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ABSTRACT

Nonnegative matrix factorization (NMF) has attracted con-
siderable attention over the past few years as is met in many
modern machine learning applications. NMF presents some
inherent challenges when it comes both to its theoretical
understanding and the task of devising efficient algorithmic
tools. In this paper, we deal with an issue that is inherent
in NMF, i.e., the a priori unawareness of the true nonnega-
tive rank. To this end, a novel constrained NMF formulation
is proposed. The main premise of the new formulation is
to first assume an overestimate of the rank and then reduce
it by imposing column sparsity jointly on the nonnegative
matrix factors using proper penalization. Borrowing ideas
from the block successive upper bound minimization frame-
work, an alternating minimization strategy is followed, while
inexact projected Newton-type updates are used in order to
guarantee the descent direction of the cost function at each
iteration. The effectiveness of the proposed approach is veri-
fied on simulated data and a real music signal decomposition
experiment.

Index Terms— NMF, nonnegative rank, column sparsity,
projected Newton, BSUM

1. INTRODUCTION

Nonnegative matrix factorization (NMF) calls for analyzing
a nonnegative matrix X ∈ Rm×n

+ into a product of two
smaller size matrices W ∈ Rm×r

+ and H ∈ Rn×r
+ with

r ≤ min(m,n), i.e., X = WHT . NMF holds a prominent
position in the fields of machine learning and signal process-
ing over the last two decades since it finds itself in a wide
range of applications such as hyperspectral unmixing, topic
modelling, face recognition, clustering, etc.

NMF is NP-hard, [1], and for this reason it has attracted
considerable attention in terms of its theoretical understand-
ing. Among the various aspects that have been recently ad-
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dressed in the literature, a large number of works investigate
the conditions that guarantee identifiability (see Definition 1
in [2]) of the matrix factors. Identifiability conditions are of
significant importance in many applications of NMF such as
blind source separation. This is so since the uniqueness (up
to scaling and permutation) of the optimal matrix factors ob-
tained by solving the relevant formulations of NMF problem,
is a prerequisite for a reliable physical intepretation of these
matrix factors. Moreover, a great amount of research has been
devoted to the development of computationally efficient algo-
rithms that approximately solve various NMF formulations,
[3]. In the vast majority of these works, it is assumed that
the inner dimension r, i.e., the number of rank one terms
needed for the exact reconstruction of X (termed nonnega-
tive rank of X) is known beforehand. However, in real life
applications a priori knowledge of the nonnegative rank r is
not available. The recovery of the true nonnegative rank in
NMF problems can be cast as a model order selection prob-
lem. However, since the number of the unknown parameters
in NMF (O((m + n)r)) is related to the size of the dataset,
traditional information-theoretic based criteria, such as the
Akaike information criterion (AIC) and the Bayesian Infor-
mation Criterion (BIC) cannot be applied, [4].

In this paper, we adopt the Euclidean distance as a data
fitting term and propose a novel constrained NMF formula-
tion which accounts for the unawareness of r. Concretely, we
put forth a novel and generic regularization term consisting
of the sum of the weighted squared Frobenius norms of the
matrix factors. This term is then specified by selecting appro-
priate diagonal weight matrices. By doing so, column spar-
sity is promoted on both matrix factors W and H and thus
the initially overstated order of the NMF is gradually being
reduced. Following the block successive upper bound min-
imization (BSUM) philosophy, we address the resulting op-
timization problem by alternatingly using inexact projected
Newton type updates for the matrix factors. Experimental re-
sults obtained in both a simulated data and a real music sig-
nal decomposition experiment empirically verify the merits
of the proposed approach in simultaneously performing NMF
and unveiling the true r.
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2. RELATION TO PRIOR WORK

