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Abstract—In this paper, a novel possibilistic c-means cluster-
ing algorithm, called adaptive possibilistic c-means, is presented.
Its main feature is that its parameters, after their initialization,
are properly adapted during its execution. Provided that the al-
gorithm starts with a reasonable overestimate of the number of
physical clusters formed by the data, it is capable, in principle, to
unravel them (a long-standing issue in the clustering literature).
This is due to the fully adaptive nature of the proposed algorithm
that enables the removal of the clusters that gradually become ob-
solete. In addition, the adaptation of all its parameters increases
the flexibility of the algorithm in following the variations in the
formation of the clusters that occur from iteration to iteration.
Theoretical results that are indicative of the convergence behavior
of the algorithm are also provided. Finally, extensive simulation
results on both synthetic and real data highlight the effectiveness
of the proposed algorithm.

Index Terms—Cluster elimination, parameter adaptation, pos-
sibilistic clustering.

I. INTRODUCTION

C LUSTERING is a well-established data analysis method-
ology that has been extensively used in various fields of

applications during the last decades, such as life sciences, med-
ical sciences, and engineering [1]. Given a set of entities, its
aim is the identification of groups (clusters) formed by “simi-
lar” entities (e.g., [2]–[5]). Usually, each entity is represented
by a set of measurements, which forms its associated feature
vector. This is also called data vector and the set of all these
vectors forms the dataset under study. The space where all these
vectors live is called feature space. The clustering of the enti-
ties under study is based exclusively on the clustering of their
corresponding feature vectors. According to the way a data
vector is associated with various clusters, three main philoso-
phies have been developed: 1) hard clustering, where each vec-
tor belongs exclusively to a single cluster, 2) fuzzy clustering,
where each vector may be shared among two or more clusters,
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and 3) possibilistic clustering, where the association (degree of
compatibility) of a data vector with a given cluster is indepen-
dent of its association with any other cluster.

Most of the work on clustering has been focused on compact
and hyperellipsoidally shaped clusters and the most well-known
algorithms that deal with this case and follow one of the previ-
ous philosophies are the k-means (hard clustering), e.g., [6], the
fuzzy c-means (FCM), e.g., [7], [8] and the possibilistic c-means
(PCM), e.g., [2], [9]–[13], respectively. In all these algorithms,
the clusters are represented by vectors that lie in the feature
space, called cluster representatives. The aim of all these al-
gorithms is to move the representatives to the “centers” of the
regions that are “dense in data points” (dense regions), that is
to regions where there is significant aggregation of data points
(clusters). Under this perspective, we say that each such vector
represents a cluster and their movement toward the center of
the clusters is carried out via the minimization of appropriately
defined cost functions.

Notwithstanding their popularity, both k-means and FCM
have two shortcomings. First, they are vulnerable to noisy data
and outliers [2], [11].1 Second, they require prior knowledge of
the number of clusters, m, underlying in the dataset (which, of
course, is rarely known in practice).2 An additional character-
istic that both of these algorithms share is that they impose a
clustering structure on the dataset, in the sense that they will re-
turn m clusters irrespectively of the fact that more or less than m
clusters may actually underlie in the dataset. Specifically, if m
is less than the actual number of clusters, at least some represen-
tatives will fail to move to dense regions, while in the opposite
case, some naturally formed clusters will split into more than
one pieces.

As far as the PCM algorithms are concerned, the cluster rep-
resentatives are updated, based on the degree of compatibility of
a data vector with a given cluster. Contrastingly to the FCM, in
PCM algorithms, the degrees of compatibility of a data vector
with the various clusters are independent to each other, and no
sum-to-one constraint is imposed on them. A consequence of
this fact is that even if the number of clusters is overestimated,
in principle, all representatives will be driven to dense regions,
making thus feasible the uncovering of the true clusters. How-
ever, in this case, the scenario where two or more cluster rep-
resentatives are led to the same dense in data region, may arise
[16], [17]. In addition, although PCM deals well with noisy
data points and outliers, compared with k-means and FCM, it
involves additional parameters, usually denoted by γ,3 each one
being associated with a cluster, which require good estimates.

1A method for facing this problem with FCM is discussed in [14].
2A method for estimating m for FCM is via the use of suitable validity indices

(e.g., [12], [15]).
3In other works, the letter η is used.
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In addition, once they have been estimated, they are kept fixed
during its execution. Poor initial estimation of these parameters
often leads to poor clustering performance, especially in more
demanding datasets.

Many variants of PCM have been proposed to deal with its
weaknesses. More specifically, Timm et al.[18] try to avoid co-
incident clusters by introducing mutual repulsion of the clusters
so that they are forced away from each other. The same prob-
lem is treated in [11], [16], and [19] by combining possibilistic
and fuzzy arguments. In addition, in [20], a strategy is proposed
that introduces a “gray zone” around each representative, which
contains the points around the cluster boundary. The latter deals
with the coincident clusters problem, is robust to outliers, and
uses less ad hoc defined parameters than PCM. Another algo-
rithm that involves very few parameters and is robust to noise
and outliers is described in [12]. In [21], ideas from [11] and
[12] are combined for dealing additionally with the coincident
clusters issue. The same issues are also addressed in [13] using,
however, a different approach than [21].

The original versions of PCM algorithms have no cluster
elimination ability, that is, if they are initialized with an overes-
timated number of clusters, they cannot eliminate any of them
as they evolve. Inspired by [22], PCM-type algorithms that per-
form cluster elimination during their execution are described
in [23] and [24]. However, in these algorithms, the parame-
ters γ are considered equal for all clusters and are kept fixed
as they evolve. Consequently, their ability to deal with closely
located clusters with significantly different variances is drasti-
cally decreased. In addition, their computational complexity is
dramatically increased [23].

In this study, we focus on PCM. More specifically, we extent
the classical PCM algorithm, proposed in [10], by modifying the
way the parameters γ are defined and treated, giving rise to a
new algorithm called adaptive possibilistic c-means (APCM).4

In APCM, the parameters γ, after their initialization, are prop-
erly adapted as the algorithm evolves. In particular, for each
specific cluster, we propose to adapt its parameter γ based on
the mean absolute deviation of only those data vectors that are
most compatible with this cluster.

The adaptation of γs renders the algorithm more flexible in
uncovering the underlying clustering structure, compared with
other related possibilistic algorithms, especially in demanding
datasets such as those consisting of closely located to each other
clusters or even with big difference in their variances. In addi-
tion, as a direct consequence of this adaptation, the algorithm has
the ability to estimate the (unknown in most cases in practice)
true number of physical (or natural) clusters. More specifically,
if the number of the representatives with which APCM starts
is a crude overestimation of the number of natural clusters, the
algorithm gradually reduces this number, as it progresses, and,
finally, it places a single representative to the center of each
dense region. In this sense, it provides not only the number of
natural clusters, which is a long-standing issue in the clustering
framework, but also the clusters themselves. Analytical results

4A preliminary version of APCM has been presented in [25].

are presented that justify the cluster elimination capability of the
proposed algorithm and provide strong indications of its conver-
gence behavior. Extensive simulation results on both synthetic
and real data corroborate our theoretical analysis and show that
APCM offers in general superior clustering performance com-
pared with relative state-of-the-art clustering schemes.

