2;−𝑠2/4

)]
.

IV. NUMERICAL RESULTS AND DISCUSSION

In this section various numerical performance evaluation
results, which have been obtained using the previous analysis
will be presented. In particular, the results for the three
diversity receiver structures, employing various modulation
schemes and under different correlated 𝐾𝐺 fading and shad-
owing conditions will be presented and analyzed.

Firstly, the rate of convergence of the previously derived
infinite series expressions has been investigated. In Table I,
the minimum number of terms 𝑁𝜏 , i.e., after the truncation
of the infinite series, needed in (16) to achieve an accuracy
better than ±0.5% is summarized. In this table, the number
of terms versus 𝛾2 are presented for several values of 𝜌𝑁 , 𝜌𝐺

2For the shake of simplicity it is assumed 𝛾1 = 𝛾2 = 𝛾.
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Fig. 1. SD performance: 𝑃out versus 𝛾th/𝛾 for several values of 𝜌𝑁 , 𝜌𝐺
and 𝑚, 𝑘.

and 𝑚, 𝑘. Clearly, 𝑁𝜏 increases as 𝛾 and/or 𝜌𝑁 , 𝜌𝐺 and/or
𝑚, 𝑘 increase, with the latter ones having a more significant
impact on the number of terms. It should be noted that 𝑁𝜏

is smaller as compared to the rate of convergence of other
infinite series representation distributions, e.g., the bivariate
Rayleigh, Nakagami-𝑚 [15], Rice [20], and Weibull [22].
For the other infinite series equations also used to obtain
performance results, i.e., (21) (for MRC ABEP) and (22) (for
EGC ABEP), similar rates of convergence have been observed.

In Figs. 1 and 2, the OP of a SD receiver is plotted
as a function of the normalized outage threshold, 𝛾th/𝛾,
for several values of 𝜌𝑁 , 𝜌𝐺 and 𝑚, 𝑘. In all cases it is
depicted that as 𝜌𝑁 , 𝜌𝐺 decrease and/or 𝑚, 𝑘 increase, the
OP performance improves. In Fig. 1, it is interesting to
note that for relatively good channel fading and shadowing
conditions, i.e., for 𝑚 = 3 and 𝑘 = 4, the two middle
lines are very close to each other and the system performance
is slightly better for 𝜌𝑁 = 0.1, 𝜌𝐺 = 0.6 as compared to
the case for 𝜌𝑁 = 0.6, 𝜌𝐺 = 0.1. On the contrary when
the channel is subject to severe shadowing, i.e., for 𝑘 = 1,
the performance is better when 𝜌𝑁 = 0.6, 𝜌𝐺 = 0.1. This
happens because there is an increased diversity gain due to
the low correlation of the powers, i.e., 𝜌𝐺 = 0.1, which
diminishes the consequences of shadowing. In Fig. 2, it is
interesting to note that for pre-Rayleigh fading conditions,
i.e., for 𝑚 = 0.5, the system performance is not acceptable,
even for light shadowing conditions, i.e., 𝑘 = 5. However, the
performance improves significantly when small scale fading
effects decrease, i.e., for 𝑚 = 3.

In Fig. 3, the ABEP of DBPSK signals with MRC and EGC
diversity receivers is plotted as a function of the first branch
average input SNR per bit3 𝛾1,𝑏 = 𝛾1. These receivers operate

3Similar to [37], when non identical scaling parameters are considered, it
is assumed that 𝛾2 = 𝛾1/

√
𝑒.

Fig. 2. SD performance: 𝑃out versus 𝛾th/𝛾 for several values of 𝑘,𝑚, with
and without correlation.

in id and non id 𝐾𝐺 fading channels with 𝜌𝑁 = 𝜌𝐺 = 0.2 or
0.7. As compared to non id and EGC, the ABEP performance
is slightly better when id fading conditions and MRC diversity
reception are employed, respectively. Moreover, the ABEP
performance clearly improves when the correlations decrease.
Finally, in Fig. 4, the ABEP performance of MRC diversity
receiver is plotted as a function of the average input SNR
per bit, 𝛾𝑏 = 𝛾/ log2 𝑀 , for Gray encoded 𝑀 -ary PSK
(𝑀 = 2, 8, 16) for several values of 𝑚, 𝜌𝑁 = 𝜌𝐺 = 0.3 and
𝑘 = 2. As expected, in all cases the best ABEP performance
is observed for BPSK signals, whereas the worst performance
is for 16-PSK signals. It is interesting to note that for pre-
Rayleigh multipath conditions, e.g., 𝑚 = 0.5, the ABEP
performance is very bad, even for increased values of the
average input SNR per bit, i.e., for 𝛾𝑏 = 20.

V. CONCLUSIONS

In this paper the arbitrary correlated 𝐾𝐺 distribution with
non identical parameters was introduced and studied. The
most important statistical metrics of this composite fad-
ing/shadowing channel model, namely the PDF, CDF, joint
moments, and CF have been presented. The obtained ex-
pression for the PDF generalize previous reported results.
Furthermore, the PDFs of the product and the ratio of two
correlated 𝐾𝐺 RVs have been also derived. Capitalizing on the
theoretical results, the performance of dual-branch selection,
MRC and EGC diversity receivers operating over bivariate
𝐾𝐺 fading channels, has been analyzed. Several numerically
evaluated results were presented, indicating the influence of
fading, shadowing and correlation to the performance of the
diversity receivers.
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Fig. 3. MRC and EGC performance for DBPSK signals: ABEP versus 𝛾1
for id and non id fading conditions and 𝜌𝑁 , 𝜌𝐺 = 0.2 or 0.7.

APPENDIX

DERIVATION OF (3)

Since 𝑊ℓ’s are considered as RVs, (1) is conditioned on
𝑊ℓ’s and the total probability theorem may be applied [31, eq.
(7.44)]. Hence, the combined fading and shadowing bivariate
𝐾𝐺 distribution can be obtained by averaging (1) with respect
to 𝑊ℓ’s as

𝑓𝑋1,𝑋2(𝑥1, 𝑥2) =

∞∫
0

∞∫
0

𝑓𝑌1∣𝑊1,𝑌2∣𝑊2
(𝑦1∣𝑊1, 𝑦2∣𝑊2)

× 𝑓𝑊1,𝑊2(𝑊1,𝑊2)𝑑𝑊2𝑑𝑊1.

(A-1)

Substituting (1) and (2) in (A-1), integrals of the following
form appear

ℐ =

∞∫
0

𝑦𝛼 exp
(−𝐴1𝑦

−1 −𝐴2𝑦
)

× 1𝐹1(𝐵1;𝐵2; 𝜌𝑁 𝐴1 𝑦
−1)1𝐹1(𝐶1;𝐶2; 𝜌𝐺𝐴2 𝑦)𝑑𝑦

(A-2)

where 𝐴𝑖, 𝐵𝑖, 𝐶𝑖(for 𝑖 = 1, 2) ∈ ℜ+ and 𝑎 ∈ ℜ. Such inte-
grals are very difficult, if not impossible, to be solved in closed
from. An alternative and mathematically more convenient
approach would be to employ the infinite series representation
of the form [28, eq. (9.210/1)]

1𝐹1(𝑎; 𝑐; 𝑦) =

∞∑
𝑏=0

(𝑎)𝑏𝑦
𝑏

(𝑐)𝑏𝑏!
. (A-3)

With the aid of (A-3) and using [28, eq. (3.471/9)], the
integrals in (A-2) can be solved, and hence after some math-
ematical manipulations, (3) is obtained.
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