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Abstract—This paper introduces a novel unsupervised spectral
unmixing-based clustering method for high-spatial resolution hy-
perspectral images (HSIs). In contrast to most clustering methods
reported so far, which are applied on the spectral signature repre-
sentations of the image pixels, the idea in the proposed method is
to apply clustering on the abundance representations of the pixels.
Specifically, the proposed method comprises two main processing
stages namely: an unmixing stage (consisting of the endmember
extraction and abundance estimation (AE) substages) and a clus-
tering stage. In the former stage, suitable endmembers are selected
first as the most representative pure pixels. Then, the spectral sig-
nature of each pixel is expressed as a linear combination of the
endmembers’ spectral signatures and the pixel itself is represented
by the relative abundance vector, which is estimated via an efficient
AE algorithm. The resulting abundance vectors associated with the
HSI pixels are next fed to the clustering stage. Eventually, the pixels
are grouped into clusters, in terms of their associated abundance
vectors and not their spectral signatures. Experiments are per-
formed on a synthetic HSI dataset as well as on three airborne
HSI datasets of high-spatial resolution containing vegetation and
urban areas. The experimental results corroborate the effective-
ness of the proposed method and demonstrate that it outperforms
state-of-the-art clustering techniques in terms of overall accuracy,
average accuracy, and kappa coefficient.

Index Terms—Abundance estimation (AE), clustering, endmem-
ber extraction (EE), hyperspectral imagery (HSI), spectral unmix-
ing (SU).

1. INTRODUCTION

YPERSPECTRAL imaging has enabled applications and

detailed mapping possibilities in a wide variety of Earth
studies. In particular, airborne hyperspectral images (HSIs) of-
fer high-spatial resolution with detailed spectral accuracy. This
versatility enhances the identification, modeling, and detailed
classification of various natural and man-made materials. HSIs
are collected via hyperspectral sensors and are represented as
data cubes consisting of numerous contiguous spectral bands of
narrow bandwidths. A significant characteristic of HSIs, which
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makes their processing more challenging, is the presence of
mixed pixels, which depict surface regions consisting of two or
more distinct materials. The data for each mixed pixel corre-
spond to the total reflectance of all the materials present within
the pixel in numerous spectral bands from the surface depicted
by the pixel, which form the spectral signature of the pixel.
The key objectives in HSI processing are: 1) the detection of
the constituent components of mixed HSI pixels as well as the
proportions in which they appear, which will allow the produc-
tion of abundance maps per material and 2) the identification
of spectrally homogeneous regions. The first objective is tack-
led via spectral unmixing (SU) and the second via the use of
clustering algorithms.

In this study, we focus on the problem of identifying spec-
trally homogeneous regions, via clustering (unsupervised) tech-
niques, which, in contrast to their supervised counterparts, they
do not require any externally labeled set of pixels. Most cluster-
ing techniques proposed in this field are applied on the spectral
signature representations of the pixels. In contrast, the key idea
of the proposed methodology is to apply clustering on the abun-
dance vector representations of the HSI pixels, since the latter
representation is likely to lead to more well-separated clusters.
To this end, SU is applied first on the spectral representations
of the pixels, in order to extract the corresponding abundance
vectors, and then, clustering is applied on the abundance vector
pixels representations.

SU [1]-[6] of HSIs has been widely applied to environmental
studies. It consists of two main substages, namely 1) endmem-
ber extraction and 2) abundance estimation (AE). EE [7]-[11] is
a challenging process since the aim is to mine the purest pixels
(endmembers) of each spectrally distinct material of a HSI. The
latter almost always consists of mixed pixels, which are also af-
fected by noise spectra. Ideally, each endmember ought to have
the maximum possible abundance of a single physical material
present in the HSI under study and minimum (close to zero)
abundance for the rest of the physical materials. Moreover, the
determination of the number of endmembers is critical since an
underestimated number may result in poor representation of the
mixed HSI pixels under study, whereas an overestimated num-
ber may comprise a lot of mixed signatures. Popular endmember
extraction algorithms (EEAs) include VCA [12], N-FINDR vari-
ants [13], and MVSA [14]. Other related algorithms are discussed
in [16]-[18].