The rest of this paper is organized as follows. In Section II,
a brief description of PCM algorithms is given, as well as pre-
vious attempts for dealing with their shortcomings. In Section
III-C, the proposed APCM clustering algorithm is presented
in detail, and its rationale is fully explained in a separate sub-
section. In Section III-D, the performance of APCM is tested
against several related state-of-the-art algorithms. Concluding
remarks are provided in Section V. Finally, indicative theoretical
convergence results of APCM are given in Appendix B.

II. REVIEW OF POSSIBILISTIC C-MEANS, ISSUES, AND

POTENTIAL SOLUTIONS

In this section, the PCM clustering algorithm is reviewed, and
its main features are discussed. In addition, possible solutions
from the literature are commented that try to deal with its weak
points.

A. Possibilistic C-Means Review

Let X = {xi ∈ �� , i = 1, ..., N} be a set of N l-dimensional
data vectors to be clustered and Θ = {θj ∈ �� , j = 1, ...,m}
be a set of m vectors that will be used for the representation
of the clusters formed by the points in X . Let U = [uij ], i =
1, ..., N, j = 1, ...,m be an N × m matrix whose (i, j) entry
stands for the so-called degree of compatibility of xi with the
jth cluster, denoted by Cj , and represented by the vector θj . In
what follows, we consider only Euclidean norms, denoted by
‖ · ‖.

Unlike fuzzy clustering algorithms, the sum-to-one constraint
is not imposed on the rows of U in possibilistic clustering algo-
rithms, i.e., the summation

∑m
j=1 uij is not necessarily equal to

1 for each xi . According to [9] and [10], the uij s should satisfy
the conditions

(C1) uij ∈ [0, 1], (C2) max
j=1,...,m

uij > 0, and

(C3) 0 <

N∑

i=1

uij < N. (1)

In words, (C2) means that no vector is allowed to be totally
incompatible with all clusters, whereas (C3) means that for a
given cluster, there is at least one data point that is not totally
incompatible with it. Loosely speaking, each data point should
“belong” to at least one cluster (C2), whereas no cluster is
allowed to be “empty” (C3). The aim of a possibilistic algorithm
is to move θj s toward the centers of regions where the data
points of X form aggregations (i.e., to dense regions). This is
carried out via the minimization of, among others, the following
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objective function [10]5:

JPCM(Θ, U) =
m∑

j=1

Jj ≡

≡
m∑

j=1

Jj

︷ ︸︸ ︷[
N∑

i=1

uij‖xi − θj‖2 + γj

N∑

i=1

(uij ln uij − uij )

]

(2)

with respect to θj s and uij s, while γj s are fixed user-defined
positive parameters. Note that the second term in the bracketed
expression in the right-hand side of (2) prevents the algorithm
from ending up with the trivial zero solution for uij s.

Proceeding with the minimization of JPCM(Θ, U) with re-
spect to uij and θj , we end up with the following PCM updating
equations:

uij (t) = exp
(

−‖xi − θj (t)‖2

γj

)

(3)

θj (t + 1) =
∑N

i=1 uij (t)xi
∑N

i=1 uij (t)
(4)

for t = 0, 1, 2, . . ., with the iterations being started after the
initialization of θj s to θj (0)s, j = 1, . . . ,m. Iterations are per-
formed until a specific termination criterion is met (e.g., no
significant change occurs on θj s between two successive itera-
tions). Note from the updating equation (3) that uij decreases
exponentially fast as the distance between xi and θj increases.
In addition, from (4), it follows that all data vectors contribute
to the estimation of the next location of each one of the rep-
resentatives. However, the farther a data vector lies from the
current location of a specific θj , the less it contributes to the
determination of its new location, as (3) indicates.

Let us comment now on the parameters γj , j = 1, . . . , m.
These are a priori estimated and kept fixed during the execution
of the algorithm. A common strategy for their estimation is to
run the FCM algorithm first and set

γj = K

∑N
i=1 uFCM

ij ‖xi − θj‖2

∑N
i=1 uFCM

ij

, j = 1, . . . , m (5)

where θj s and uFCM
ij s are the final FCM estimates for cluster

representatives and uij coefficients, respectively.6 Parameter K

5We use this cost function, instead of the one given in the seminal paper [9],
since the proposed scheme, to be presented in the next section, is based on it.
However, for reasons of thoroughness, we give also the cost function of [9],
which is

J ′
PCM(Θ, U ) =

m∑

j=1

J ′
j ≡

m∑

j=1

[
N∑

i=1

uq
ij ‖xi − θj ‖2 + γj

N∑

i=1

(1 − uij )q

]

where q is a parameter that “resembles” to the fuzzifier in FCM [such a parameter
does not appear in JPCM in (2)].

6The version of (5) proposed in [9] for the cost function J ′
PCM (see footnote 5)

raises uFCM
ij s to the qth power. However, in JPCM, no parameter q is involved.

is user-defined and is usually set equal to 1.7 From (5), γj

turns out to be a measure of variance of cluster Cj around its
representative.

It is worth noting that, due to the independence between
uij s, j = 1, . . . , m, for a specific xi , the optimization problem
solved by PCM can be decomposed into m subproblems, each
one optimizing a specific Jj function [see (2)]. Considering the
representative θj associated with a given Jj , we have from (3)
that points that lie closer to the cluster representative will have
larger degrees of compatibility with Cj . On the other hand, (4)
implies that the new position of θj is mainly specified by the data
points that are most compatible with Cj . It is not difficult to see
that such a coupled iteration is expected to lead representative
θj toward the center of the dense in data region that lies closer
to its initial position, for appropriate choices of γj s (see also
Propositions 3 and 4 in Appendix B).

B. Possibilistic C-Means Issues and Potential Solutions

Having described the main characteristics of the algorithm
and the rationale behind them, let us focus now on some is-
sues that a user faces with PCM. The first one concerns the m
parameters γj s. An improper choice of γj s may lead PCM to
failure in identifying a sparse cluster that is located very close
to a denser cluster (see also experiment 1, in Section IV-A),
or it may even lead the algorithm to recover the whole dataset
as a single cluster [17]. Referring to (5), the uij s produced by
the FCM (uFCM

ij s) are not always accurate (e.g., in the presence
of noise, [10]). In addition, the choice of the parameter K is
clearly data-dependent, and there is no general clue on how to
select it. In order to deal with this problem, Yang and Wu[12]
propose the replacement of all γj s by a single quantity that is
controlled by only two parameters: 1) the number of clusters
and 2) a parameter that plays a “fuzzifier” role.

An additional source of inconveniences concerning γj s is the
fact that, once they have been set, they remain fixed during the
execution of PCM. This reduces the ability of the algorithm to
track the variations in the clusters formation during its evolution.
A way out of this problem is to allow γj s to vary during the
execution of the algorithm. A hint on this issue has been given
in [9], but, to the best of our knowledge, no further work has
been done toward this direction.