The problem of recovering the true model order (nonnegative
rank) r in NMF has been addressed mainly within a Bayesian
framework and in particular by applying ideas stemming from
automatic relevance determination (ARD). In that respect, by
assuming a safe overestimate of the true r, sparsity promoting
prior distributions have been placed on W and H, that unveil
the true rank by zeroing columns of these matrix factors, [5].
Our work is related mostly with that in [4]. In [4], the generic
beta-divergence is used as the data fitting term and NMF is ad-
dressed via a maximum a posteriori probability (MAP) type
approach. The resulting ARD-NMF algorithm arises by solv-
ing a MAP optimization problem. Column sparsity is pro-
moted by applying the logarithm function on either the `2
or `1 norms of the columns of the matrix, which is formed
by concatenating the matrix factors. Contrary, in our work
column sparsity is imposed via the use of the `1/`2 norm.
In addition, the derived algorithm is based on inexact pro-
jected Newton-type updates instead of the multiplicative-type
updates utilized in [4]. The proposed algorithm, is actually
of similar logic to PNMF proposed in [6]. However in [6],
the authors assume that r is known beforehand, while exact
Hessians are used. As a consequence, full-rank matrix factors
are required. Contrary, in our algorithm the full-rank condi-
tion is relaxed, while the use of approximate Hessians help
us enjoy this merit without any increase of the computational
complexity of the derived algorithm, as compared to PNMF.

3. PROPOSED FORMULATION

In this paper, nonnegative matrix factorization is formulated
as follows

min
{W≥0,H≥0}

1

2
‖X−WHT ‖2F + λ

(
‖WD

1
2 ‖2F + ‖HD

1
2 ‖2F

)
(1)

where X ∈ Rm×n
+ , W ∈ Rm×d

+ , H ∈ Rn×d
+ , d ≥ r and λ is

the regularization parameter. For D = Id, (1) boils down to
the constrained NMF formulation proposed in [7] for enforc-
ing smoothness on the matrix factors.

Next we set the weight matrix as

D = diag
( (
‖w1‖22 + ‖h1‖22

)− 1
2 ,
(
‖w2‖22 + ‖h2‖22

)− 1
2 ,

. . . ,
(
‖wd‖22 + ‖hd‖22

)− 1
2

)
, (2)

where w i,h i, i = 1, 2, . . . , d denote the columns of W and
H, respectively. Problem (1) is hence transformed to the fol-
lowing optimization scheme

min
{W≥0,H≥0}

1

2
‖X−WHT ‖2F + λ

d∑
i=1

√
‖wi‖22 + ‖hi‖22,

(3)

in which the regularization term is tantamount to applying
the joint-sparsity imposing `1/`2 norm on the columns of the
concatenated matrix [ WH ], [8].

Remark 1. The proposed column sparsity promoting reg-
ularizer is a) non-smooth and b) non-separable w.r.t. W and
H.

4. MINIMIZATION ALGORITHM

First we define the following cost function

f(W,H) =
1

2
‖X−WHT ‖2F + λ

d∑
i=1

√
‖wi‖22 + ‖hi‖22 + η2

(4)

where η is a small constant which is added for smoothing pur-
poses. In what follows, we present a projected Newton-type
method for efficiently addressing the NMF problem arising by
minimizing (4) with respect to W and H. Our goal is to bene-
fit by exploiting the curvature information of the formed cost
function. However the constrained nature of NMF induces
some subtleties needed to be properly handled. To this end,
we next develop a minimization algorithm that alternatingly
updates matrices W and H so that they a) always belong to
the feasibility set and b) guarantee the descent direction of the
cost function at each iteration.

More specifically, following the block successive up-
per bound minimization rationale, [9], in each iteration k
we adopt surrogate quadratic upper-bound approximations
of the cost functions f(W,Hk) and f(Wk+1,H) for up-
dating matrices W and H, respectively. Towards this, ap-
proximate Hessian matrices of f(W,Hk) and f(Wk+1,H)
are utilized. Let us focus on the approximate Hessian of
f(W,Hk) denoted as Q̄Wk

(The approximate Hessian Q̄Hk

of f(Wk+1,H) is defined likewise). Q̄Wk
is defined as

Q̄Wk
= Im ⊗ Q̃Wk

, (5)

where ⊗ denotes the Kronecker product operation and Q̃Wk

is a d× d matrix defined as

Q̃Wk
= HT

kHk + λD (6)

where the latest known values of W and H are used in D.
Let us now consider the so-called set of active constraints,