The aim of AE is the decomposition of the spectral signa-
tures of mixed pixels into a selection of spectral signatures
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corresponding to the reflectance of pure physical materials (end-
members). The latter is usually extracted by the image itself via
EE (however, in some cases they are selected from specific
spectral libraries). AE results in a set of corresponding fractions
(abundances), which indicate the proportion of each endmem-
ber present in a given pixel. Clearly, the ultimate success of AE
depends heavily on the appropriate selection of endmembers.
Since only a small number of the available materials’ spectra
are expected to be present in a HSI pixel (especially in high- res-
olution HSIs), the abundance vectors are expected to be sparse.

Clustering [19], [20] partitions a set of pixels from the input
image into groups. Some of the most known clustering ap-
proaches are the k-means [21], the Fuzzy C-Means (FCM) [22],
the Possibilistic C-Means (PCM) [23] and their variants, e.g.,
[24], [25]. The aforementioned algorithms are suitable for re-
covering compact clusters and they use specific vectors, (called
representatives) to represent the clusters that underlie in the
current dataset. In contrast to these algorithms, that provide a
single data clustering, in Hierarchical Agglomerative Clustering
(HAC) [26], [27], the data are organized into an effective hier-
archy of nested clusterings. HAC requires a metric in order to
calculate the dissimilarity between pairs of pixels and a linkage
so as to measure the dissimilarity between clusters.

A. Related Work

It should be mentioned that the literature on clustering tech-
niques applied on HSIs is limited. In [28], a graph data struc-
ture is generated to represent the tree crowns weighted with
the Euclidean distance. A minimum spanning tree is generated
using Kruskal’s algorithm and edges above a length threshold
are removed to generate independent clusters. In [29], an unsu-
pervised hierarchical cluster analysis to phytoplankton pigment
data is applied with the aim of discriminating different phy-
toplankton assemblages in open ocean environments. Several
types of optical data vectors are used as input to HAC including
objects consisting of reflectance values of hyperspectral data.
Also, in [30], a new clustering algorithm, named Adaptive Pos-
sibilistic C-Means (APCM), is applied on HSIs.

In [31], a clustering procedure is proposed, which consists of
three processes: 1) EE, 2) unmixing and 3) hardening process
via the winner-takes-all approach, in order to produce recon-
structed pixels spectra. In [32], the proposed work utilizes the
Gauss Mixture Vector Quantization algorithm to learn the mix-
ture analysis and explores the cluster analysis with correlation
distance. In [33], SU is combined with k-means cluster analysis
for accurate geological mapping. The data are first classified
into two categories: hydrothermal alteration areas and unal-
tered rocks. SU is applied to hydrothermal alteration areas and
k-means clustering to unaltered rocks as two separate ap-
proaches. In [34], the proposed work generates classification
maps based on k-means clustering and Gradient Flow. SU is
conducted using the Max-D algorithm to automatically find
endmembers. It should be highlighted that, in all previous meth-
ods, the unmixing and clustering processes are utilized as two
separate steps, in the sense that their results are extracted inde-
pendently from each other and are combined next.
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In this paper, a novel unsupervised SU-based clustering
method (SUBC) for HSIs is proposed. SUBC consists of two
processing stages namely: 1) SU, which consists of an EFEA,
followed by a (sparse) AE algorithm and 2) a clustering algo-
rithm. The first process identifies suitable endmembers based
on the VCA algorithm [12]. Then, AE is applied on each image
pixel, in order to provide its abundance representation, using the
sparsity-promoting BilCE algorithm [35]. Finally, the recently
proposed APCM clustering algorithm [30] uses the abundance
representations of the pixels, in order to group them into clus-
ters. It should be noted that the abundance pixel representations
adopted in the proposed methodology ensures (in general) a
common sparsity pattern for pixels in the same cluster. To the
best of our knowledge, this is the first attempt of utilizing the
abundance representation of pixels generated by SU as input to
a clustering algorithm with the aim to enhance classification in
HSIs.

The proposed SUBC method is evaluated on a synthetic HS/
dataset as well as on three airborne HSI datasets of high-spatial
resolution (the agricultural area of Salinas Valley, CA, USA, the
land cover at Washington DC Mall, USA, and the urban area of
the Pavia center, Italy) and its performance is compared in terms
of overall accuracy (OA), average accuracy (AA) and kappa
coefficient with that of state-of-the-art clustering techniques.

The paper is organized as follows. Section II introduces the
proposed SUBC method. Section III demonstrates the results
obtained by the proposed method as well as comparisons with
state-of-the-art clustering algorithms. Conclusion and future re-
search directions are summarized in Section IV.