The second issue, which is related to the first one, is that
of coincident clusters. As stated before, with a proper choice
of γj s, PCM drives, in principle, the cluster representatives to-
ward the centers of the dense in data regions that are closer to
their initial positions. Therefore, if two or more representatives
are initialized close to the same dense region, they will move
toward its center, i.e., all of them will represent the same clus-
ter. Alternatively, one could say that the clusters represented
by these representatives are coincident.8 This situation arises
due to the absence of dependence between the coefficients uij ,

7An alternative choice for γj s, given in [9] is γj =

∑
u i j > k

‖x i −θj ‖2

∑
u i j > k

1
,

where k is an appropriate threshold.
8This point of view justifies the term “coincident clusters.”
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j = 1, . . . ,m, associated with a specific xi [see (3)], which,
as an indirect consequence, allows the representatives to move
independently from each other [see (4)]. Note that such an issue
does not arise in FCM due to the sum-to-one constraint im-
posed on the uij s associated with each xi . Several ways to deal
with this problem have been proposed in the literature. More
specifically, in [11], a variation of PCM is proposed, named
possibilistic fuzzy c-means (PFCM), which combines concepts
from PCM and FCM. Relative approaches are discussed in [16],
[21], and[26], while other approaches are proposed in [13] and
[18].

A common feature in all the previously mentioned works is
that condition (C3), which basically requires all clusters to be
nonempty, is respected. Thus, in all the algorithms, the true num-
ber of clusters m is implicitly required, in order to give them
the ability to recover all clusters, without, hopefully, returning
coincident clusters. Thus, the requirement of the knowledge of
the number of clusters is still here in disguise. A conceptually
simple solution to address this requirement, while respecting
condition (C3), comes from the PCM itself. Specifically, one
could run the original PCM with an overestimated number of
cluster representatives, which will be initialized appropriately
(at least one representative should lie at each dense in data
region). Then, after a proper selection of γj s, PCM will (hope-
fully) recover the physical clusters, that is, it will move at least
one representative to the center of each dense region. Then, an
additional step is required in order to identify coincident clusters
and remove duplicates. This idea has been partially discussed
in [10], without, however, proposing explicitly to run the algo-
rithm with an overdetermined number of clusters. However, in
this case, a reliable method for identifying duplicate clusters
should be invented.

The APCM algorithm proposed in this paper alleviates the
shortcomings of PCM discussed previously. The aims of APCM
are 1) to place initially at least one representative to each phys-
ical cluster; and 2) to retain each representative to the physical
cluster where it was first placed, leading it gradually to its cen-
ter. The first aim is achieved by adopting the results provided
by the FCM algorithm, when the latter is executed with an
overestimated number of physical clusters. The second one is
achieved through a different definition of γj s, while, in addi-
tion (and perhaps more importantly), γj s are allowed to adapt
at each iteration of the algorithm. In contrast with PCM, the
adopted expression of γj s takes into account only the points
that are most compatible with the corresponding Cj s at each
iteration of the algorithm. The benefit of the proposed approach
is twofold. First, the algorithm becomes more flexible in track-
ing the variations in the formation of the clusters, as it evolves.
As a result, APCM is capable in dealing with difficult clustering
problems in which PCM frequently fails, e.g., the identification
of small and/or sparse physical clusters that are located close
to bigger and/or denser clusters. Second, the algorithm allows
the possibility for a cluster to become empty, by reducing its
corresponding γj toward zero. This allows us to start the APCM
with an overestimated number of natural clusters and end up
with a single representative placed to the center of each natural

cluster, eliminating all the remaining representatives.9 Thus, in
APCM, the number of clusters, m, is also considered to be a
time-varying quantity.

III. ADAPTIVE POSSIBILISTIC C-MEANS

In this section, we describe in detail the various stages of the
algorithm. Specifically, we first describe the way its parameters
are initialized. Next, we comment on the updating of its param-
eters (uij s, θj s, γj s, m), and we discuss in detail how the initial
estimate of the number of natural clusters can be reduced to the
true one, by exploiting the adaptation of γj s.

The proposed APCM algorithm stems from the optimization
of the cost function of the original PCM [see (2)], by setting

γj =
η̂

α
ηj (6)

where parameter ηj is a measure of the mean absolute deviation
of the current form of cluster Cj , η̂ is a constant defined as
the minimum among all initial ηj s, η̂ = min

j
ηj , and α is a

user-defined positive parameter. The rationale of the adopted
expression for γj s as given in (6) will be analyzed and further
discussed in Section III-C.

A. Initialization in Adaptive Possibilistic C-Means

As mentioned previously, first, we make an overestimation,
denoted by mini , of the true number of natural clusters m,
formed by the data points. Regarding θj s and ηj s, their initial-
ization drastically affects the final clustering result in APCM.
Thus, a good starting point for them is of crucial importance.
To this end, the initialization of θj s is carried out using the final
cluster representatives obtained from the FCM algorithm, when
the latter is executed with mini clusters. Taking into account
that FCM is very likely to drive the representatives to dense in
data regions (since mini > m), the probability of at least one of
the initial θj s to be placed in each dense region (cluster) of the
dataset increases with mini .

After the initialization of θj s, we propose to initialize ηj s as
follows:

ηj =

∑N
i=1 uFCM

ij ‖xi − θj‖
∑N

i=1 uFCM
ij

, j = 1, . . . , mini (7)

where θj s and uFCM
ij s in (7) are the final parameter estimates

obtained by FCM.10

It is worth noting that the above initialization of ηj s involves
Euclidean instead of squared Euclidean distances, as is the case
for γj s in the classical PCM. As it will be shown next, this
convention will also be kept in the update expressions of ηj s,
given below, while its rationale is explained in Section III-C.

B. Parameter Adaptation in Adaptive Possibilistic C-Means

In the proposed APCM algorithm, all parameters are adapted
during its execution. More specifically, this refers to 1) the

9This is theoretically justified in Proposition 5 in Appendix B.
10An alternative initialization for θj s and ηj s is proposed in [25].
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degrees of compatibility uij s and the cluster representatives
θj s; 2) the adjustment of the number of clusters; and 3) the
adaptation of ηj s, with 2) and 3) being two interrelated pro-
cesses.

As far as the updating of uij s is concerned, after setting
γj = η̂

α ηj in (2) and minimizing JPCM(Θ, U) with respect to
uij , we end up with the following equation:

uij (t) = exp
(

−‖xi − θj (t)‖2

γj (t)

)

= exp
(

−α

η̂

‖xi − θj (t)‖2

ηj (t)

)

(8)

where iteration dependence on ηj s has now been inserted. The
updating of θj s is done as in the original PCM scheme according
to (4). Concerning the adjustment of the number of clusters
m(t) at tth iteration, we proceed as follows. Let label be an
N -dimensional vector, whose ith element is the index of the
cluster which is most compatible with xi , which is the index
j for which uij (t) = maxr=1,...,m (t) uir (t). At each iteration
of the algorithm, the adjustment (reduction) of the number of
clusters m(t) is achieved by examining, for each cluster Cj , if
its index j appears at least once in the vector label (i.e., if there
exists at least one vector xi that is most compatible with Cj ).
If this is the case, Cj is preserved. Otherwise, Cj is eliminated,
and thus, U and Θ are updated accordingly. As a result, the
current number of clusters m(t) is reduced (see Possible cluster
elimination part in Algorithm 1).

