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Abstract—The so-called block-term decomposition (BTD) ten-
sor model has been recently receiving increasing attention due to
its enhanced ability of representing systems and signals that are
composed of blocks of rank higher than one, a scenario encoun-
tered in numerous and diverse applications. Its uniqueness and
approximation have thus been thoroughly studied. Nevertheless,
the challenging problem of estimating the BTD model structure,
namely the number of block terms and their individual ranks, has
only recently started to attract significant attention. In this paper, a
novel method of BTD model selection and computation is proposed,
based on the idea of imposing column sparsity jointly on the factors
and in a hierarchical manner and estimating the ranks as the
numbers of factor columns of non-negligible magnitude. Following
a block successive upper bound minimization (BSUM) approach
for the proposed optimization problem is shown to result in an al-
ternating hierarchical iteratively reweighted least squares (HIRLS)
algorithm, which is fast converging and enjoys high computational
efficiency, as it relies in its iterations on small-sized sub-problems
with closed-form solutions. Simulation results for both synthetic
examples and a hyper-spectral image denoising application are re-
ported, which demonstrate the superiority of the proposed scheme
over the state-of-the-art in terms of success rate in rank estimation
as well as computation time and rate of convergence while attaining
a comparable tensor approximation performance.

Index Terms—Alternating group lasso (AGL), alternating
least squares (ALS), block coordinate descent (BCD), block
successive upper bound minimization (BSUM), block-term tensor
decomposition (BTD), hierarchical iterative reweighted least
squares (HIRLS), rank, tensor.

I. INTRODUCTION

B LOCK-TERM Decomposition (BTD) was introduced
in [1] as a tensor model that combines the Canonical

Polyadic Decomposition (CPD) and the Tucker decomposition
(TD), in the sense that it decomposes a tensor in a sum of tensors
that have low multilinear rank (instead of rank one as in CPD1).
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1Note that a rank-1 tensor is also a rank-(1, 1, . . . , 1) tensor.

Fig. 1. Rank-(Lr, Lr, 1) block-term decomposition.

In other words, BTD is a sum of TDs (block terms). Hence
a BTD can be seen as a constrained TD, with its core tensor
being block diagonal (see [1, Fig. 2.3]). Given the sum-of-TDs
structure of BTD and in view of the fact that CPD is also a
constrained TD [2], BTD can also be seen as a constrained CPD
having factors with (some) collinear columns [1]. In a way, BTD
lies between the two extremes (in terms of core tensor structure),
CPD and TD, and it is interesting to recall the related remark
made in [1], namely that ““the” rank of a higher-order tensor is
actually a combination of the two aspects: one should specify
the number of blocks and their size.” Accurately and efficiently
estimating these numbers for a given tensor is the main subject
of this work.

Although [1] introduced BTD as a sum of R rank-
(Lr,Mr, Nr) terms (r = 1, 2, . . . , R) in general, the special
case of rank-(Lr, Lr, 1) BTD has attracted a lot more of at-
tention, because of both its more frequent occurrence in ap-
plications and the existence of more concrete and easier to
check uniqueness conditions. This paper will also focus on
this special yet very popular BTD model. Consider a 3rd-order
tensor, X ∈ CI×J×K . Then its rank-(Lr, Lr, 1) decomposition
is written as

X =

R∑
r=1

Er ◦ cr, (1)

where Er is an I × J matrix of rank Lr, cr is a nonzero column
K-vector and ◦ denotes outer product. Clearly,Er can be written
as a matrix product ArB

T
r with the matrices Ar ∈ CI×Lr

and Br ∈ CJ×Lr being of full column rank, Lr. A schematic
diagram of the rank-(Lr, Lr, 1) BTD is shown in Fig. 1.

BTD has found applications in communications (e.g., [3],
[4]), neuro- and anatomical imaging [5]–[8], electrocardiogra-
phy (ECG) (e.g., [9]–[11]), hyper-spectral imaging (HSI) [12]–
[15], community detection in networks [16], spectrum cartogra-
phy [17], and electron microscopy [18], among others. Recently
it has also been proposed as a compact model of neural net-
works in modern machine learning applications [19], [20]. The
application of BTD in blind source separation (BSS) was first
considered in [21] and later presented in more detail in [22],
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giving rise to the so-called Block Component Analysis (BCA)
approach. The underlying idea is that BTD can better represent
components (sources) of a variable complexity (hence rank),
while CPD-based BSS2 restricts the sources to have rank one.3

The uniqueness of BTD was studied in [1], also for the
general rank-(Lr,Mr, Nr) case. Essential uniqueness for the
rank-(Lr, Lr, 1) BTD of eq. (1) means that the only indeter-
minacies are the order of the R terms and a scaling of the Er

matrix with a counter-scaling of the vector cr. The most popular
(though not the only one) uniqueness theorem for this case states
that a sufficient uniqueness condition is that the partitioned ma-
tricesA � [A1 A2 · · · AR ] andB � [B1 B2 · · · BR ] are of
full column rank and C � [c1 c2 · · · cR ] does not have any
collinear columns [1, Theorem 4.1]. The generic version of the
requirement for full column rank of A,B is that min(I, J) ≥∑R

r=1 Lr, which can easily be met in applications where R
and Lr are small. It should however be noted that this is not a
necessary condition as our simulation results also demonstrate.

Alternating least squares (ALS) was extended to the compu-
tation of a tensor BTD in [23]. In that same work, it was also
shown (and demonstrated through an example) that degeneracy
can also occur for BTD.4 In the noise-free case, and as shown
in [1, Theorem 4.1], the BTD can be also computed with the aid
of a generalized eigenvalue decomposition (GEVD), provided
the above uniqueness condition is satisfied. Recently, algebraic
solution methods that are free from this limitation have been
also reported [25]–[27]. In the presence of noise, these solutions
can serve to initialize the ALS iterations [23]. ALS with the
appropriate modifications to incorporate the non-negativity con-
straint was used in [12] for non-negative BTD of hyper-spectral
imagery. Non-alternating (all-at-once) computation approaches,
including gradient descent and nonlinear least squares, were
followed in [28] and the resulting methods are implemented
in Tensorlab [29]. Additional methods of BTD computation
include ALS regularized through �2 norms of its factors (to
avoid over-fitting [17] or to enforce low rank [13]) or through
proximal point modifications [30], deflation-based [31], variable
projection using Riemannian gradient for rank-(Lr,Mr, Nr)
BTD with factors of orthonormal columns [32], tensor block
diagonalization [33], solving the equivalent matrix factorization
problem with one of the factors constrained to have low-rank
rows [34], and computing an appropriately constrained coupled
CPD [27].