II. PROPOSED SUBC METHOD

In this section, we first present the motivation and contribu-
tion of this study and then we describe in detail the proposed
unmixing-based clustering algorithm.

A. Motivation and Contribution

In general, classification algorithms [36], [37] (both super-
vised and unsupervised) developed so far are applied directly on
the L-dimensional spectral band vectors of the pixels. However,
such (usually high dimensional) representations may contain a
lot of redundant information, which may cause pixels depicting
different areas to be not well separated from each other in the
L-dimensional spectral domain. Clearly, this renders the work
of the classification algorithms more difficult. Apart from the
above issue, most classification schemes used for HSI processing
do not focus on exploiting the available fine spectral resolution,
that is, they do not consider at all information within the pixel. A
further consequence of this is that such schemes do not exploit
the fact that each HSI pixel contains only a few of the materials
existing in the whole HSI (equivalently, the spectral signature of
each pixel is expected to result from the linear combination of
only a few endmember spectral signatures, which implies that
the corresponding abundance vectors will be sparse).

The approach that we adopt in this paper in order to leverage
the above issues is to employ sparsity-promoting SU techniques
in order to represent each pixel by its abundance vector (with
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Fig. 1. Conceptual illustration of the dimensionality reduction achieved, mov-
ing from the original band space (usually consisting of hundreds of spectral
bands) to the “less correlated” low-dimensional abundance space.

respect to a set of endmembers) and not by its spectral sig-
nature. The rationale behind this choice is twofold. First, the
dimension of the abundance vector space (which equals to the
number of the endmembers depicted in the HSI under study) is
usually much lower than the dimension of the spectral signature
space (number of spectral bands) (see Fig. 1). Since the cor-
responding original feature space (the space where each band
defines an axis) is high dimensional, the Hughes phenomenon
38] (“curse” of dimensionality) appears. In light of this, the
original high-dimensional space of the HSI is transformed to
the dimensionally reduced space of abundance vectors [39].

Second, assuming that the endmembers are pure pixels, the
(sparse) abundance vectors are expected to form clusters, which
are likely to lie in different subspaces in the abundance space. It
is, thus, anticipated that different classes will form more easily
distinguishable clusters in the abundance vectors space. Gener-
ally speaking, adoption of the abundance representation is ex-
pected to ease the work of the classification methods. However,
we have to keep in mind that the abundance retrieval requires
a very good estimation of the endmembers that have a physical
meaning in order to work properly, which, in practice, is not
straightforward.

In the SU stage of the SUBC an EEA is first employed, which
identifies appropriate endmembers of the image. Next, a sparse
AE algorithm is used that is based on the endmembers extracted
by the EFEA, in order to produce the abundance fractions for
each pixel, which in turn form the abundance vector of the
pixel. These vectors of all pixels are fed to the second stage of
the SUBC method, where a clustering algorithm groups pixels
based on their abundance representations.

An additional feature concerning the mapping to the abun-
dance space that should be highlighted is that the number of
clusters and the number of endmembers are (in general) dif-
ferent. A cluster formed according to the abundances usually
corresponds to a region where a single (or a few) endmembers
have high proportion, whereas all other endmembers have low
proportions. However, it can also correspond to the mixture of
several endmembers of varied proportions. The block diagram
of SUBC is depicted in Fig. 2.

—

B. Spectral Unmixing

1) Endmember Extraction: Aiming at detecting suitable
endmembers, we utilize the VCA algorithm [12], which takes
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Fig. 2. Block diagram of SUBC.

as input the spectral signatures of the pixels, as can be seen in
Fig. 2. Each pixel can be viewed as a vector in an L-dimensional
Euclidean space, where each spectral band is assigned to one
axis of the space. Based on the aforesaid data points, the
VCA algorithm returns a prespecified number of endmembers
via iteratively projecting data onto a direction orthogonal to
the subspace spanned by the endmembers already determined.
The new endmember signature corresponds to the extreme
of the projection. The algorithm iterates until the number of
endmembers is exhausted [12]. Then, SUBC continues in esti-
mating the abundance fractions of each endmember via AE.

2) Abundance Estimation: The selection of appropriate end-
members is crucial so as to correctly estimate the abundance
fractions. Usually, the spectral signature of the pixel, denoted
by y, is assumed to follow the Linear Mixing Model [40] ac-
cording to which it can be expressed as a linear combination of
its endmembers’ spectra as follows:

y=®x+n (1)

where & = [p1, ¢2,..., 0] € %ixl’, L > p, is the mixing ma-
trix comprising the endmembers’ spectra (L-dimensional vec-
tors ¢;, 1 =1, 2,...,p), x is a p x 1 vector consisting of the
corresponding abundance fractions, named abundance vector,
and n is an L x 1 additive noise vector, which is assumed to be
a zero-mean Gaussian distributed random vector with indepen-
dent and identically distributed elements.