[10], defined w.r.t. each row wi of W at iteration k as

Ikwi
= {j|0 ≤ wk

ij ≤ εk, [∇Wf(Wk,Hk)]ij > 0}, (7)

where εk = min(ε, ‖Wk − ∇Wf(Wk,Hk)‖2F ) (with ε a
small positive constant). A similar set Ikhi

is defined based
on the rows hi of matrix H. As is analytically explained in
[6], these sets contain the coordinates of the row elements of
matrices W and H that belong to the boundaries of the con-
strained sets, and at the same time are stationary at iteration
k.
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That said, the quadratic surrogate functions l(W|Wk,Hk)
and g(H|Wk+1,Hk) are defined as,

l(W|Wk,Hk) = f(Wk,Hk) + tr{(W −Wk)T ∇Wf(Wk,Hk)}

+
1

2αk
W

vec (W −Wk)T Q̄
Ik
W

W vec (W −Wk)

(8)

and

g(H|Wk+1,Hk) = f(Wk+1,Hk)+

tr{(H−Hk)T ∇Hf(Wk+1,Hk)}+
1

2αk
H

vec (H−Hk)T Q̄
Ik
H

H vec (H−Hk) , (9)

where vec(·) stands for row vectorization and αk
W and αk

H

denote step size parameters. Following the projected Newton
strategy which guarantees the descent of the cost function at
each iteration approximate Hessian matrices denoted as Q̄IWW
and Q̄IHH are used in (8) and (9). Both matrices are block
diagonal and consist of m and n, respectively, d × d distinct
diagonal blocks. That is to say, the ith diagonal blocks of

these matrices at iteration k, namely Q̃
Ikwi

W and Q̃
Ikhi

H , are par-
tially diagonalized versions of the d × d matrices Q̃Wk

and
Q̃Hk

(see (6)). More specifically,

[Q̃
Ikwi

W ]pl =

{
0, if p 6= l, and either p ∈ Ikwi

or l ∈ Ikwi

[Q̃Wk
]pl otherwise

and Q̃
Ikhi

H is defined similarly. W and H are updated by in-
exactly solving the following constrained minimization prob-
lems,

Wk+1 = argmin
W≥0

l(W|Wk,Hk) (10)

and Hk+1 = argmin
H≥0

g(H|Wk+1,Hk) (11)

giving rise to feasible updates in the form

vec(Wk+1) = [vec(Wk)−

αk
W

(
Q̄
IkW
W

)−1
vec(∇Wf(Wk,Hk))]+ (12)

vec(Hk+1) = [vec(Hk)−

αk
H

(
Q̄
IkH
H

)−1
vec(∇Hf(Wk+1,Hk))]+, (13)

where [x]+ = max(x, 0). The step size parameters αk
W and

αk
H are calculated based on the Armijo rule on the projection

arc, [10], with the goal of achieving sufficient decrease of the
initial cost function per iteration. The resulting alternating
projected Newton-type NMF algorithm is given in Algorithm
1.

Algorithm 1: Proposed NMF algorithm
Input: Y, λ, βW, βH, σ, ε = 10−6

Initialize: k = 0,W0,H0,D
repeat

Estimate the set of active constraints IkW
mk = 0
while sufficient decrease

based on Armijo rule is not satisfied do
mk = mk + 1, αk

W = βmk

W

end
Update Wk+1 using (12)
Estimate the set of active constraints IkH
mk = 0
while sufficient decrease

based on Armijo rule is not satisfied do
mk = mk + 1, αk

H = βmk

H

end
Update Hk+1 using (13)
k = k + 1

until convergence
Output: Ŵ = Wk+1, Ĥ = Hk+1

Remark 2. Contrary to the projected Newton NMF
method of [6], in our case the adopted approximate Hes-
sian matrices are always positive definite for λ > 0 and
hence invertible, offering stability to the derived algorithm.
Moreover, since these matrices are also partially diagonal,
efficient implementations can be followed for reducing the
computational cost as in [6].

