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Abstract—In this paper the Shannon capacity of generalized-
gamma (GG) fading channels is studied, under different adaptive
transmission techniques. The GG is a generic distribution, which
is considered to be appropriate for modeling fading/shadowing
phenomena. Hence, assuming single (i.e., no diversity), as well
as, dual-branch selection diversity receivers, novel expressions
for the capacity under three adaptive transmission policies,
namely optimal power and rate adaptation (OPRA), channel
inversion with fixed rate (CIFR) and truncated CIFR (TIFR),
are obtained. The derived expressions are in closed form and
generalize previously presented results. The proposed analysis
is accompanied by numerical results, clearly demonstrating the
usefulness of the theoretical approach.

Index Terms— Adaptive transmission, fading/shadowing chan-
nels, generalized-Gamma distribution, land-mobile satellite chan-
nels, selection diversity receivers, Shannon capacity.

I. INTRODUCTION

The capacity in fading channels is, in general, a complex
expression in terms of the channel variations in time and/or
frequency, depending also upon the transmitter and/or receiver
knowledge of the channel side information (CSI). For the
various CSI assumptions that have been proposed, several
definitions of the channel capacity have been provided. These
definitions depend on the different employed power and rate
adaptation policies and the existence, or not, of an outage
probability [1]. Widely accepted adaptation techniques are the
optimal power and rate adaptation (OPRA), constant power
with rate adaptation (ORA), channel inversion with fixed rate
(CIFR) and truncated CIFR (TIFR). In all these techniques
the distribution of the channel power gain is consider to be
known at both the transmitter and the receiver. Hence, it is
very critical to study the above mentioned adaptation policies
under different fading channel models.

In the past, the capacity has been studied for several fading
distributions, e.g., [2]–[8]. In [2], the general theory for the
capacity of fading channels with an average power constraint,
under different CSI conditions was developed. In [3], this
theory was applied to Rayleigh fading channels, assuming no
diversity, as well as, selection and maximal ratio combining
(MRC) diversity receivers. In [4], the results presented in [3]
were generalized to Nakagami-m fading channels, while in
[5] the channel capacity was studied for MRC and equal gain
combining diversity receivers, assuming Nakagami-q fading
channel modeling. In [6], expressions for the Shannon capacity

of single-branch receivers operating over Nakagami-m, Rice
and Weibull fading channels were derived. In [8], the capacity
was studied for generalized-K composite fading channels, for
different adaptive transmission techniques. Hence, since the
general framework proposed in [2] has gained an increased
interest, it is considered also here in the context of generalized-
Gamma (GG) fading channels.

The composite GG distribution includes many well-
known fading channel models for multipath, e.g., Rayleigh,
Nakagami-m, and Weibull, as special cases, while it can also
describe the Lognormal as a limiting case. Thus, due to its
generic form, the GG distribution can accurately describe the
behavior of multipath and shadowing fading effects, which
is the typical channel model observed in land mobile satellite
systems [9]. However, despite the ability of the GG distribution
to characterize so many different fading/shadowing channel
models, only recently it has been applied to the field of
digital communications over fading channels [10]–[13]. As
an example, in [13] the performance analysis of switch and
stay combining diversity receivers operating over GG fading
channels was studied. In the same work, the spectral efficiency
was also obtained only for the ORA policy. Hence, the
capacity of GG fading channels under OPRA, CIFR and TIFR
policies has not been yet studied in the open technical literature
and thus is the subject of this paper.

This paper is organized as follows. After this introduction,
in Section II, the system and channel model is introduced.
In Sections III-V, closed-form expressions for the capacity
of GG fading channels are derived for the OPRA, CIFR and
TIFR adaptation policies, respectively. In Section VI, several
numerical evaluating results are presented and discussed, while
in Section VII, the concluding remarks of this paper are
provided.