Due to the physical constraints of the unmixing problem, the
abundance fractions for each pixel should satisfy the following
two constraints:

N
2 >0,i=1,2 ., N, Y z=1 )

i=1
that is, the abundances should be nonnegative and they must
sum to 1. Furthermore, the abundance vector is expected to be
sparse, i.e., only a few of its elements will be nonzero, since the
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(c) (d)

Fig. 3. (a) Class of the HSI containing two subclasses; (b) representation of
pixels in the original space; (c) representation of abundance vectors ¢ = x1, x2;
and (d) clustering result emerged from SUBC.

area depicted by a single pixel is likely to embed only a small
fraction of the different materials encountered in the whole HSI.
In this study, the abundance vector for each pixel is estimated
via a variational Bayes algorithm called BiICE [35] (see Fig. 2)
that imposes sparsity on the abundance vector and is based on
an appropriately defined hierarchical Bayesian model. In algo-
rithmic form, the abundance vector can be obtained as follows:

x = BilCE(®,y). 3)

BilICE is computationally efficient, provides sparse solutions
without requiring the fine-tuning of any parameters, and con-
verges fast to accurate values even for highly correlated data.
The determined abundance vectors x are further used for the
representation of their associated pixels at the clustering pro-
cess.

In order to unravel the advantages of using the abundance
representation of the pixels instead of the traditional band rep-
resentation, we consider the following simplified case. For
illustration purposes, we form an RGB image selecting three
appropriate bands from a small area of one of the HSIs con-
sidered in Section III-B. The considered area [see Fig. 3(a)] is
a class consisting of two subclasses. The representation of the
pixels in the original space is depicted in red color in Fig. 3(b).
Assuming two endmembers (one from each subclass), Fig. 3(c)
depicts the abundance vectors stemmed from BiICE in blue
color. Note that, due to the imposed sparsity, almost all pixels
are concentrated around the two axes. Finally, Fig. 3(d) depicts
the classification map produced by SUBC.

It should be highlighted that the pixels in the original space
formulate one compact cloud with a few outliers and, thus, it
is difficult to be naturally divided into two separate groups.
On the contrary, the abundance vectors formulate two compact
clouds tangent to the axes, which are highly distinguished. This
is the advantage that characterizes the representation of the pix-
els using their abundance vectors and eases SUBC to correctly
identify the two subclasses, via its second stage. It should also
be reminded here that the abundance vectors are characterized
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by sparsity (i.e., the existence of zeros in vectors x), which
promotes data distinctions.

C. Clustering

The clustering stage, which is applied on the abundance rep-
resentations of the HSI pixels under study, employs the APCM
algorithm [30] (see Fig. 2). Let X ={x; e ®,i=1,..., N}
be a set of N p-dimensional data vectors to be clustered and
©={0; e R?,j =1,...,m} be a set of m vectors (called rep-
resentatives) that will be used for the representation of the clus-
ters formed by the points in X. Let U = [u;;],i=1,..., N, j =
1,...,mbean N x m matrix whose (7, j) entry stands for the so-
called degree of compatibility of x; with the jth cluster denoted
by C; and represented by the vector ¢;. The APCM algorithm
emerges from the optimization of the cost function of the origi-
nal PCM described as follows:

m N
Teen (0,U0) = [> wiyllxi — 051
j=1 i=1
N
o Y (g gy — ). “)
i=1
In contrast to the classical PCM, where W]-’ s remain constant
during the execution of the algorithm, in APCM +y;'s are adapted
at each iteration through the adaptation of the corresponding
n;’s. This is achieved by setting 7v; = %Uj and adapting 7);
(which is a measure of the mean absolute deviation of the current
form of cluster C}) at each iteration of the algorithm. Note that
nj’ s and « are constant quantities (for more details see [30]).
The output of the algorithm is a classification map consisting
of clusters formed based on the abundances produced in SU. The
clusters that are formed usually correspond to regions where
a few abundances have high values of fractions, whereas the
remaining ones exhibit low values (that is, they are aggregated
around certain subspaces in the abundance space).