5. EXPERIMENTAL RESULTS

Herein we aim at empirically verifying the merits of the pro-
posed NMF algorithm. Towards this, we next provide a sim-
ulated data and a real music decomposition experiment. For
comparison purposes the ARD-NMF algorithm of [4] and the
projected Newton NMF (PNMF) algorithm of [6] are utilized.
To make fair comparisons, the beta function of ARD-NMF of
[4] is reduced to the squared Frobenious norm.

5.1. Simulated data experiment

In this experiment, the performance of the proposed NMF al-
gorithm is evaluated in a simulated NMF experiment. To this
end, the nonnegative entries of matrix factors W∗ ∈ R500×10

+

and H∗ ∈ R500×10
+ are sampled from a half-normal distribu-

tion of zero mean and unit variance. A nonnegative matrix
X∗ is generated as X∗ = W∗H

T
∗ and is corrupted by addi-

tive i.i.d. noise also sampled from a half-normal distribution
resulting to SNR = 20dB. The proposed NMF and the ARD-
NMF algorithm of [4] are oblivious to the true nonnegative
rank r = 10 of X∗ and are initialized with an overestimate of
it, i.e., d = 25. PNMF is run for both d = r and d = 25. As
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Fig. 1. Performance comparison in terms of NRE =
‖X∗−WHT ‖F
‖X∗‖F (average of 10 independent runs of the experi-

ment) among the proposed NMF, the ARD-NMF and PNMF
algorithms.

is shown in Fig. 1, the convergence rate of the proposed NMF
algorithm is similar to PNMF even though, contrary to PNMF,
it uses inexact updates for W and H per iteration. Moreover,
ARD-NMF and the proposed algorithm achieve similar per-
formance to PNMF (with d = r), albeit they ignore r and are
intialized with an overestimate of it.

5.2. Real data experiment

Herein, we test the competence of the proposed NMF algo-
rithm in decomposing a real music signal. For this reason,
the most relevant state-of-the-art algorithm i.e., ARD-NMF
is used for comparison purposes. The music signal analyzed,
is a short piano sequence i.e., a monophonic 15 seconds-long
signal recorded in real conditions, as described in [4]. As it
can be noticed in Fig. 2, it is composed of four piano notes
that overlap in all the duration thereof. Following the same
process as in [4], the original signal is tranformed into the fre-
quency domain via the short-time Fourier transform (STFT).
To this end, a Hamming window of size L = 1024 is utilized.
By appropriately setting up the overlapping between the adja-
cent frames we are led to a spectrogram whereby the signal is
represented by 673 frames in 513 frequency bins. The power
of this spectrogram is then provided as input to the tested al-
gorithms. The initial rank is set to 20.

In Fig. 3, the first 7 components obtained by the two algo-
rithms are ordered in decreasing values of the standard devia-
tions of the time domain waveforms. As it can be noticed, the
proposed NMF estimated the correct number of components,
that is 6. Notably, the first four components of the proposed
NMF correspond to the four notes while the rest two ones
come from the sound of a hammer hitting the strings and the
sound produced by the sustain pedal when it is released. On
the contrary, ARD-NMF estimated 20 components, meaning
that no rank minimization took place thus implying a data
overfitting behavior. It should be emphasized that the fa-
vorable performance of the proposed NMF algorithm occurs
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Fig. 2. Music score (top) and original audio signal (bottom)
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Fig. 3. Music components obtained by (a) the proposed NMF
and (b) ARD-NMF on the short piano sequence.

though the noise is implicitly modeled as Gaussian i.i.d. In-
terestingly, as it can be seen in [4], the proposed NMF per-
formed similarly to ARD IS-NMF, i.e., the version of ARD-
NMF which makes more appropriate assumptions as to the
noise statistics, by modeling it as Itakura-Saito.

6. CONCLUSIONS

In this paper a novel NMF algorithm was introduced. The
main premise of the proposed approach is to simultaneously
perform NMF and extract the true order of NMF. To this end,
a new regularization term which imposes jointly column spar-
sity is utilized. The formulated optimization problem was ad-
dressed following a block successive upper bound minimiza-
tion strategy coupled with inexact projected Newton-type up-
dates. Empirical results obtained in simulated and a real mu-
sic decomposition experiment illustrate the merits of the pro-
posed approach.
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