Finally, concerning γj (t)s, in contrast with the classical PCM
where γj s remain constant during the execution of the algorithm,
in APCM, the parameters γj s, given in (6), are adapted at each
iteration through the adaptation of the corresponding ηj s. More
specifically, we propose to compute the parameter ηj of a cluster
Cj at each iteration, as the mean absolute deviation of the most
compatible to cluster Cj data vectors, i.e.,

ηj (t + 1) =
1

nj (t)

∑

x i :u i j (t)=m ax r = 1 , . . . , m ( t + 1 ) u i r (t)

‖xi − μj (t)‖

(9)
where nj (t) denotes the number of the data points xi that are
most compatible with the cluster Cj at iteration t and μj (t) the
mean vector of these data points (see also Adaptation of ηj s part
in Algorithm 1). Note that the definition of γj s in the proposed
updating mechanism from (6) and (9) differs from others used
in the classical PCM, as well as in many of its variants, in two
distinctive points. First, ηj s in APCM are updated taking into
account only the data vectors that are most compatible to cluster
Cj and not all the data points weighted by their corresponding
uij coefficients. This particularity is an essential condition for
succeeding cluster elimination, as by this way, a parameter ηj

may be pushed to zero value, thus eliminating the corresponding
cluster Cj , whereas in the case where all data points are taken
into account, ηj would remain always positive. Second, the dis-
tances involved in (9) are between a data vector and the mean
vector μj (t) of the most compatible points of the cluster; not
from θj (t), as in previous works (e.g., [9], [16]). This allows

more accurate estimates of ηj s, since μj (t) is expected to be
closer to the next location of θj , θj (t + 1), than θj (t). This is
crucial mainly during the first few iterations of the algorithm,
where the position of θj may vary significantly from iteration
to iteration. It is also noted that, in the (rare) case where there
are two or more clusters, which are equally compatible with a
specific xi , the latter will contribute to the determination of the
parameter η of only one of them, which is chosen arbitrarily.
This modification prevents a situation of having equal ηj s in
such exceptional cases (e.g., in datasets consisting of symmetri-
cally arranged data points), which assists the successful cluster
elimination procedure, in situations where this must be carried
out. Finally, it is worth pointing out that the definition of (9) im-
plicitly interrelates the various γj s and this interrelation passes
to the uij s concerning a given xi through (3).

The APCM algorithm is explicitly stated in “Algorithm 1”
box.

C. Rationale of the Algorithm

As mentioned in the previous section, the modifications made
in the original PCM leading to APCM aim at 1) making the
algorithm capable to handling stringent clustering situations
and 2) allowing for cluster elimination. In the following, we
describe in more detail the hidden mechanisms of APCM that
render these two goals feasible.

First, we consider the case where we have two physical clus-
ters of very different variances that are located very close to
each other [see Fig. 1(a)]. This is a difficult clustering prob-
lem, in which most state-of-the-art clustering techniques fail.
We assume that after initialization with FCM, PCM has two
representatives in the areas of the physical clusters, as shown in
Fig. 1(b), with θ1 lying in the high-variance physical cluster and
θ2 in the low-variance physical cluster. Then, from (5) and due
to the proximity of the two physical clusters, it turns out that γ2
will be much larger than the actual variance of physical cluster
2. This is so because, besides the points of physical cluster 2,
the numerous, yet more distant, points of physical cluster 1 will
contribute to the computation of γ2 from (5). This means that
the representative of the small variance cluster (θ2) is affected
by the data points of its nearby cluster (C1), according to (3)
and (4). As a result, PCM is likely to end up with all representa-
tives converging erroneously in the center of the large variance
physical cluster 1 [see Fig. 1(c)].

This issue of PCM is alleviated in APCM, by taking care for
each representative to stay in the region of the physical cluster
where it was first placed. To this end, APCM reduces (compared
with PCM) the range of influence around each θj that has γj

larger than the variance of the smallest physical cluster formed
in the dataset. This way, the probability of the movement of a
representative, which is initialized in the region of a specific
physical cluster with a given variance toward the center of a
nearby physical cluster with a larger variance, is reduced. In
particular, the larger (smaller) the γj than the variance of the
smallest physical cluster is, the more it is reduced (enhanced).
On the other hand, a γj that is equal to the variance of the
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Fig. 1. Example of a 2-D dataset consisting of two physical clusters that have big difference in their variances and are located very close to each other. (a)
Dataset. (b) Initial stage of PCM. (c) Third iteration of PCM. (d) Initial stage of APCM. (e) Third iteration of APCM. (f) Final stage of APCM. The circles are
centered at θj s and have radius

√
γj s.

smallest physical cluster is not affected at all. Focusing on a
given iteration (dropping the index t), this is achieved in APCM
by defining γj as in (6). This definition results from the γj s as
defined in the original PCM via the following transformations:

γPCM
j =

∑N
i=1 uFCM

ij ‖xi − θj‖2

∑N
i=1 uFCM

ij

©1�

γ′
j =

∑
x i :ui j =maxr = 1 , . . . , m ui r

‖xi − μj‖2

nj

©2�

η2
j =

(∑
x i :ui j =maxr = 1 , . . . , m ui r

‖xi − μj‖
nj

)2
©3�ηj

η̂

α
. (10)

Under transformation ©1 , γPCM
j is transformed to γ′

j , where
1) only the xis that are most compatible with θj are taken into
account and 2) θj is replaced by μj . The adoption of the above
hard computation of γ′

j s is necessary for the cluster elimina-
tion procedure, as it will be further explained in the following.
Transformation ©2 leads γ′

j to η2
j , which carries the same “qual-

ity of information” with its predecessor, and moreover, η2
j is

upper bounded by γ′
j , j = 1, . . . ,m (see Proposition 1 in Ap-

pendix A). This intermediate step on the one hand reduces the
influence of clusters around their representatives while, on the
other hand, is a prerequisite for transformation ©3. Assuming
that α is chosen so that the quantity η̂/α equals to the mean
absolute deviation of the smallest physical cluster formed in
the dataset, then for each ηj ≥ η̂/α (ηj ≤ η̂/α), we have that
η2

j ≥ ηj (η̂/α) (η2
j ≤ ηj (η̂/α)). That is, by substituting η2

j with
ηj (η̂/α), the greater (smaller) the ηj of a cluster Cj than η̂/α,

Fig. 2. Degree of compatibility uij with respect to distance dij (η2 > η1 =
η̂/α).

the more the range of influence around its θj is reduced (en-
hanced) [see Figs. 1(d),(e) and 2]. This justifies our choice for
the γj s given in (6).