III. EXPERIMENTAL RESULTS AND DISCUSSION

SUBC has been experimentally evaluated in four case studies:
a synthetic and three real airborne HSI datasets of high-spatial
resolution. The synthetic HSI dataset has been generated with
various values of additive noise in order to test the sensitivity
of the proposed method under different noise levels. The first
airborne HSI dataset represents a challenging area of various
plant species on an agricultural area, where discrimination be-
tween the species is impeded by numerous factors such as the
similar spectral signatures of the pixels as well as the absence of
reference spectra. The second airborne HSI dataset represents
a land cover of mixed vegetation and urban materials whose
spectral signatures patterns vary. The third airborne HST dataset
represents a mainly urban area, where the spectral signatures of
the materials present are not characterized by specific patterns.

A. Synthetic HSI Dataset

The experimental evaluation of SUBC has been conducted on
a 100 x 100 synthetic HSI dataset consisting of five different
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Fig. 4. (a) Reference map of synthetic HSI dataset and (b) 100th band added
with noise at 20 dB.
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Fig. 5. Estimated abundance maps for two endmembers (a) pyroxenes and
(b) carbonates extracted from synthetic HSI via BilCE. Abundance values range
from O (blue) to 1 (red).

regions artificially generated. The spectral signatures have been
obtained by the U.S. Geological Survey Spectral Library [41].
The data cube contains areas with mineral signatures of five
general mineral classes: 1) olivines; 2) pyroxenes; 3) sulfates;
4) oxides; and 5) carbonates. The HS/under study comprises 109
spectral bands. For the generation of the synthetic hyperspectral
data cube, seven endmembers have been randomly selected and
for each mineral class seven pure pixels have been assigned.
It should be highlighted that for each mineral class more than
one endmembers have been randomly assigned. Each one of the
five regions consists of a linear combination of different ran-
domly selected different endmembers contaminated by additive
Gaussian zero mean noise.

Fig. 4(a) depicts the reference map, while Fig. 4(b) shows the
100th band of the synthetic HSI contaminated by 20-dB addi-
tive noise. It should be noted that noise is added in all bands of
the synthetic HSI dataset and experiments have been conducted
with different SNRs in the range of 20-40 dB. Fig. 5 illustrates
abundance maps obtained from BilCE for two endmembers 1)
pyroxenes and 2) carbonates extracted from the synthetic HS/
under study. In Fig. 6, SUBC is compared with state-of-the-
art clustering algorithms namely k-means, complete-link HAC,
FCM, and APCM. 1t should be highlighted that all these al-
gorithms are applied on the spectral signatures of the pixels,
whereas the clustering procedure in SUBC is applied on the
abundance representations of the pixels (due to the philosophy
of the method). As shown in Fig. 6, classes 1, 3, and 4 are cor-
rectly identified by all tested algorithms, while the superiority
of the proposed SUBC algorithm is clearly demonstrated in the
identification of classes 2 and 5.

Table I contains the results obtained by k-means, HAC, FCM,
APCM, and SUBC in terms of OA and kappa coefficient based
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(d) (e)

Fig. 6. Clustering results emerged from: (a) k-means; (b) HAC; (c) FCM;
(d) APCM; and (e) SUBC on the synthetic HSI under study.

TABLE 1
COMPARATIVE RESULTS OF CLUSTERING ALGORITHMS ON SYNTHETIC
HSI DATASET IN TERMS OF OA AND Kappa Coefficient

OA(%) kappa
k-means 86.95 0.76
HAC 93.51 0.87
FCM 90.01 0.89
APCM 97.73 0.90
SUBC 99.28 0.92
TABLE II

COMPARATIVE RESULTS OF CLUSTERING ALGORITHMS ON SYNTHETIC
HSI DATASET IN TERMS OF AA FOR EACH CLASS

Class k-means HAC FCM APCM SUBC
1 99.76 92.51 99.70 99.72 99.78
2 77.52 93.21 77.20 97.31 98.66
3 99.24 8224  99.30 99.25 99.26
4 75.03 99.69  85.87 99.53 99.50
5 83.20 99.90  87.98 92.84 99.20

on the obtained confusion matrix for 20-dB SNR [33]. Table II
demonstrates the results in terms of AA (fraction of true positives
and true negatives) for each class. We observe that SUBC out-
performs all existing clustering techniques and offers an almost
100% OA and AA. It should be noted here that similar results
have also beenobtained for all other values of SNR tested in the
range 2040 dB.