In most of the BTD methods mentioned above, R and Lr,
r = 1, 2, . . . , R are assumed known (and it is commonly as-
sumed that all Lr are all equal to L, for simplicity). In fact,
in practice, this is a challenging question on its own. Unless
external information is given (such as in a telecommunications
[22] or in a HSI unmixing application with given or estimated
ground truth [12]), there is no way to know these values a priori.
An observation that is common in all known BCA applications is

2Also referred to as Canonical Polyadic Analysis (CPA) [22].
3An intuitively pleasant way to describe this difference is to say that,

while CPA decomposes the data into “atoms,” BCA decomposes it into
“molecules” [22].

4That a best BTD approximation of given ranks may not exist for a real-valued
tensor was later shown in [24]. This is not the case for tensors in C, however
(cf. [24] and references therein).

that the separation performance does not strongly depend on the
particular values of the Lr ranks [6], [12], [17]. In fact, as it was
also observed in [5], [6], the method is robust to overestimation
of Lr (although, as observed in [8], performance of BTD-based
classifiers may considerably vary with Lr). Nonetheless, one
should try not to set Lr to a very high value. The reason is
that, in addition to increasing the computational complexity,
setting Lr too high may hinder interpretation of the results
through letting noise/artifact sources interfere with the desired
sources [5]. This holds forR as well, although its choice is known
to be more crucial to the obtained performance. For example,
setting R too high in [5] results in source splitting (also referred
to as over-factoring [35]), thus compromising the separation and
interpretation of the components.

A. Related Work

Model order selection techniques for BTD can be dictated
by corresponding CPD techniques, as reviewed in [5, Sec-
tion 4], including clustering similar CPD components (e.g.,
[33]). Schemes of multilinear rank estimation (largely based
on matrix rank estimation and/or extensions of one-dimensional
information-theoretic criteria) are also relevant in view of the
constrained TD structure of BTD [7], [36]–[39]. In the absence
of noise, the model rank parameters can be computed as a
by-product of recently reported algebraic BTD methods [25],
[26]. Thus, in the non-iterative method of [26], and in the
(almost) noise-free case, these are estimated (with the aid of
singular value decompositions (SVDs)) from a joint block ma-
trix diagonalization problem. For noisier tensors, R and

∑
r Lr

are assumed known.
Model order selection can also be application-specific. For

example, Lr’s are estimated in [9] as the auto-regressive (AR)
orders of the sources in ECG analysis, with R assumed known.
In [6], and in the functional magnetic resonance imaging (fMRI)
context, Lr is estimated as the number of statistically significant
(bearing useful information) columns of Ar,Br. [13] relies on
the subspace-based method of [40] for estimating the number R
of spectral signatures in BTD-based HSI de-noising.

Alternative techniques rely on sparsity arguments for model
selection. A greedy scheme, inspired from a sparse coding
viewpoint, is proposed in [41], for more general tensor de-
compositions [42] including BTD as a special case. Instead of
building the model incrementally, however, one can follow the
reverse way of starting from a rank overestimate and arrive at
the true rank(s) by eliminating negligible components, aided
in this task by appropriate regularization. Such an approach is
followed in [35], [43], where the constrained CPD formulation
of BTD is taken advantage of to first estimate R and then
Lr’s assumed all equal, before computing the model factors
in (1). In each case, a regularization term is added to the tensor
approximation cost, which is composed of mixed norms of the
factor matrices and serves as upper bound on the tensor nuclear
norm thus promoting column sparsity of the factors and hence
low rank. The augmented Lagrangian method is adopted for the
computations.

Nevertheless, as demonstrated in [44], [45] for the CPD case,
the problems of model rank estimation and approximation of
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factors can be addressed jointly, with significant gains in both
accuracy and complexity (of particular interest for big data ap-
plications). This idea is proposed in [46] for the rank-(Lr, Lr, 1)
BTD model with not necessarily all equal block-term ranks Lr.
A regularization term consisting of the sum of the mixed �1,2
norms of the matrices A,B,C is added to the squared error of
the tensor approximation, namely

min
A,B,C

1

2

∥∥∥∥∥Y −
R∑

r=1

ArB
T
r ◦ cr

∥∥∥∥∥
2

F

+ γ(‖A‖1,2 + ‖B‖1,2 + ‖C‖1,2), (2)

where ‖ · ‖F is the Frobenius norm, ‖ · ‖1,2 denotes the mixed
�1,2 norm (defined as the �1 norm of the �2 norms of the matrix
columns5), and γ is the regularization parameter weighing the
regularization term over the data fidelity term. This sparsity-
inducing regularization helps promoting low rank for the BTD
factors and hence estimating R (as the number of non-zero
columns of C) and Lr’s (as the number of non-zero columns
of the rth blocks of A,B that correspond to non-zero columns
of C). For the solution of (2), a proximal term is first added
in [46] and then a block coordinate descent (BCD) approach is
taken, leading to a regularized version of the ALS procedure
of [23] that will be referred to henceforth as the BTD alternating
group lasso (BTD-AGL) algorithm.

B. Our Contribution

The approach we propose in this paper also falls in the previ-
ous category. Yet, it has a number of very important new features,
inherited from our earlier work on factorization-based low-rank
approximation of matrices [47], [48], [49], from which it draws
inspiration. In [49], the sum of reweighted Frobenius norms of
the factors of the data matrix is used as regularization and, in par-
ticular, a diagonal weighting, jointly depending on the factors,
is proposed, naturally leading to an iteratively reweighted least
squares (IRLS) [50] solution approach, with fast convergence
and low complexity. Here we generalize that idea in the BTD
problem. The regularization of [49] is employed, in two levels:
first, combining the reweighted norms of A and B, and second,
coupling these with the reweighted norm of C. This two-level
coupling naturally matches the structure of the model in (1),
making explicit the different roles of A,B and C, in contrast to
previous related works [35], [46] that miss to exploit this relation.
Furthermore, due to this fact, the regularization proposed here
has a stronger sparsity promoting action compared with previous
works. Applying majorization with appropriate upper bounds
and a BCD approach results in an alternating hierarchical IRLS
(HIRLS) algorithm that manages to both reveal the ranks and
compute the BTD factors at a high convergence rate and low
computational cost. Notably, iterations involve closed-form up-
dates that contain only matrix-matrix multiplications, which can
be efficiently implemented on most modern computer systems
and are easily parallelizable. The complexity can be reduced
even more by eliminating negligible columns (column pruning)
in the course of the iterations (as in [49] for the low-rank

5In [46] this is referred to as the �2,1 norm.

matrix factorization problem). Simulation results for synthetic
examples are reported, which demonstrate the superiority of the
proposed scheme over the state-of-the-art in terms of success
rate in rank estimation as well as computation time and rate of
convergence. An HSI de-noising example is also studied, which
shows the proposed method to attain a performance comparable
with that of BTD-AGL, albeit at a much shorter run-time.