In the following, we will focus on the cluster elimination
property of the APCM algorithm. To this end, consider the case
where a single physical cluster is formed by the data points,
where k(> 1) representatives θj s, j = 1, . . . , k, are initialized
within it (see Fig. 3(a) for k = 2). As (4) suggests, each repre-
sentative will move toward the center of the dense region (see
also Propositions 3 and 4 in Appendix B for a more rigorous
justification). As θj s move toward the center of the region, they
are getting closer to each other. At a specific iteration t0 [t0 = 6
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Fig. 3. Two-dimensional dataset consisting of a single physical cluster. APCM is initialized with two representatives and the cluster elimination procedure is
illustrated at several time instances. (a) First iteration of APCM. (b) Fourth iteration of APCM. (c) Fifth iteration of PCM. (d) Sixth iteration of APCM. (e) Seventh
iteration of APCM. (f) Final iteration of APCM.

in Fig. 3(d)] where, say γr (t0) = maxj=1,...,k γj (t0), the hy-
persphere centered at θr (t0) and having radius

√
γr (t0) will

enclose all the hyperspheres associated with the other represen-
tatives. From this point on, the region of influence (γj ) of all the
clusters except Cr shrinks to 0 as is shown in Fig. 3, due to their
definition [see (6) and (9)] (a theoretical justification for the two
representatives case is given in proposition 5 in Appendix B).

D. Selection of Parameter α

As it was mentioned previously, α is a user-defined parameter
that has to be fine-tuned so that η̂/α becomes equal to the
mean absolute deviation of the smallest physical cluster. As it is
expected, larger values of mini lead to smaller initial ηj s and thus
a smaller η̂. As a consequence, there exists a tradeoff between
mini and parameter α: large (small) values of mini require small
(large) values of α so that the ratio η̂/α approximates the mean
absolute deviation of the smallest physical cluster. Note that
although the latter quantity is fixed for a given dataset, it is
unknown in practice.

In the following, we discuss how different choices of α affect
the behavior of APCM, focusing on the limiting cases α → 0
and α → +∞. Specifically, we consider a single representa-
tive θj , and we concentrate on its corresponding “subcost”
function11

Jj (θj ) =
N∑

i=1

uij‖xi − θj‖2 + ηj
η̂

α

N∑

i=1

(uij ln uij − uij )

11We write Jj (θj ) to explicitly denote the dependence of Jj on θj .

where we assume for the time being that ηj is constant, while

uij is given as uij = exp(−α
η̂

‖x i −θj ‖2

ηj
) [see (8)]. Utilizing the

last equation and after some algebra, Jj (θj ) can be written as

Jj (θj ) = −ηj
η̂

α

N∑

i=1

exp
(

−α

η̂

‖xi − θj‖2

ηj

)

. (11)

Taking the gradient of Jj with respect to θj , we have

∂Jj (θj )
∂θj

= 2
N∑

i=1

exp
(

−α

η̂

‖xi − θj‖2

ηj

)

(xi − θj ). (12)

For α → 0, we have that exp(−α
η̂

‖x i −θj ‖2

ηj
) → 1. Thus,

∂Jj (θj )
∂θj

tends to 2
∑N

i=1(xi − θj ), and equating the latter to

zero, we end up with θj = 1
N

∑N
i=1 xi . Thus, in this case, there

exists a single minimum, the mean of the dataset.
For α → +∞, it is clear from (11) that, identically, Jj (θj ) =

0. Thus, all possible choices for θj are (trivially) local minima of
Jj (θj ). As α gradually increases from 0, the number of minima
of Jj (θj ) increases, and it is expected that, for a specific range
of α values, the minima of Jj (θj ) will correspond to the centers
of the physical clusters. Of course, this cease to hold as we move
outside this range toward +∞.

The above are illustrated via a simple clustering exam-
ple. Specifically, we consider a 1-D dataset consisting of two
Gaussian clusters with 50 points each, shown on the x-axis
in Fig. 4(a). The centers of the clusters are at locations 28
and 67 and their variances are 100 and 121, respectively. We
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Fig. 4. Plot of the APCM cost function in case of a two-class 1-D dataset. Plot shows (a) the dataset. Data points are denoted by stars on the x-axis and
representatives by black dots. Results for (a) The data set. (b) min i = 3, α = 0.05, (c) min i = 3, α = 1, (d) min i = 3, α = 2, (e) min i = 10, α = 0.05,
(f) min i = 10, α = 1, and (g) min i = 10, α = 2.

consider two cases: In the first, the number of initial representa-
tives is mini = 3, while in the second, mini = 10. We run first the
FCM algorithm for each case, and we obtain the resulting uFCM

ij s
and θj s, from which the initial γj s are computed using (7) and
(6). Note that for mini = 3 and mini = 10, the corresponding η̂
values are 7.0094 and 2.3213.

In order to investigate further the relation between α and
mini, we focus on Jj that corresponds to the minimum initial γj

and we drop time dependence. Thus, in this case, γj is fixed to
η̂2/α. The “subcost” function Jj (θj ) =

∑N
i=1 uij‖xi − θj‖2 +

η̂ 2

α

∑N
i=1(uij ln uij − uij ) is plotted with respect to θj , for var-

ious values of α. We consider first mini = 3, i.e., mini is very
close to the number of actual clusters (m = 2). Thus, in this
case, the FCM algorithm is more likely to give good initial esti-
mations for ηj s [through (7)], i.e., the minimum initial ηj (≡ η̂)
approximates the mean absolute deviation of the smallest phys-
ical cluster. We consider the following indicative cases:

1) α = 0.05: In this case, the ratio η̂/α becomes much larger
than the mean absolute deviation of the smallest physical
cluster, leading all data points to have significant uij s for
all representatives [through (8)]. This justifies the plot of
Fig. 4(b), where Jj exhibits just a single valley centered
at the mean of the dataset. Clearly, the minimization of
Jj will lead θj to this position, which means that in this
case, the algorithm will fail to detect any of the two true
clusters.

2) α = 1 or 2: In this case, the ratio η̂/α approximates the
mean absolute deviation of the smallest physical cluster,
and as we can see in Fig. 4(c), (d), two well-formed val-

leys are centered at the means of the two natural clusters
(although a bit disturbed in the α = 2 case). Thus, mini-
mization of Jj will lead θj to the center of a true cluster.

In conclusion, when mini is close to actual m and provided
that at least one representative is placed at each dense region, the
minimum ηj value (η̂) that is derived using the FCM algorithm
[see (7)] is a good estimate of the mean absolute deviation of
the smallest physical cluster; thus, values of α around 1 allow
the algorithm to work properly.

In case where mini = 10 (that is mini  m), the situation
changes. In this case, all initial ηj s and thus η̂ are much smaller
than the mean absolute deviation of the smallest physical cluster.
We consider the following indicative cases:

1) α = 0.05: In this case, the ratio η̂/α approximates the
mean absolute deviation of the smallest physical cluster.
Thus, two well-formed valleys are centered at the means
of the two natural clusters [see in Fig. 4(e)], and the APCM
will lead a θj to the center of a true cluster.