B. Airborne HSI Datasets

SUBC has been also experimentally evaluated on the HSI
airborne dataset of the Salinas Valley, CA, USA [42], which
constitutes an arduous clustering scenario. Salinas HSI has been
collected by the Airborne Visible Infra-Red Imaging Spec-
trometer (AVIRIS) sensor over an agricultural area of Salinas
Valley, California. The AVIRIS sensor, developed by NASA’s
Jet Propulsion Laboratory [43], generates calibrated radiance
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Fig. 7. (a) First PCA band; (b) 117th band of Salinas Valley; and (c) masked
reference map [42].

images in 224 contiguous spectral bands with wavelengths from
400 to 2500 nm. Moreover, it is characterized by high-spatial
resolution of 3.7-m pixels. The number of bands is reduced to
204 by removing 20 water absorption bands. Salinas Valley HSI
consists of vegetables and vineyard fields. Its masked reference
classification map comprises eight classes: corn, two types of
broccoli, four types of lettuce and grapes [42]. Fig. 7 depicts:
(a) first PCA band; (b) 117th band; and (c) masked reference
map of a 150 x 150 subimage of the Salinas Valley HSI.

Ideally, one would have a digital spectral library of refer-
ence spectra of the mapped plant species. However, such a
publicly available library does not exist for the specific plant
species. In addition, it is not known how many spectra would
be required to represent the changing spectral signatures, as
a function of the growing season. This unavoidably leads to
the selection of the endmembers from the image itself. Doing
so, Fig. 8(a)—(d) depict estimated abundance maps stemmed
from BiICE for four endmembers extracted from Salinas Val-
ley HSI. Fig. 8(a) and (b) correspond to two types of broccoli,
Fig. 8(c) to one type of grapes and Fig. 8(d) to a (most probably)
construction.

Aiming at a quantitative evaluation, SUBC is compared
against k-means, HAC, FCM, and APCM in terms of OA and AA
computed by the obtained confusion matrix as can be seen in Ta-
bles III and IV, respectively. We see from Tables III and IV that
SUBC achieves OA, kappa, and AA values which are higher than
that of the other state-of-the-art clustering algorithms. Fig. 9 il-
lustrates clustering results emerged from: (a) k-means; (b) HAC;
(c) FCM; (d) APCM; and (c¢) SUBC on the Salinas HSI dataset.
It should be mentioned that the results obtained by APCM and
SUBC demonstrate the correct identification of all classes and
subclasses as can be seen by examining the first PCA band in
Fig 7(a).
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]

W b

(d)
Fig. 8. Estimated abundance maps for four endmembers extracted from

Salinas Valley HSI via BiICE. Abundance values range from O (blue) to 1
(red).

TABLE III
COMPARATIVE RESULTS OF CLUSTERING ALGORITHMS ON SALINAS
HSI DATASET IN TERMS OF OA AND Kappa Coefficient

OA(%)  kappa
k-means 72.67 0.70
HAC 87.07 0.75
FCM 82.46 0.70
APCM 91.34 0.78
SUBC 93.04 0.80
TABLE IV

COMPARATIVE RESULTS OF CLUSTERING ALGORITHMS ON SALINAS HSI
DATASET IN TERMS OF AA FOR EACH CLASS

Class k-means HAC FCM APCM SUBC
Grapes 73.67 9427 7492 87.92 94.77
Broccoli A 74.43 73.82 9283 92.79 93.49
Broccoli B 73.56 73.93  90.12 90.82 91.52
Lettuce A 7243 89.38  72.81 92.27 93.37
Lettuce B 73.21 91.59  70.62 91.39 92.36
Lettuce C 70.23 9272 91.29 92.12 92.79
Lettuce D 71.54 93.91 92.46 93.24 93.52
Corn 72.29 86.94  74.63 90.17 92.50

SUBC has also been quantitatively evaluated on the HST air-
borne dataset of the Pavia Center [42]. The image has been
acquired by the reflective optics system imaging spectrometer
sensor over an urban area of the city center. The flight was
operated by the German Aerospace Agency under the HySens
project managed by the German Aerospace Center (DLR). The
original data consist of 115 spectral bands (with the spectral
range from 0.43 to 0.86 ;#m) and has a high-spatial resolution of
1.3 m. However, noisy bands were previously removed leading
to a total of 102 bands. Four thematic classes are present in the
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Fig. 9. Clustering results emerged from: (a) k-means; (b) HAC; (c) FCM;
(d) APCM; and (e) SUBC on the Salinas HSI.