A short version of the present work can be found in our recent
conference paper [51]. Additions to that version in the present
paper include a much more detailed presentation of the related
literature, and of the proposed approach and method, as well
as derivations, convergence proofs, and complexity estimates
that are deferred to the appendices. More extensive simulation
results, including results from a de-noising application, are also
reported here.

C. Organization of the Paper

The rest of this paper is organized as follows. The adopted
notation is described in the following subsection. The problem is
mathematically stated in Section II, where the proposed regular-
ization approach is also detailed. The proposed solution method
is developed and presented in Section III. Section IV reports
and discusses the simulation results. Conclusions are drawn and
future work plans are outlined in Section V. Derivations and
proofs are deferred to the appendices.

D. Notation

Lower- and upper-case bold letters are used to denote vectors
and matrices, respectively. Higher-order tensors are denoted by
upper-case bold calligraphic letters. For a tensorX ,X(n) stands
for its mode-n unfolding. ∗ stands for the Hadamard product
and ⊗ for the Kronecker product. The Khatri-Rao product is
denoted by � in its general (partition-wise) version and by �c

in its column-wise version. ◦ denotes the outer product. The
superscript T stands for transposition. The identity matrix of
orderN and the all onesM ×N matrix are respectively denoted
by IN and 1M×N . 1N stands for 1N×1. The row vectorization
and the trace of a matrix X are denoted by vec(X) and tr(X),
respectively. ∇X stands for the gradient operator with respect
to (w.r.t) X. diag(x) is the diagonal matrix with the vector
x on its main diagonal. The Euclidean vector norm and the
Frobenius matrix and tensor norms are denoted by ‖ · ‖2 and
‖ · ‖F, respectively. The mixed 1, 2 (�1,2) norm of a matrix
X = [x1 · · · xN ] is defined as

∑N
n=1 ‖xi‖2. C is the field of

complex numbers.

II. PROBLEM STATEMENT AND PROPOSED APPROACH

Given an I × J ×K tensor Y , its best (in the least squares
sense) rank-(Lr, Lr, 1) approximation is sought for, namely

min
A,B,C

f(A,B,C) � 1

2

∥∥∥∥∥Y −
R∑

r=1

ArB
T
r ◦ cr

∥∥∥∥∥
2

F

, (3)

where the matrices Ar = [ar1 ar2 · · · arLr ] ∈ CI×Lr , Br =
[br1 br2 · · · brLr ] ∈ CJ×Lr , C ∈ CK×R, and the ranks R
and Lr, r = 1, 2, . . . , R are a-priori unknown. In terms of its
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mode unfoldings X(1) ∈ CI×JK , X(2) ∈ CJ×IK and X(3) ∈
CK×IJ , the tensorX �

∑R
r=1 ArB

T
r ◦ cr can be written as [1]

XT
(1) = (B�C)AT, (4)

XT
(2) = (C�A)BT, (5)

XT
(3) =

[
(A1 �c B1)1L1

· · · (AR �c BR)1LR

]
CT. (6)

These expressions can be used in alternatingly solving for
A,B,C, respectively.

The regularization-based approach adds terms to the objective
function above with the aim of imposing constraints on the
sought factors, as in (2) for example. However, in contrast
to (2), where all BTD factors are treated in the same manner,
the regularizer proposed in this paper perfectly matches the
structure of the BTD model, offering increased flexibility via a
suitable joint block and column sparsity promoting mechanism
of a hierarchical nature. The proposed modification to (3) can
be stated as

min
A,B,C

f(A,B,C) + λ‖F(A,B,C)‖1,2, (7)

where λ > 0 is a parameter to be selected. Regularization is
performed with the aid of the �1,2 norm of the 2×R matrix
F(A,B,C), constructed as follows. Let G � [AT BT ]T be

the (I + J)×∑R
r=1 Lr matrix resulting from stacking the fac-

torsA andB andGr � [AT
r BT

r ]T denote its rth (I + J)× Lr

block. The matrix F(A,B,C) is defined as

F(A,B,C) �
[ ‖G1‖1,2 ‖G2‖1,2 · · · ‖GR‖1,2
‖c1‖2 ‖c2‖2 · · · ‖cR‖2

]
. (8)

The minimization of the �1,2 norm of a vector or matrix subject
to a data proximity criterion has been widely utilized in the
literature for enforcing group sparsity in vector/matrix recovery
problems [52]. This property of the �1,2 norm was exploited in
our earlier work [49], [53] for model order selection in low-rank
matrix factorization applications. In the present work, we extend
that idea to the BTD problem by employing a two-level hier-
archical �1,2 norm-based regularization scheme. At the upper
level, the �1,2 norm of the matrix F(A,B,C) above promotes
the elimination of whole blocks of A and B (which are tied
together by the mixed norms ‖Gr‖1,2, r = 1, 2, . . . , R) and
the corresponding columns of C. At the lower level, the �1,2
norms ‖Gr‖1,2 induce column sparsity to the “surviving” blocks
of A,B. Hence, we have the flexibility to overestimate the
ranks R and Lr, r = 1, 2, . . . , R as R = Rini and Lr = Lini in
the unknown BTD model, since this regularization can reduce
them towards their actual values with a proper selection of the
regularization parameter λ. The problem in (7) may be solved
using a block successive upper bound minimization (BSUM)
approach [54], as described in the next section. As explained in
Appendix D, the resulting algorithm is an alternating hierarchi-
cal IRLS scheme, referred to henceforth as BTD-HIRLS.