2) α = 1 or 2: In this case, Jj exhibits many local minima
[see Fig. 4(f) and (g)], as the ratio η̂/α is significantly
smaller than the mean absolute deviation of the smallest
physical cluster, leading all data points to have negligible
uij s values, even with θj s that are placed very close to
them [through (8)]. As a consequence, Jj exhibits several
local minima that do not correspond to any of the two true
clusters, and APCM is most likely to end up with clusters
that do not correspond to the underlying dataset structure.

This example indicates that in cases where mini is chosen
not to be very larger than the actual number of clusters m,
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Algorithm 1 [Θ, U , label] = APCM(X , mini , α)
Input: X , mini , α
1: t = 0

� Initialization of θj ’s
2: Initialize: θj (t) via FCM (see subsection III-A)

� Initialization of ηj ’s

3: Set: ηj (t) =
∑ n

i = 1 uF C M
i j ‖x i −θj (t)‖

∑ n
i = 1 uF C M

i j
, j = 1, ...,mini

(see subsection III-A)
4: Set: η̂ = minj=1,...,m i n i ηj (t)
5: m(t) = mini
6: repeat

� Update U

7: uij (t) = exp
(
−α

η̂
||x i −θj (t)||2

ηj (t)

)
, i = 1, ..., N ,

j = 1, ...,m(t)
� Update Θ

8: θj (t + 1) =
N∑

i=1
uij (t)xi/

N∑

i=1
uij (t) ,

j = 1, ...,m(t)
� Possible cluster elimination
9: for i ← 1 to N do
10: Determine: uir (t) = maxj=1,...,m (t) uij (t)
11: Set: label(i) = r
12: end for
13: p = 0 //number of removed clusters at iteration t
14: for j ← 1 to m do
15: if j /∈ label then
16: Remove: Cj (and renumber accordingly Θ

and the columns of U )
17: p = p + 1
18: end if
19: end for
20: m(t + 1) = m(t) − p
� Adaptation of ηj s
21: ηj (t + 1) =

= 1
nj (t)

∑
x i :ui j (t)= max

r = 1 , . . . , m ( t + 1 )
ui r (t)

‖xi − μj (t)‖, j = 1, ...,m(t + 1)
22: t = t + 1
23: until the change in θj s between two successive

iterations becomes sufficiently small
24: return Θ, U , label

appropriate values for the parameter α are around 1. On the other
hand, when mini is chosen much larger than m, parameter α
should be taken much less than 1. However, in more demanding
datasets, which contain very closely located natural clusters and
for a fixed value of mini, larger values for the parameter α should
be chosen, compared with cases of less closely located clusters,
in order to discourage the movement of a representative from
one dense region to another. Experiment showed that values of
α around 1 and up to 3 suffice for almost any dataset, provided
that mini is not extremely larger than m (about three to four
times larger).

IV. EXPERIMENTAL RESULTS

In this section, we assess the performance of the proposed
method in several experimental settings and illustrate the ob-
tained results. More specifically, we consider two series of ex-
periments. In the first one, we use 2-D simulated datasets in
order to exhibit more clearly certain aspects of the behavior of
the APCM itself. In the second one, we use both simulated and
real-world datasets (Iris [27], New Thyroid [27], and a hyper-
spectral image (HSI) dataset [28]) of both low and high dimen-
sionality to evaluate the performance of APCM in comparison
with several other related algorithms.

A. Behavior of the Adaptive Possibilistic C-Means

Experiment 1: Let us consider a 2-D dataset consisting of
N = 17 points, which form two natural clusters C1 and C2 with
12 and 5 data points, respectively (see Fig. 5 ). The means of
the clusters are c1 = [1.75, 2.75] and c2 = [4.25, 2.75]. In this
experiment, we consider only the PCM (with m = 2) and the
APCM (with mini = 2, α = 1) algorithms. Fig. 5(a) and (d)
shows the initial positions of the cluster representatives that are
taken from the FCM clustering algorithm and the circles with
radius equal to

√
γj s resulting from (5) (for K = 1) for PCM

and from (7) for APCM. Similarly, Fig. 5(b) and (e) shows the
new locations of θj s after the first iteration of the algorithms and
Fig. 5(c) and (f) shows the locations of θj s at a later iteration
of them. Table I shows the degrees of compatibility uij s of
all data points xi with the cluster representatives θj s at the
three specific iterations depicted in Fig. 5 (initial, first for both
algorithms, 13th for PCM, and 10th (final) for APCM).

As it can be deduced from Table I and Fig. 5, the degrees
of compatibility of the data points of C1 with the cluster rep-
resentative θ2 increase as PCM evolves, leading gradually θ2
toward the region of the cluster C1 and thus, ending up with two
coincident clusters, although θ1 and θ2 are initialized properly
through the FCM algorithm [see Fig. 5(a)]. However, this is not
the case in the APCM algorithm, as both the cluster representa-
tives remain in the centers of the actual clusters. Obviously, this
differentiation on the behavior of the two algorithms is due to
the different definition of the parameters γj s, which affect the
degrees of compatibility of the data points with each cluster [see
(3), (5), and (9)]. This experiment indicates that, in principle,
APCM can handle successfully cases where relatively closely
located clusters with different densities are involved.

In the next experiment, we investigate on the relation between
mini and parameter α.

Experiment 2: Let us consider now a 2-D dataset consist-
ing of N = 1100 points, which form three natural clusters
C1 , C2 , and C3 (see Fig. 6). Each such cluster is modeled
by a normal distribution. The (randomly generated) means of
the distributions are c1 = [1.35, 0.23]T , c2 = [4.03, 4.09]T , and
c3 = [5.64, 2.28]T , respectively, while their (common) covari-
ance matrix is set equal to 0.4 · I2 , where I2 is the 2 × 2 identity
matrix. A number of 500 points is generated by the first distri-
bution and 300 points are generated by each one of the other
two distributions. Note that clusters C2 and C3 lie very close to
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Fig. 5. PCM and APCM snapshots at their initialization step, first iteration and 13th iteration for PCM and 10th (final) iteration for APCM (experiment 1). (a)
Initial step of PCM. (b) First iteration of PCM. (c) Thirteenth iteration of PCM. (d) Initial step of APCM. (e) First iteration of APCM. (f) Tenth (final) iteration of
APCM.