1. Asphalt

2. Meadows

3. Trees

4. Shadows

Fig. 10. (a) First PCA band; (b) 80th band of Pavia center; and (c) masked
reference map [42] (1-yellow, 2-light blue, 3-dark blue, and 4-brown).

scene: 1) asphalt; 2) meadows; 3) trees; and 4) shadows, accord-
ing to the reference classification map provided by [42]. Fig. 10
depicts: (a) first PCA band; (b) 80th band; and 3) masked refer-
ence map of a 300 x 177 subimage of the Pavia center HSI [42].
Fig. 11(a) and (b) depicts estimated abundance maps stemmed
from BilCE for two endmembers: (a) shadow and (b) manmade
material.

In the scope of a quantitative evaluation, SUBC is compared
against k-means, HAC, FCM, and APCM in terms of the OA and
kappa coefficient computed by the obtained confusion matrix
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(a) (b)

Fig. 11. Estimated abundance maps for two endmembers (a) shadow,
(b) manmade material extracted from Pavia center HSI via BiICE. Abundance
values range from O (blue) to 1 (red).

TABLE V
COMPARATIVE RESULTS OF CLUSTERING ALGORITHMS ON PAVIA HSI
DATASET IN TERMS OF OA AND Kappa Coefficient

OA(%)  Kappa
k-means 93.26 0.80
HAC 37.03 0.71
FCM 92.46 0.78
APCM 93.38 0.79
SUBC 96.30 0.83
TABLE VI

COMPARATIVE RESULTS OF CLUSTERING ALGORITHMS ON PAVIA HSI
DATASET IN TERMS OF AA FOR EACH CLASS

Class k-means HAC FCM APCM SUBC
Asphalt 94.28 2593  94.90 95.01 97.31
Meadows 90.62 1672 92.61 91.68 96.71
Trees 92.25 21.09  86.51 90.47 94.37
Shadows 95.89 8439  95.82 96.36 96.81

as can be seen in Table V and in terms of the AA as can be
seen in Table VI, while the clustering results of all algorithms
are shown in Fig. 12. Again, SUBC provides the best clustering
performance as witnessed by its OA, kappa, and AA values,
which are the highest among all its competitors.

Finally, SUBC has been qualitatively evaluated on the HSI
airborne dataset of the Washington DC mall [44]. The image
has been acquired by the airborne mounted Hyperspectral Dig-
ital Imagery Collection Experiment sensor. The sensor system
used in this case measured pixel response in 210 bands in the
0.4-2.4 pm region of the visible and infrared spectrum. Bands
in the 0.9-1.4 pm region, where the atmosphere is opaque, have
been omitted from the dataset leaving 191 bands. Moreover,
the dataset exhibits high-spatial resolution (2.8 m). Five the-
matic land cover classes are present in the scene: 1) roof; 2)
grass; 3) trees; 4) water; and 5) asphalt road, according to the
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Fig. 12.  Clustering results emerged from: (a) k-means, (b) HAC, (c) FCM,
(d) APCM and (e) SUBC on the Pavia center HSI.

1. Grass

2. Trees
3. Roofs

4. Asphalt
Road

5. Water

(c)

Fig. 13. (a) First PCA band; (b) 100th band of Washington DC; and
(c) reference map [44].

classification map provided by [44] and used here as a reference
map.

Fig. 13 depicts: (a) first PCA band; (b) 100th band; and (c)
reference map of a 100 x 100 subimage of the Washington DC
mall HSI [44]. It should be noticed that the reference map is
provided only for qualitative visualization assessment and it is
not accurate for a thorough quantitative assessment. Fig. 14(a)
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@

Fig. 14. Estimated abundance maps for two endmembers: (a) manmade ma-
terial and(b) (most probably) soil/grass of class 1 extracted from Washington
DC HSI via BiICE. Abundance values range from O (blue) to 1 (red).

(d) (e)

Fig. 15. Clustering results emerged from: (a) k-means; (b) HAC; (c) FCM;
(d) APCM,; and (e) SUBC on the Washington DC HSI.

and (b) depicts estimated abundance maps stemmed from Bi-
ICE for two endmembers: 1) manmade material and 2) (most
probably) soil/grass of class 1. Fig. 15 illustrates clustering re-
sults emerged from: (a) k-means; (b) HAC; (¢) FCM; (d) APCM;
and (e) SUBC on the Washington DC HSI dataset. It should be
highlighted that, apart from SUBC, all other algorithms falsely
classify water and asphalt road pixels to one class. On the other
hand, SUBC correctly distinguishes pixels that belong to the
water class from all other pixels that belong to the remaining
classes.