III. PROPOSED METHOD

First, we rewrite the minimization problem (7) more explicitly
in terms of the BTD factors A,B, and C as

min
A,B,C

1

2

∥∥∥∥∥Y −
R∑

r=1

ArB
T
r ◦ cr

∥∥∥∥∥
2

F

+ λ

R∑
r=1

√(∑L

l=1

√
‖arl‖22 + ‖brl‖22 + η2

)2

+ ‖cr‖22 + η2,

(9)

where η2 is a very small positive constant that ensures smooth-
ness and R and L here stand for the initial (over)estimates of
the model rank parameters. It can be shown that the objective
function in (9) is convex w.r.t. each one of the factors A,B
and C separately but not w.r.t. all of them. Moreover, due to
the regularization term, it is non-separable w.r.t to each one
of the matrix factors. As a result, minimizing the objective
function in (9) alternatingly w.r.t. the BTD factors (i.e., in a
BCD way with blocks the matrices A,B and C) would not
lead to closed-form solutions, which are desirable in an iterative
algorithm. Capitalizing on our previous work on low-rank matrix
factorization [49], we curb that problem by following a BSUM
approach for the objective function in (9). The idea is that at each
iteration of the BSUM scheme the BTD factors can be computed
in closed form by minimizing appropriate upper bound functions
of their initial objectives. Provided that these functions satisfy
certain conditions [54], the BSUM procedure is guaranteed to
converge to stationary points of the objective function of the
original minimization problem.

To be more specific, using the mode-1 unfolding of Y in (9)
and X =

∑R
r=1 ArB

T
r ◦ cr (cf. (4)), the objective function

w.r.t. A at iteration k may be expressed as follows

fA(A|Bk,Ck) =
1

2

∥∥∥YT
(1) −PkAT

∥∥∥2
F

+ λ

R∑
r=1

√(∑L

l=1

√
‖arl‖22 + ‖bk

rl‖22 + η2
)2

+ ‖ckr‖22 + η2,

(10)

where the JK × LR matrix Pk is defined as Pk � Bk �Ck.
To allow this sub-problem to have closed-form solution for A,
we define a local tight upper bound function of (10) as a rough
second-order Taylor approximation of fA(A|Bk,Ck) around
Ak. Namely:

gA(A|Ak,Bk,Ck) = fA(Ak|Bk,Ck) + tr{(A−Ak)

∇AfA(Ak|Bk,Ck)}+ 1

2
vec(A−Ak)TH̄Akvec(A−Ak),

(11)

where the ILR× ILR approximate Hessian matrix H̄Ak of
fA(A|Bk,Ck) at Ak is given (in analogy with [49]) by

H̄Ak = II ⊗ (PkTPk + λDk), (12)
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with Dk � (Dk
1 ⊗ IL)D

k
2 . Dk

1 is an R×R diagonal matrix,
whose rth diagonal entry is

Dk
1(r, r)

=

⎡
⎣( L∑

l=1

√
‖akrl‖22 + ‖bk

rl‖22 + η2

)2

+ ‖ckr‖22 + η2

⎤
⎦
−1/2

(13)

and Dk
2 is an RL×RL diagonal matrix, whose ((r − 1)L+

l)th diagonal entry is

Dk
2((r − 1)L+ l, (r − 1)L+ l)

= (‖akrl‖22 + ‖bk
rl‖22 + η2)−1/2. (14)

We can see from (12) that the approximate Hessian H̄A is a pos-
itive definite block diagonal matrix with I identical RL×RL
blocks on its main diagonal. Its relation with the exact Hessian
HA, which is a full yet structured IRL× IRL matrix, is clar-
ified in Appendix A. Therein, it is also proved that the matrix
H̄A −HA is positive semi-definite and thus the conditions of
BSUM are satisfied by the majorization function in (11). In addi-
tion, as shown in Appendix B, minimizing gA(A|Ak,Bk,Ck)
w.r.t. A results in the following analytical expression for the
estimate of A at iteration k + 1:

Ak+1 = Y(1)P
k(PkTPk + λDk)−1. (15)

Similarly, Bk+1 can be found from the minimization of
gB(B|Ak,Bk,Ck), which has an analogous form with (11)
with H̄Bk = IJ ⊗ (QkTQk + λDk) and is a tight upper bound
around Bk of

fB(B|Ak,Ck) =
1

2

∥∥∥YT
(2) −QkBT

∥∥∥2
F

+ λ

R∑
r=1

√(∑L

l=1

√
‖akrl‖22 + ‖brl‖22 + η2

)2

+ ‖ckr‖22 + η2,

(16)

with (cf. (5)) the IK × LR matrix Qk being defined as Qk �
Ck �Ak. The unique solution of min

B
gB(B|Ak,Bk,Ck) is

given by

Bk+1 = Y(2)Q
k(QkTQk + λDk)−1. (17)

Finally, the objective function w.r.t. C may be expressed as

fC(C|Ak,Bk) =
1

2

∥∥∥YT
(3) − SkCT

∥∥∥2
F

+ λ

R∑
r=1

√(∑L

l=1

√
‖akrl‖22 + ‖bk

rl‖22 + η2
)2

+‖cr‖22 + η2,

(18)

where (cf. (6)) the IJ ×R matrix Sk is given by

Sk �
[
(Ak

1 �c B
k
1)1L · · · (Ak

R �c B
k
R)1L

]
.

The factor Ck+1 is found from min
C

gC(C|Ak,Bk,Ck) as

Ck+1 = Y(3)S
k(SkTSk + λDk

1)
−1, (19)

Algorithm 1: BTD-HIRLS Algorithm.
Input: Y , λ, Rini, Lini

Output: BTD model of Y
Initialize: k = 0,A0,B0,C0

repeat
Compute Dk

1 ,D
k
2 from (13) and (14)

Dk ← (Dk
1 ⊗ IL)D

k
2

Pk ← Bk �Ck

Ak+1 ← Y(1)P
k(PkTPk + λDk)−1

Qk ← Ck �Ak

Bk+1 ← Y(2)Q
k(QkTQk + λDk)−1

Sk ← [ (Ak
1 �c B

k
1)1L · · · (Ak

R �c B
k
R)1L ]

Ck+1 ← Y(3)S
k(SkTSk + λDk

1)
−1

k ← k + 1
until convergence

where the locally upper bound function gC(C|Ak,Bk,Ck) has
an analogous form with gA(A|Ak,Bk,Ck) in (11) with

H̄Ck = IK ⊗ (SkTSk + λDk
1).