II. SYSTEM AND CHANNEL MODEL

Let us consider a single-branch (SB) receiver operating
over slow varying fading channels, typically encountered in
geostationary satellite channels and metropolitan areas with
slow moving pedestrians [14]. The received instantaneous
signal amplitudes are considered to be GG distributed. Hence,
the probability density function (PDF) of the instantaneous
signal-to-noise ratio (SNR) at the output of the SB receiver,
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γsb, is given by [13]

fγsb(γ) =
β γmβ/2−1

2Γ(m) (τ γ)m β/2
exp

[
−
(
γ

τ γ

)β/2
]

(1)

where β > 0 and m ≥ 1/2 are the distribution’s shaping
parameters related to the fading severity, γ is the average
input SNR per symbol, and τ = Γ(m)/Γ(m + 2/β), with
Γ(·) being the Gamma function [15, eq. (8.310/1)]. By using
different values of m and β, (1) simplifies to several important
distributions for fading modeling. For example, for β = 2 and
m = 1, it becomes Rayleigh, for β = 2, becomes Nakagami-
m, and for m = 1, becomes Weibull. Moreover, as β → 0
and m→ ∞, (1) approaches the well-known lognormal PDF.
The corresponding cumulative distribution function (CDF) is
given by

Fγsb(γ) = 1 −
Γ
[
m, (γ/τγ)β/2

]
Γ(m)

(2)

where Γ(·, ·) is the upper incomplete Gamma function [15, eq.
(8.350/2)].

Furthermore, let γsd represent the SNR per symbol at
the output of a dual-branch selection diversity (SD) receiver
operating over independent and identical distributed GG fading
channels. The SD receiver is one of the simplest diversity
reception techniques, as only the selectively chosen single
branch is processed [9]. The CDF of γsd, Fγsd(γ), can be
expressed as Fγsd(γ) = [Fγ(γ)]2. For integer values of m, by
differentiating Fγsd(γ) with respect to γ and using [15, eq.
(8.352/2)], the PDF of γsd can be mathematical expressed in
closed form as

fγsd(γ) =
β

τ γ Γ(m)

{(
γ

τ γ

)βm/2−1

exp

[
−
(
γ

τ γ

)β/2
]

−
m−1∑
i=0

1
i!

(
γ

τ γ

)β(m+i)/2−1

exp

[
−2
(
γ

τ γ

)β/2
]}

.

(3)

III. OPTIMAL POWER AND RATE ADAPTATION (OPRA)

The channel capacity under an average transmitting power
constraint and optimal power and rate adaptation is given by
[2]

Copra = B

∫ ∞

γ0

log2

(
γ

γ0

)
fγ(γ)dγ (4)

where B is the channel bandwidth and γ0 the optimal cutoff
SNR. If γ < γ0 no data is transmitted and hence an outage
probability occurs as Pout = Fγ(γ0). Furthermore, by denot-
ing

p(x) =
∫ ∞

x

(
1
x
− 1
γ

)
fγ(γ)dγ − 1 (5)

γ0 must satisfy p(γ0) = 0.

A. SB Receiver

Substituting (1) in (5), making a change of variables and
using [15, eq. (8.350/2)], the optimal cutoff function for the
SB receiver can be obtained as

psb(γ0) =
2∑

k=1

(−1)k+1

Γ(m) γ2−k
0 (τ γ)k−1

× Γ

[
m− 2

k − 1
β

,

(
γ0

τ γ

)β/2
]
− 1.

(6)

In the above equation γ0 cannot be obtained in closed form and
hence numerical evaluation will be employed, by using any of
the well-known mathematical software packages. Moreover,
it can be proved that there is a unique positive value for γ0,
which satisfies psb(γ0) = 0. Note that for β = 2, (6) simplifies
to previous known results, i.e., [4, eq. (7)].

Substituting (1) in (4) integral of the following form need
to be solved

I =
∫ ∞

γ0

γmβ/2−1 ln
(
γ

γ0

)
exp

[
−
(
γ

τ γ

)β/2
]
dγ. (7)

This integral can be solved in closed form (see the Appendix
for details), and hence Csb

opra can be obtained as

Csb
opra =

2B
β Γ(m) ln(2)

Φ

[(
γ0

τ γ

)β/2

,m, 1

]
(8)

where

Φ(x, y, z) = Γ(y)ψ(y) − β

2
ln
[
22(y−m)/(β z)γ0

τ γ

]
Γ (y, x)

+ Γ (y)2 xy
2F̃2 (y, y; y + 1, y + 1;−x) − γ (y, x) ln (x)

where pF̃q(·; ·; ·) represents the regularized generalized hyper-
geometric function [16, eq. (07.32.02.0001.01)], where p, q are
integers. Furthermore, γ(·, ·) represents the lower incomplete
Gamma function [15, eq. (3.381/1)] and ψ(·) denotes the psi
function [15, eq. (8.360)].