As it has been highlighted throughout the paper, the key idea
of the proposed method is to perform unmixing at its first stage,
in order to take the abundance representations of the pixels
and then, at the second stage, to perform clustering based on
the pixels abundance vector representations. Clearly, one could
choose any unmixing method in the first stage and any clustering
method in the second stage of the algorithm. In order to justify
the choice of BIICE in the first stage, we compare it against
two AFE algorithms: 1) a quadratic programming (QP) technique
[45], which does not exploit sparsity and 2) the sparse unmix-
ing by variable splitting and augmented Lagrangian (SUnSAL)
algorithm [46], which, as BiICE, imposes sparsity. That is, we
substitute BiICE with QP and SUnSAL at the first stage of the
proposed method. Leaned on Table VII, which depicts the OA
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TABLE VII
COMPARATIVE RESULTS OF SU ALGORITHMS ON HSI
DATASETS IN TERMS OF OA

Synthetic ~ Salinas  Pavia
QP 83.67 74.32 71.20
SUnSAL 97.50 82.71 87.52
BiICE 99.28 93.04 96.30

of the three cases, the QP algorithm attains the worst perfor-
mance (since it does not take into account that by the nature of
the problem, the abundance vectors exhibit sparsity), whereas
SUnSAL exhibits significantly improved performance compared
to QP, yet inferior, compared to BilCE, especially for real data.
Moreover, SUnSAL comes at the additional expense of manually
fine-tuning nontrivial parameters, such as a sparsity promoting
parameter A.

The choice of APCM in the second stage of the algorithm is
justified mainly by the fact that it is able to estimate automati-
cally the underlying number of clusters in the dataset. Moreover,
focusing on the first four lines of Tables I, III, and IV, the OA
of APCM is significantly higher from all other state of the art
clustering methods (note that all these algorithms are applied on
the same dataset, i.e., the spectral signature representations of
the HSI pixels).

IV. CONCLUSION AND FUTURE DIRECTIONS

The key challenge of the proposed method (SUBC) is the iden-
tification of spatially homogeneous regions comprising different
materials. The method consists of two main stages (unmixing
and clustering) and generates three significant (by)products,
namely: 1) endmembers; 2) abundance vectors (abundance
maps); and 3) clusters (classification maps). The key feature of
SUBC is the utilization of the abundance representations of the
HSI pixels (as they result from the unmixing stage) in the cluster-
ing stage. The advantage of using the abundance representation
instead of the basic spectral representation of the pixels is that
the former, in contrast to the latter, provides subpixel level infor-
mation, which in turn favors more detailed classification maps.
Moreover, the abundance representation is likely to give rise to
more well-discriminated clusters that live on subspaces of the
abundance space, due to the fact that only a few materials are
expected to contribute to the formation of a HSI pixel (sparsity
issue). As a consequence, subspace clustering algorithms could
also be considered as an alternative in the final stage of the algo-
rithm, since the abundance representations are likely to lead to
clusters that live to subspaces of the abundance space. SUBC is
unsupervised and does not require class information knowledge
of the dataset under study. Moreover, it is image independent,
it alleviates the “curse of dimensionality” issue and enhances
localization and accuracy since it operates in the subpixel level
of information. However, it is noted again that the correct iden-
tification of the endmembers number and their correspondence
to physical objects/materials is undoubtedly the most critical
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step for successful SU and, as a consequence, for the clustering
processes.

Experimental results show that SUBC compares favorably to
other related methods. This gives us confidence to claim that the
performance of the proposed method remains consistent with
high-spatial resolution airborne data. It is capable of identifying
compact regions and spectral regions that lack training data.

In terms of future directions, the full potential of this al-
gorithm will be investigated with additional hyperspectral ac-
quisitions of higher mixture complexity. In addition, this study
could be reinforced and expanded in the case of existing and
future satellite hypespectral data imagery of lower spatial res-
olutions where increased complexity issues for the tasks of 1)
endmember identification; 2) resolving shadowing effects; and
3) facing oblique viewing and illumination angles arise. More-
over, subspace clustering algorithms could be utilized, since as
we discussed earlier, they suit nicely in the nature of the problem
in the abundance space.
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