TABLE I
DEGREES OF COMPATIBILITY OF THE DATA POINTS OF EXPERIMENT 1 FOR PCM AND APCM ALGORITHMS, AFTER: (A) INITIALIZATION

(COMMON TO BOTH ALGORITHMS), (B) FIRST ITERATION, AND (C) 13TH ITERATION FOR PCM AND 10TH (FINAL) ITERATION FOR APCM

Initialization 1st iteration 13th iteration 10th iteration

PCM/APCM PCM APCM PCM APCM

x i C1 C2 C1 C2 C1 C2 C1 C2 C1 C2

(1.5, 3.5) 0.9292 0.0708 0.3701 0.0018 0.2757 1.6e-06 0.3604 0.0831 0.2449 3.0e-09
(2.0, 3.5) 0.8963 0.1037 0.3526 0.0127 0.2590 9.6e-05 0.3632 0.2428 0.2447 1.3e-06
(1.0, 3.0) 0.9475 0.0525 0.3884 2.6e-04 0.2936 2.4e-08 0.3575 0.0284 0.2451 7.2e-12
(1.5, 3.0) 0.9854 0.0146 0.8348 0.0027 0.7913 3.4e-06 0.8178 0.1232 0.7550 1.0e-08
(2.0, 3.0) 0.9728 0.0272 0.7954 0.0188 0.7432 2.2e-04 0.8192 0.3602 0.7544 4.3e-06
(2.5, 3.0) 0.8201 0.1799 0.3360 0.0897 0.2433 0.0060 0.3661 0.7098 0.2445 5.4e-04
(1.0, 2.5) 0.9475 0.0525 0.3884 2.6e-04 0.2936 2.4e-08 0.3575 0.0284 0.2451 7.2e-12
(1.5, 2.5) 0.9854 0.0146 0.8348 0.0027 0.7913 3.4e-06 0.8128 0.1232 0.7550 1.0e-08
(2.0, 2.5) 0.9728 0.0272 0.7954 0.0188 0.7432 2.2e-04 0.8192 0.3602 0.7544 4.3e-06
(2.5, 2.5) 0.8201 0.1799 0.3360 0.0897 0.2433 0.0060 0.3661 0.7098 0.2445 5.4e-04
(1.5, 2.0) 0.9292 0.0708 0.3701 0.0018 0.2757 1.6e-06 0.3604 0.0831 0.2449 3.0e-09
(2.0, 2.0) 0.8963 0.1037 0.3526 0.0127 0.2590 9.6e-05 0.3632 0.2428 0.2447 1.3e-06

(4.25, 3.5) 0.0748 0.9252 1.2e-05 0.6415 4.2e-07 0.3903 1.6e-05 0.2302 2.2e-07 0.2563
(3.5, 2.75) 0.1441 0.8559 0.0058 0.6566 0.0013 0.4101 0.0071 0.8869 0.0010 0.2600
(4.25, 2.75) 6.0e-05 0.9999 3.0e-05 0.9997 1.3e-06 0.9994 4.0e-05 0.3587 7.7e-07 1.0000
(5.0, 2.75) 0.0522 0.9478 2.6e-08 0.6267 1.4e-10 0.3715 3.6e-08 0.0597 4.7e-11 0.2527
(4.25, 2.0) 0.0748 0.9252 1.2e-05 0.6415 4.2e-07 0.3903 1.6e-05 0.2302 2.2e-07 0.2563

each other, and therefore, their discrimination is considered as
a difficult task for a clustering algorithm. Table II shows the
ranges of values of the parameter α, for which APCM manages
to identify correctly the naturally formed m = 3 clusters, for
various values of mini. Fig. 6 shows the clustering results of the
APCM algorithm, when it is initialized with mini = 5, in cases

where (a) α = 0.5, (b) α = 1.0, and (c) α = 3.0, respectively.
Note from Table II, that these values of parameter α belong to
the range where APCM identifies correctly the actual clusters,
when mini = 5. In addition, in Fig. 6, it is shown how γj s are af-
fected when varying the parameter α, after APCM is initialized
with mini = 5.
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Fig. 6. Clustering results of APCM for experiment 2, when it is initialized with mini = 5, for several values of parameter α. (a) α = 0.5. (b) α = 1.0. (c)
α = 3.0.

TABLE II
RANGE OF VALUES OF THE PARAMETER α, IN WHICH APCM CONCLUDES

CORRECTLY TO mFINAL = 3 CLUSTERS, FOR SPECIFIC

VALUES OF min i FOR EXPERIMENT 2

m ini αmin αmax

3 0.35 5.00
5 0.33 3.08
10 0.28 1.38
20 0.23 0.90
50 0.17 0.36
100 0.15 0.29

Fig. 7. Graphical representation of the number of final clusters, mfinal, re-
turned by APCM for experiment 2, for various combinations of α and min i .12

Executing APCM on the previous dataset, for various values
of mini and α, we end up with the figure shown in Fig. 7,
where regions in the α − mini plot are drawn with different
colors, each one corresponding to a different number of final
clusters, mfinal. The light-blue colored region corresponds to the
case where mfinal = 3, i.e., when APCM identifies correctly the

12Note that for each value of mini the same initial representatives (produced
by FCM) have been used, for all values of α. Results may differ slightly for
different initializations of APCM.

underlying clusters. From the shape of this region, we can verify
the “rule of thumb” stated already in Section III-D, that is, α is
inversely related to mini. Moreover, from Fig. 7, we deduce that
by fixing α to a value around 1 and taking mini three to four
times greater than the actual number of clusters, APCM will
identify correctly the underlying physical clusters. Interestingly,
the situation depicted in Fig. 7 has also been observed for several
other datasets. Thus, the above rule of thumb seems to hold more
generally.

B. Comparison of Adaptive Possibilistic C-Means With
Other Algorithms

In the following, we compare the clustering performance of
APCM with that of the k-means, the FCM, the FCM with the
XB validity index [15], the PCM, the UPC [12], the PFCM
[11], the UPFC [21], the GRPCM [24], and the AMPCM [23]
algorithms, which all result from cost optimization schemes.
For a fair comparison, the representatives θj s of all algorithms,
except for GRPCM and AMPCM, are initialized based on the
FCM scheme, and the parameters of each algorithm are first
fine-tuned. In order to compare a clustering with the true data
label information, we use 1) the Rand measure (RM) (e.g., [2]),
which measures the degree of agreement between the obtained
clustering and the true data classification and can handle clus-
terings whose number of clusters may differ from the number
of true data labels, and 2) the success rate (SR), which measures
the percentage of the points that have been correctly labeled by
each algorithm. Moreover, the mean of the Euclidean distances
(MD) between the true mean of each physical cluster cj and its
closest cluster representative (θj ) obtained by each algorithm
is given. In cases where a clustering algorithm ends up with a
higher number of clusters than the actual one (mfinal > m), only
the m cluster representatives that are closest to the true m centers
of the physical clusters are taken into account in the determina-
tion of MD. On the other hand, in cases where mfinal < m, the
MD measure refers to the distances of all cluster representatives
from their nearest actual center; thus, some actual centers are
ignored. It is noted that lower MD values indicate more accu-
rate determination of the cluster center locations. Finally, the
number of iterations and the time (in seconds) required for the
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convergence of each algorithm are provided.13 Note that in all
reported results for the UPC, the PFCM, and the UPFC algo-
rithms, clusters that coincide are considered as a single one.
Moreover, for the FCM with XB validity index case, only the
clustering obtained for the mini that minimizes the XB index is
given and discussed.

We begin with a demanding simulated dataset with classes
exhibiting significant differences with respect to their variance.