B. SD Receiver

Substituting (3) in (5) and following similar approach as for
deriving (6), the optimal cutoff function for the SD receiver
can be obtained as

psd(γ0) =
2∑

k=1

2
(−1)k+1Γ

[
m− 2(k − 1)/β, [γ0/ (τ γ)]β/2

]
Γ(m) γ2−k

0 (τ γ)k−1

+
2∑

k=1

m−1∑
i=0

(−1)k21+2(k−1)/β−i−m

i!γ2−k
0 Γ(m) (τ γ)k−1

× Γ

[
i+m− 2(k − 1)

β
, 2
(
γ0

τ γ

)β/2
]
− 1.

(9)

It can also be proved that there is a unique positive γ0 satisfy-
ing psd(γ0) = 0, which is numerical evaluated. Substituting (3)
in (4), identical type of integrals with that one in (7) appear.
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Hence, using again the analysis presented in the Appendix,
and after some mathematical manipulations, the capacity of a
SD receiver under the OPRA policy, Csd

opra, can be obtained
in closed form as

Csd
opra =

4B
β Γ(m) ln(2)

{
Φ

[(
γ0

τ γ

)β/2

,m, 1

]

−
m−1∑
i=0

2−m−i

i!
Φ

[
2
(
γ0

τ γ

)β/2

,m+ i, i

]}
.

(10)

IV. CHANNEL INVERSION WITH FIXED RATE (CIFR)

In CIFR policy the transmitter exploits the channel side
information in order to maintain constant the SNR at the
receiver [2]. The channel capacity employing CIFR, Ccifr, is
given by

Ccifr = B log2

(
1 +

1∫∞
0
fγ(γ)/γ dγ

)
. (11)

A. SB Receiver

Substituting (1) in (11) and using [15, eq. (3.351/3)], the
capacity of a SB receiver under the CIFR technique can be
obtained as

Csb
cifr = B log2

[
1 +

1
Θ1 (m, 0)

]
(12)

where

Θ1(x, y) =
Γ (x− 2/β)

Γ(m)τ γ 2(x−2/β)y
.

By setting β = 2 and m = 1 in the above equation, it
simplifies to previous known results [4, eq. (29)] and [17, eq.
(23)], respectively.

B. SD Receiver

In the case of SD receiver, substituting (3) in (11), using
again [15, eq. (3.351/3)], the capacity following CIFR policy
can be obtained in closed form as

Csd
cifr = B log2

[
1 +

1

2
[
Θ1(m, 0) −

m−1∑
i=0

Θ1 (m+ i, 1) /i!
]
]
.

(13)

By setting m = 1 in (13), it simplifies to previous derived
expression [17, eq. (22)], for ρ = 0.

V. TRUNCATED CHANNEL INVERSION WITH FIXED RATE

(TIFR)

The CIFR technique is very simple to implement, however
it exhibits a large capacity penalty in extreme fading envi-
ronments, e.g., assuming Rayleigh fading Ccifr = 0 [2]. An
alternative approach is to consider a truncated CIFR policy,
usually referred as TIFR, where the channel fading is inverted
only above the fixed cutoff γ0. In this case the capacity can
be obtained as

Ctifr = B log2

[
1 +

1∫∞
γ0
fγ(γ)/γ dγ

]
(1 − Pout) . (14)

Fig. 1. Normalized average channel capacity under TIFR policy versus cutoff
SNR for several values of γ and m = 2, β = 3.

A. SB Receiver

Substituting (1) in (14), making a change of variables and
using [15, eq. (8.350/2)], the capacity of a single receiver under
the TIFR policy can be obtained as

Csb
tifr = B log2

[
1 +

1
Θ2 (m, 0)

] Γ
[
m,
(

γ0
τ γ

)β/2
]

Γ(m)
(15)

where

Θ2(x, y) =
Γ
[
x− 2/β, 2y (γ0/τ γ)

β/2
]

Γ(m)τ γ 2(x−2/β)y
.

Setting β = 2, (15) simplifies to [4, eq. (30)], while by setting
m = 1 it simplifies to [17, eq. (26)].