Summarizing the above, the steps of the proposed algorithm,
which alternatingly solves for A, B, and C, in that order, are
tabulated as Algorithm 1. As explained in Appendix D, the
proposed algorithm is a sort of hierarchical iterative reweighted
least squares (HIRLS) scheme, fully adjusted to promote block
and column sparsity in the BTD model. This may be also seen
from the expressions ofAk+1,Bk+1, andCk+1 given above and
the form of the diagonal weighting matricesDk

1 andDk
2 . Indeed,

if R and L are overestimated, reweighting via D1 imposes
jointly block sparsity on A and B and column sparsity on C,
hence helping in estimating R. In addition, reweighting via D2

promotes column sparsity jointly on the corresponding blocks
of A and B, thus estimating Lr’s. This mechanism, combined
with an appropriate selection of λ, can reveal the actual value of
R and the true block-term ranks Lr’s, as it is also empirically
demonstrated in the next section.

It should be noted that the majorization functions gA, gB,
and gC used previously for the derivation of the proposed
algorithm are quadratic upper bound functions that satisfy
Assumption A [54, Table 3] required for BSUM. In addition,
minimization of these functions w.r.t. the BTD factors at each
iteration of the algorithm leads in all cases to unique solutions.
Hence, according to Theorem 1 of [54], every limit point of
the BTD-HIRLS algorithm is a stationary point of the initial
objective function (9).

A notable feature of the proposed algorithm is that the
closed-form expressions for the BTD factors comprise matrix
operations only and relatively small-size (RL×RL andR×R)
matrix inversions. This should be attributed to the block diag-
onal form of the approximate Hessians employed in the three
sub-problems. A brief analysis of the computational complexity
of BTD-HIRLS is conducted in Appendix C, where it is shown
that for I, J and K sufficiently larger than R and L, the number
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of multiplications required per iteration isO(IJKRL). In con-
trast, in [46], the BTD factors are not computed in closed form
but via a group-sparsity promoting iterative procedure in each
iteration of the algorithm, which results in a much higher com-
putational complexity per iteration compared to BTD-HIRLS,
as it is empirically demonstrated in the next section. Further
reduction in the computational complexity of the proposed al-
gorithm is possible by eliminating negligible columns (column
pruning) in the course of the iterations (as in [49]).

IV. SIMULATION RESULTS

In this section, we report indicative simulation results with
both synthetic and real data for evaluating the performance of
the proposed algorithm. For comparison purposes, the classical
BTD-ALS algorithm of [23], which makes no use of any low-
rank regularization, and the BTD-AGL algorithm of [46], which
minimizes the objective function defined in (2) enhanced by a
proximal term, are also tested.6 It should be noted that a block-
pruning mechanism is implemented in both BTD-HIRLS and
BTD-AGL, namely, Ar,Br blocks that correspond to columns
of C with negligible energy are removed as the algorithms
progress. This can be applied in both of the aforementioned
algorithms due to their group-sparsity imposing characteristics.

A. Synthetic Data

In all cases, we generate BTD tensors X contaminated by
additive noise, i.e., Y = X + σN , where N contains zero-
mean, independent and identically distributed (i.i.d) Gaus-
sian entries of unit variance and σ is set so that we get a
given signal-to-noise ratio (SNR), with SNR in dB defined
as SNR = 10 log10 ‖X‖2F/(σ2‖N ‖2F). The entries of the ma-
trices Ar and Br and the vectors cr have been also sam-
pled from i.i.d. zero-mean Gaussian distributions of unit vari-
ance. The tensor approximation is measured with the normal-
ized mean squared error (NMSE) over the blocks, defined

as NMSE(Â, B̂, Ĉ) = 1
R

∑R
r=1

‖ArB
T
r ◦cr−ÂrB̂

T
r ◦ĉr‖2F

‖ArBT
r ◦cr‖2F

, where

(A,B,C) and (Â, B̂, Ĉ) denote the true and the estimated ten-
sor factors, respectively. To calculate this metric, a linear assign-
ment problem is solved to resolve the permutation ambiguity.7

When R is overestimated (as in BTD-HIRLS and BTD-AGL),
the NMSE over blocks is calculated on the basis of those of theR
block terms that are “closer” to the true ones. For BTD-HIRLS
and BTD-ALS, the stopping criterion is based on the relative
difference between two consecutive values of the reconstruc-
tion error. For BTD-AGL, the relative difference of the values
of the objective function (2) at two consecutive iterations is
employed (as in [46]). The algorithms stop either when the
relative difference becomes less than 10−6 or a maximum of
200 iterations is reached. The regularization parameter λ was
empirically observed to depend on the dimensions of the tensor
and the model ranks as well as on the noise strength. Hence, for
the selection of the value of λ in BTD-HIRLS, we employ the

6For BTD-AGL, we have used the Matlab code that Dr. J. H. de Morais Goulart
kindly shared with us.

7The Matlab 2019b matchpairs function was employed for this purpose.

TABLE I
NMSE AND RUN-TIME COMPARISON OF BTD-HIRLS, BTD-AGL AND

BTD-ALS FOR DIFFERENT SNR VALUES

heuristic rule λ = LiniRini(I + J +K)σ̂ with σ̂ being a guess
of the standard deviation of the noise. The γ-sweeping procedure
employed in [46] is also adopted here for BTD-AGL, namely,
for each single case (corresponding to a given realization and an
initialization) BTD-AGL is applied five times with five different
(and increasing) γ’s (as in [46]) and the estimates from each run
are used to initialize the next one.

1) Performance in the Presence of Noise: First, we test the
algorithms at different SNR values. We set I = 18, J = 18 and
K = 10. The true R is set to 3 and the Lr’s are selected as
L1 = 8, L2 = 6 and L3 = 4. The noisy tensors are generated
as described above. Since the ranks of the model are in general
unknown, we initialized BTD-HIRLS and BTD-AGL with over-
estimates of the true ones, namely Rini = 10 and Lini = 10 for
all factor blocks. For BTD-ALS it was assumed that the trueR is
known, while all Lr’s were overestimated to 10. All algorithms
were randomly initialized (all entries of factorsA,B andCwere
sampled from the standard Gaussian i.i.d. distribution) 10 times
and their best run, in terms of the NMSE, was kept. In Table I, we
report the median NMSEs of the results obtained over 100 inde-
pendent realizations of the experiment. The average run-times
(with Matlab 2019b in a Dell, MS Windows Pro, 2.20 GHz
10-core Intel CPU, 38 GB RAM) are also reported. Even with
the knowledge of the true value of R, BTD-ALS is seen to
be outperformed in terms of NMSE by the two rank-revealing
methods, at all SNRs. In terms of accuracy, the proposed method
seems to perform comparably with BTD-AGL, offering some
gain only at sufficiently low SNR values. Moreover, BTD-AGL
is considerably more computationally costly. Note that this
should not be attributed to the γ-sweeping procedure only. Even
a single run of BTD-AGL takes more time because, in contrast
to BTD-HIRLS (and BTD-ALS), BTD-AGL does not rely on
closed-form solutions for the updates of A, B, and C but it
instead involves separate iterative procedures for the solution of
each of the sub-problems. For example, in the above experiment,
each iteration of BTD-HIRLS and BTD-AGL takes 3.4 msec and
10.05 msec, respectively.