B. SD Receiver

In the case of SD receiver, by substituting (3) in (14), and
using [15, eq. (8.350/2)], the capacity following the TIFR
policy can be obtained in closed form as

Csd
tifr = B log2

⎡
⎢⎢⎣1 +

1

2
[
Θ2(m, 0) −

m−1∑
i=0

Θ2(m+ i, 1)/i!
]
⎤
⎥⎥⎦

×

⎧⎪⎨
⎪⎩1 −

⎡
⎣1 −

Γ
[
m, (γ0/ (τγ))β/2

]
Γ(m)

⎤
⎦

2
⎫⎪⎬
⎪⎭ .

(16)

Note that by setting m = 1 in (16), it simplifies to [17, eq.
(25)], for ρ = 0.
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Fig. 2. Normalized channel capacity of SB receivers versus the average input
SNR for different adaptation policies.

VI. NUMERICAL RESULTS AND DISCUSSION

In this section various numerical evaluated results have
been obtained using the previous derived analysis for SB (no
diversity), as well as, dual-branch SD receivers. These results
include capacity comparisons of different adaptation policies
and GG fading conditions.

In Fig. 1, considering SB (using (15)) and SD (using (16))
receivers, the normalized average capacity under the TIFR
policy, Ctifr/B, is plotted as a function of cutoff SNR, γ0,
for several values of the average input SNR, γ. Moreover,
it is assumed that m = 2 and β = 3. It is depicted that
Ctifr/B improves by employing diversity reception and/or
increasing γ. Furthermore, in all cases Ctifr/B is maximized
for specific values of γ0 and the difference between the
performances of SB and SD receivers increases as γ increase.
In Fig. 2, the normalized channel capacity is plotted for the
various adaptation policies presented in this paper, namely
Csb

opra/B (using (8)), Csb
cifr/B (using (12)), and Csb

tifr/B (using
(15)), as a function of γ for SB receiver and different GG
fading conditions. Employing OPRA yields always the highest
capacity, while CIFR the lowest. However, the differences
among the normalized capacities of all the adaptation policies
diminish as γ and/or m, β increase. Note that for increased
values of m, β, i.e., reduced fading severity, and γ, Csb

cifr/B
and Csb

tifr/B become equal, due to the fact that the probability
of outage is very low.

In Fig. 3, the normalized channel capacity for SD reception
is plotted as a function of γ, assuming OPRA, Csd

opra/B (using
(10)), CIFR, Csd

cifr/B (using (13)), and TIFR, Csd
tifr/B (using

(16)), adaptation policies and m = 2, β = 3. For comparison
purposes, plots for the corresponding adaptation policies of

Fig. 3. Normalized channel capacity of SD receiver versus the average input
SNR for different adaptation policies.

SB receivers are also included. Note that CIFR and TIFR
capacities, for SD receiver, become almost equal for smaller
values of the average input SNR, i.e., γ = 0, as compared to
a single receiver.

VII. CONCLUSIONS

Considering different adaptation policies, novel closed-form
expressions were obtained for the Shannon capacity of GG
fading/shadowing channels. In particular, the channel capacity
of this composite distribution was studied for OPRA, CIFR
and TIFR adaptation policies assuming SB and dual-branch
SD receivers. The derived formulae are quite general as they
simplify to previous obtained results. For these adaptation
policies, selected numerical evaluated results were presented,
assuming different GG fading/shadowing conditions and dif-
ferent receiver structures. In all cases, it is depicted that the
capacity increases as channel conditions improve, i.e., m, β
increase, and/or diversity reception is employed.

APPENDIX

EVALUATION OF (7)

Starting with (7), making a change of variables of the form
x = (γ/γ0)

β/2, and after some mathematical manipulations,
yields

I =
4γmβ/2

0

β2

∫ ∞

1

xm−1 ln(x) exp

[
−
(
γ0

τ γ

)β/2

x

]
dx.

(A-1)
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Integral of this form can be solved in closed form, with the
aid of [15, eq. (4.358/1)], as

I =
4γmβ/2

0

β2

ϑ

ϑm

{(
γ0

τ γ

)−mβ/2

Γ

[
m,

(
γ0

τ γ

)β/2
]}

(A-2)
The differentiation in (A-2) can be performed by applying [16,
eq. (06.06.20.0001.01)], and hence after some mathematical
manipulations finally yields (8).
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