Furthermore, BTD-HIRLS exhibits a higher rate of conver-
gence than BTD-AGL, as demonstrated in Fig. 2, where the evo-
lution of the NMSE for 10 realizations of the experiment at SNR
= 10 dB is plotted versus the number of iterations. To facilitate
the comparison of the 200 iterations of BTD-HIRLS with the
BTD-AGL sweeping runs, its curves have been extended all the
way to 1000 iterations based on the NMSE value at iteration 200.
It should be clear from Fig. 2 that the γ-sweeping procedure
is indeed useful for BTD-AGL as in most cases it does not
converge before the 2nd-3rd round of it, that is, 400 iterations.
In contrast, the proposed method converges fast, requiring no
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Fig. 2. NMSE of BTD-HIRLS and BTD-AGL vs. iterations for SNR=10 dB.

Fig. 3. Empirical cumulative distribution function (ECDF) of NMSEs ob-
tained with BTD-HIRLS and BTD-AGL, for 500 different realizations. The ith
curve from bottom to top corresponds to the result of selecting the best out of
i = 1, 2, . . . , 12 different initializations.

more than 100 iterations in virtually all realizations. Fig. 3 helps
assessing the sensitivity to initialization of the BTD-HIRLS
and BTD-AGL methods, by plotting the empirical cumulative
distribution function (ECDF) of the NMSE obtained at SNR=15
and using the same experimental setting described previously
for generating the tensors. For each of the two methods, the ith
curve from bottom to top corresponds to selecting the best out
of i initializations, for i = 1, 2, . . . , 12. Clearly, BTD-HIRLS
shares the insensitivity in terms of initialization demonstrated
for BTD-AGL in [46], suggesting that only a small number of
initializations suffices for achieving an accurate BTD model.

2) Success Rates for the Recovery of R and Lr’s: In this
part, our aim is to demonstrate the ability of BTD-HIRLS to
reveal the true model structure. We set SNR=15 dB and we
estimate the success rates in the estimation of R as well as of
the Lr’s for 100 different realizations of the experiment. Again,
we generate tensors of dimensions 18× 18× 10 and the true
number of blocks, R, is set to 3. We compare BTD-HIRLS with
BTD-AGL and for both algorithms we over-estimateR andLr’s
as Rini = 10 and Lini = 10 for all block terms. We examine two
different scenarios:

a) Scenario I: The true block ranks are L1 = 8, L2 = 6
and L3 = 4. In this case,

∑R
r=1 Lr = min(I, J), that is, the

(most well-known) sufficient uniqueness condition mentioned
in the Introduction [1, Theorem 4.1] is met. As it can be seen in
Fig. 4(a), BTD-HIRLS achieves success rates higher than 90%
for all Lr’s, outperforming BTD-AGL in the task of revealing
the true Lr’s. This can be explained by the properties of the
regularizer of BTD-HIRLS which is carefully designed so as
to better capture the structure of the decomposition model. The
latter is also verified in Fig. 4(c), where we can see that BTD-
HIRLS is more efficient than BTD-AGL when it comes to the
success in estimating the number of block terms, R.

b) Scenario II: In this more challenging setting, we set
L1 = 9, L2 = 7, and L3 = 5. Thus, we now have

∑R
r=1 Lr >

min(I, J) and hence the above sufficient uniqueness condition
is violated. However, it can be observed in Fig. 4(b) that BTD-
HIRLS reveals all Lr’s with high relative frequencies, more or
less outperforming BTD-AGL. Moreover, the success rate of
accurately estimatingR remains high as in the case of the simpler
scenario (cf. Fig. 4(d)).

B. Experimenting With Real Data: Hyper-Spectral Image
De-Noising

Hyper-spectral images are known to exhibit high coherence
both in the spectral and the spatial domain [49]. As a result, low-
rank matrix and tensor factorization methods have been widely
employed to address related problems such as restoration, super
resolution, de-noising, etc. [13], [14], [49]. Such an image can be
viewed as a 3-way tensor, with its first two modes corresponding
to the spatial coordinates and the third mode to the spectral
bands. It is shown in [12] that the common linear mixing model
assumption for HSI dictates a BTD model with its parameters
having a clear physical interpretation. Here, we consider the
recovery of a hyper-spectral image from its noise-corrupted
version with additive Gaussian noise of SNR=5 dB, with the
aid of the BTD-HIRLS and BTD-AGL algorithms. The idea is
to recover the image as a low-rank BTD approximation of the
noisy one, capitalizing on the low-rank structure of the HSI,
which allows the removal of the high-rank noise [49]. In both
cases, we set Rini = 50 and Lini = 10. Note that, for HSI data,
and using the HSI spectral unmixing jargon, R is related to
the number of the end-members (i.e., spectral signatures of the
materials that exist in the depicted scene) while the Lr’s reflect
the ranks of the corresponding R abundance maps (i.e., the
images of the percentages of a given material in the given image).
In this example, we consider the Washington DC Mall AVIRIS
image captured at m = 191 contiguous spectral bands in the 0.4
to 2.4 μm region of the visible and infrared spectrum [49]. The
size of the image is 150× 150 pixels. Thus, a 150× 150× 191
tensor is formed.

We compare the performance of the proposed algorithm in
this task with that of BTD-AGL, both visually and in terms
of the structural similarity index measure (SSIM). A popular
metric of the degradation of an image as perceived change in
structural information, SSIM is defined for two image windows
x, y as SSIM(x, y) =

(2μxμy+c1)(2σxy+c2)
(μ2

x+μ2
y+c1)(σ2

x+σ2
y+c2)

, where μx, μy and
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Fig. 4. Relative frequencies of the estimated values of Lr’s and success rate (%) of estimating R via BTD-HIRLS and BTD-AGL. SNR = 15 dB. (a) Scenario I:∑R

r=1
Lr ≤ min(I, J); true Lr’s are L1 = 8, L2 = 6, L3 = 4. (b) Scenario II:

∑R

r=1
Lr > min(I, J); true Lr’s are L1 = 9, L2 = 7, L3 = 5. (c) Success

rate of estimating R for Scenario I and (d) same for Scenario II.

Fig. 5. SSIM of the hyper-spectral images recovered via BTD-HIRLS and
BTD-AGL.

σ2
x, σ

2
y are their averages and variances respectively, and σxy

denotes their covariance. c1, c2 are small constants that are used
for averting zero values in the numerator and the denominator.
In our case8, a separate value of SSIM is obtained for each
spectral band (frontal slice of the HSI tensor) to measure the
similarity of the reconstructed-denoised image with its “clean”
version, considered as the ground truth. Fig. 5 plots the values of
SSIM, while the results can be visually inspected in Fig. 6, where
RGB false color images reconstructed from bands (24,64,135)

8We have employed the Matlab 2019b function ssimval.

Fig. 6. False RGB color images of Washington DC Mall AVIRIS hyper-
spectral image. (a) Original (b) Noisy (c) De-noised with BTD-AGL (d) De-
noised with BTD-HIRLS.

are shown.9 The two algorithms are seen to perform equally
well in this experiment, though at a significantly shorter run-time

9The choice was random, aiming only at showing examples from various
regions of the spectrum.
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for BTD-HIRLS. Both estimate R as 8, which agrees with the
true number of the end-members in the scene depicted [49].

V. CONCLUSION

The challenging problem of efficiently and effectively esti-
mating the model structure and parameters of a BTD has recently
received special attention due to the increasing application range
of this tensor model. This paper briefly reviews the related
literature and reports our recent results on this topic, which
are based on an appropriate extension to the BTD model of
our earlier rank-revealing work on low-rank matrix and tensor
approximation. The idea is to impose column sparsity jointly
on the factors and in a hierarchical manner that matches the
structure of the model, and successively estimate the ranks as the
numbers of factor columns of non-negligible magnitude, with
the aid of alternating hierarchical IRLS. The proposed method
enjoys fast convergence and low computational complexity, also
allowing the negligible columns to be pruned in the course of the
procedure. Simulation results that demonstrate the effectiveness
of our method in accurately estimating both the ranks and the
factors in both synthetic and real-world scenarios are reported.

Future work will include the development of constrained
variants of the method and (semi-)automatic ways of tuning its
regularization parameter.
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APPENDIX A
PROOF OF POSITIVE SEMI-DEFINITENESS

Let the ILR× 1 vector a � vec(A) be
[a11, . . . , a1d, . . . , aI1, . . . , aId]

T where d � LR. After some
tedious algebra, it can be shown that the Hessian of fA(A|B,C)
w.r.t. a is written as

HA = II ⊗ (PTP+ λD)− λU = H̄A − λU

i.e., H̄A −HA = λU, where U is a Id× Id matrix which
consists of I2 d× d diagonal blocks denoted as Uij with
i, j = 1, 2, . . . , I and shown in (20) shown at the bottom of this
page. Note that for the sake of the simplicity of the expressions,
η2 has been omitted. From (20) it follows thatU can be written in
the form U = ŨTŨ, hence it is positive semi-definite. In fact,
Ũ is a d× Id matrix that comprises I d× d diagonal blocks
Ũi which can be written as in (21) shown at the bottom of the
next page. It thus follows that, since λ > 0, H̄A −HA is also
positive semi-definite, which completes the proof. Analogous
results for the B and C sub-problems can be similarly arrived
at.

APPENDIX B
PROOF OF EQUATION (15)

The gradient of fA(A|Bk,Ck) (cf. (10)) w.r.t. A can be
written as

∇AfA(A|Bk,Ck) = −Y(1)P
k +AkPkTPk + λADA,

(22)

whereDA is anRL×RL diagonal matrix having a form similar
to Dk with arl instead of akrl in (13) and (14). Hence (22)
computed at Ak takes the form

∇AfA(Ak|Bk,Ck) = −Y(1)P
k +Ak(PkTPk + λDk).

(23)

Uij = diag

⎛
⎜⎜⎜⎝
ai1aj1

[(‖a11‖22 + ‖b11‖22
)1/2

+
(∑L

l=1

√
‖a1 l‖22 + ‖b1 l‖22

)2
+ ‖c1‖22

]
[(∑L

l=1

√
‖a1 l‖22 + ‖b1 l‖22

)2
+ ‖c1‖22

]3/2
(‖a11‖22 + ‖b11‖22)3/2

, . . .

aiLajL

[(‖a1L‖22 + ‖b1L‖22
)1/2

+
(∑L

l=1

√
‖a1 l‖22 + ‖b1 l‖22

)2
+ ‖c1‖22

]
[(∑L

l=1

√
‖a1 l‖22 + ‖b1 l‖22

)2
+ ‖c1‖22

]3/2
(‖a1L‖22 + ‖b1L‖22)3/2

,

ai(L+1)aj(L+1)

[(‖a21‖22 + ‖b21‖22
)1/2

+
(∑L

l=1

√
‖a2 l‖22 + ‖b2 l‖22

)2
+ ‖c2‖22

]
[(∑L

l=1

√
‖a2 l‖22 + ‖b2 l‖22

)2
+ ‖c2‖22

]3/2
(‖a21‖22 + ‖b21‖22)3/2

, . . .

aidajd

[(‖aRL‖22 + ‖bRL‖22
)1/2

+
(∑L

l=1

√
‖aRl‖22 + ‖bRl‖22

)2
+ ‖cR‖22

]
[(∑L

l=1

√
‖aRl‖22 + ‖bRl‖22

)2
+ ‖cR‖22

]3/2
(‖aRL‖22 + ‖bRL‖22)3/2

⎞
⎟⎟⎟⎠ (20)
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To minimize the quadratic function gA(A|Ak,Bk,Ck), we find
the unique matrix A for which ∇AgA(A|Ak,Bk,Ck) = 0.
From (11) we have

∇AgA(A|Ak,Bk,Ck)

= ∇AfA(Ak|Bk,Ck) + (A−Ak)(PkTPk + λDk). (24)

Substituting (23) in (24), equating to zero and solving for A
leads to (15). Eqs. (17) and (19) can be obtained in an analogous
way.

APPENDIX C
COMPUTATIONAL COMPLEXITY OF BTD-HIRLS

Using the mixed product rule from [55, Eq. (25)],STS in (19)
can be equivalently written as

STS = (IR ⊗ 1T
L)(A

TA ∗BTB)(IR ⊗ 1L), (25)

which allows it to be computed in a cheaper manner. Analogous
expressions can be arrived at for the other two Grammian matri-
ces involved in the algorithm iterations. Indeed, it is not difficult
to generalize the mixed product rule to partition-wise Khatri-Rao
products with column-wise partition for the one of the factors,
as it is the case for P and Q. One can then readily verify that the
corresponding Grammian matrices, PTP and QTQ, required
in (15) and (17), respectively, can be equivalently written as:

PTP = BTB ∗ (CTC⊗ 1L×L) (26)

QTQ = ATA ∗ (CTC⊗ 1L×L). (27)

Neglecting existing symmetries the computational cost of a
BTD-HIRLS iteration can be estimated as follows. The com-
putation of the matrices P,Q, and S requires (IJ + JK +
KI)(LR)multiplications in total. When computing their Gram-
mians as in (25), (26), and (27), (2(I + J) + 3)(LR)2 +
2KR2 multiplications are needed. For the D matrix we need
around ((I + J)L+K)R+ LR multiplications (not counting

the square roots). The matrix inversions require O(2(LR)3 +
R3) multiplications in total. Finally, for the matrix multipli-
cations in (15), (17) and (19), 2IJKLR+ (I + J)K(LR)2 +
IJKR+ IJR2 multiplications are required. Therefore, in the
most common practical case of big low-rank tensors, that is when
I, J,K � R,L, the per-iteration computational complexity of
BTD-HIRLS amounts to O(IJKLR).

APPENDIX D
HIERARCHICAL IRLS NATURE OF BTD-HIRLS

Ifx = [x1 x2 · · · xn ]
T is a sparse vector, the IRLS algorithm

for estimating x subject to an �2 proximity criterion is derived
by solving the following minimization problem at iteration k +
1 [50]:

xk+1 = argmin
x

1

2
‖b−Rx‖22 +

λ

2

n∑
i=1

x2
i√

(xk
i )

2 + η2
. (28)

This problem admits the closed-form solutionxk+1 = (RTR+
λWk)−1RTb, whereWk is a diagonal weighting matrix whose
ith diagonal entry is given by Wk(i, i) = ((xk

i )
2 + η2)−1/2.

In the same vein, it can be shown that the closed-form expres-
sion for the BTD factor Ak+1 given in (15) can be also obtained
by solving the following minimization problem

Ak+1 = argmin
A

1

2

∥∥∥YT
(1) −PkAT

∥∥∥2
F

+
λ

2

R∑
r=1

(
1
2

∑L
l=1

‖arl‖22+‖bk
rl‖22+η2√

‖ak
rl‖22+‖bk

rl‖22+η2

)2

+ ‖ckr‖22 + η2√(∑L
l=1

√
‖akrl‖22 + ‖bk

rl‖22 + η2
)2

+ ‖ckr‖22 + η2

.

(29)

Ũi = diag

⎛
⎜⎜⎜⎝
ai1

[(‖a11‖22 + ‖b11‖22
)1/2

+
(∑L

l=1

√
‖a1 l‖22 + ‖b1 l‖22

)2
+ ‖c1‖22

]1/2
[(∑L

l=1

√
‖a1 l‖22 + ‖b1 l‖22

)2
+ ‖c1‖22

]3/4
(‖a11‖22 + ‖b11‖22)3/4

, . . .

aiL

[(‖a1L‖22 + ‖b1L‖22
)1/2

+
(∑L

l=1

√
‖a1 l‖22 + ‖b1 l‖22

)2
+ ‖c1‖22

]1/2
[(∑L

l=1

√
‖a1 l‖22 + ‖b1 l‖22

)2
+ ‖c1‖22

]3/4
(‖a1L‖22 + ‖b1L‖22)3/4

,

ai(L+1)

[(‖a21‖22 + ‖b21‖22
)1/2

+
(∑L

l=1

√
‖a2 l‖22 + ‖b2 l‖22

)2
+ ‖c2‖22

]1/2
[(∑L

l=1

√
‖a2 l‖22 + ‖b2 l‖22

)2
+ ‖c2‖22

]3/4
(‖a21‖22 + ‖b21‖22)3/4

, . . .

aid

[(‖aRL‖22 + ‖bRL‖22
)1/2

+
(∑L

l=1

√
‖aRl‖22 + ‖bRl‖22

)2
+ ‖cR‖22

]1/2
[(∑L

l=1

√
‖aRl‖22 + ‖bRl‖22

)2
+ ‖cR‖22

]3/4
(‖aRL‖22 + ‖bRL‖22)3/4

⎞
⎟⎟⎟⎠ (21)
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A similar minimization problem can be defined for computing
the factor Bk+1 as in (17), while we can also get (19) from

Ck+1 = argmin
C

1

2

∥∥∥YT
(3) − SkCT

∥∥∥2
F

+
λ

2

R∑
r=1

(∑L
l=1

√
‖akrl‖22 + ‖bk

rl‖22 + η2
)2

+ ‖cr‖22 + η2√(∑L
l=1

√
‖akrl‖22 + ‖bk

rl‖22 + η2
)2

+ ‖ckr‖22 + η2

(30)

By carefully inspecting the objective functions in (29) and (30)
and comparing with the conventional IRLS objective function
in (28), we easily recognize a hierarchical IRLS structure con-
sisting of two separate reweighting least squares steps. Each step
gives rise to a separate reweighting matrix. Namely, the first one
(D1) is composed of the inverses of the outer summation terms of
the regularizer in (9) and jointly weighs the blocks of A,B, i.e.
theAr’s and Br’s, and the respective columns of C. The second
reweighting matrix (D2) contains the inverses of the terms of the
inner summation in (9) and jointly balances the corresponding
columns of the Ar’s and Br’s. It thus follows that the proposed
two-level �1,2 regularization naturally leads to a IRLS scheme
with a corresponding hierarchy.
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