Experiment 3: Consider a 2-D dataset consisting of N =
2100 points, where three natural clusters C1 , C2 , and C3 are
formed. Each such cluster is modeled by a normal distribution.
The means of the distributions are c1 = [6.53, 1.39]T , c2 =
[20.32, 20.39]T , and c3 = [28.09, 11.38]T , respectively, while
their covariance matrices are set to 10 · I2 , 20 · I2 , and 1 · I2 ,
respectively. A number of 1000 points are generated by each
one of the first two distributions, and 100 points are generated
by the last one. Moreover, 200 data points are added randomly
as noise in the region where data live [see Fig. 8 (a)].

Table III shows the clustering results of all algorithms, where
mini and mfinal denote the initial and the final number of the ob-
tained clusters, respectively. Fig. 8(b) and (c) shows the cluster-
ing result obtained using the k-means and FCM algorithms, re-
spectively, for mini = 3. Fig. 8(d)–(j) depict the performance of
FCM & XB, PCM, APCM, UPC, PFCM, UPFC, GRPCM, and
AMPCM, respectively, with their parameters chosen as stated
in the figure caption. In addition, the circles, centered at each θj

and having radius
√

γj (as they have been computed after the
convergence of the algorithms), are also drawn.

As it can be deduced from Fig. 8 and Table III, even when the
k-means and the FCM are initialized with the (unknown in prac-
tice) true number of clusters (m = 3), they fail to unravel the
underlying clustering structure, most probably due to the noise
encountered in the dataset and the big difference in the variances
between nearby clusters. The FCM & XB validity index and the
classical PCM also fail to detect the cluster with the smallest
variance. On the other hand, the proposed APCM algorithm
produces very accurate results for various initial values of mini,
detecting with high accuracy the center of the actual clusters
(see MD measure in Table III). The UPC algorithm has been ex-
haustively fine-tuned so that the parameters γj s, which remain
fixed during its execution and are the same for all clusters, get
small enough values, in order to identify the cluster with the
smallest variance (C3). However, under these circumstances, a
representative that is initially placed at the region where only
noisy points exist (due to bad initialization from FCM) is trapped
there and cannot be moved toward a dense region (due to the
small value of its γj ). Thus, UPC concludes to four clusters
when q = 3, but if we set q = 2, UPC will conclude to two
clusters, identifying C1 and C2 and missing C3 . The PFCM and
UPFC algorithms constantly produce three clusters, at the cost
of a computationally demanding fine tuning of the (several) pa-
rameters they involve. However, even when their parameters are
fine-tuned, the final estimates of θj s are not closely located to
the true cluster centers (see MD measure in Table III). The GR-

13In the FCM & XB validity index only the total time required for the
execution of FCM 19 times (for min i = 2, . . . , 20) is given.

PCM and AMPCM algorithms conclude to two clusters, failing
to unravel the underlying clustering structure. It is worth noting
that these two algorithms require too much time to converge,
mainly due to the way they perform cluster elimination. Finally,
as it is deduced from Table III, the APCM algorithm achieves
the best RM and SR results, detecting more accurately the true
centers of the clusters (minimum MD), while, in addition, it
requires the fewest iterations for convergence. It is worth noting
that the operation time of APCM is less than that of PCM, even
when APCM requires more iterations than PCM to converge.
This is because the APCM iterations become “lighter” as the
algorithm evolves, since several clusters are eliminated.

The last three experiments are conducted on the basis of real-
world datasets.

Experiment 4: Let us consider the Iris dataset (see[27]) con-
sisting of N = 150, 4-D data points that form three classes,
each one having 50 points. In this dataset, two classes are over-
lapped; thus, one can argue whether the true number of clusters
m is 2 or 3. As it is shown in Table IV, k-means and FCM
work well, only if they are initialized with the true number of
clusters (mini = 3). The FCM & XB and the classical PCM
fail to end up with mfinal = 3 clusters, independently of the ini-
tial number of clusters. The same result holds for the GRPCM
and the AMPCM algorithms. On the contrary, the APCM, the
UPC, the PFCM, and the UPFC algorithms, after appropriate
fine tuning of their parameters, produce very accurate results
in terms of RM, SR, and MD. However, the APCM algorithm
detects more accurately the centers of the true clusters (in most
cases), compared with the other algorithms. It is noted again
that the main drawback of the PFCM and the UPFC algorithms
is the requirement for fine tuning of several parameters, which
increases excessively the computational load required for de-
tecting the appropriate combination of parameters that achieves
the best clustering performance.

Experiment 5: Let us consider now the so-called New Thy-
roid three-class dataset (see[27]) consisting of N = 215, 5-D
data points. The experimental results for all algorithms are
shown in Table V. It can be seen that both k-means and FCM
provide satisfactory results, only if they are initialized with the
true number of clusters (mini = 3), and the XB validity index is
correctly minimized for mini = 3; thus, FCM & XB concludes
to the same results as FCM for mini = 3, however at the cost
of increased computational time. The classical PCM exhibits
degraded performance, for all choices of mini. Similar to PCM
behavior is observed for the GRPCM and the AMPCM algo-
rithms, which fail to distinguish any clustering structure. On
the contrary, the APCM and UPC algorithms detect the actual
number of clusters independently of mini after appropriate fine
tuning of their parameters. However, again the APCM algo-
rithm constantly produces higher RM and SR values. Finally,
the PFCM and UPFC exhibit 1) inferior performance compared
with APCM and UPC and 2) superior performance with respect
to k-means and FCM provided that the latter are not initialized
with the correct number of clusters.

In the next experiment, we assess the performance of APCM
and all the algorithms considered before in a high-dimensional
dataset.
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Fig. 8. (a) Dataset of experiment 3. Clustering results for (b) k-means, mini = 3, (c) FCM, mini = 3, (d) FCM & XB, (e) PCM, mini = 15, (f) APCM, mini = 15
and α = 1, (g) UPC, mini = 8 and q = 3, (h) PFCM, mini = 15, K = 1, α = 1, β = 3, q = 2.5, and n = 2, (i) UPFC, mini = 15, α = 1, β = 1.5, q = 3, and
n = 2, (j) GRPCM, and (k) AMPCM.

Experiment 6: In this experiment, an HSI dataset is consid-
ered, which depicts a subscene of the flightline acquired by the
AVIRIS sensor over Salinas Valley, California [28]. The AVIRIS
sensor generates 224 bands across the spectral range from 0.2 to
2.4 μm. The number of bands is reduced to 204 by removing 20

water absorption bands. The aim in this experiment is to identify
homogeneous regions in the Salinas HSI. Thus, the dimension-
ality of the problem is 204. Fig. 9(a) shows the fifth principal
component (PC) of this HSI. In addition, for lighten the required
computational load, we select a spatial region of size 150 × 150
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TABLE III
PERFORMANCE OF CLUSTERING ALGORITHMS FOR THE EXPERIMENT 3 DATASET

m in i m final RM SR M D Iter T ime

k-means 3 3 91.02 86.74 6.8509 45 0.13
k-means 8 8 73.83 42.22 2.5267 60 0.33
k-means 10 10 71.41 34.52 2.3544 48 0.41
k-means 15 15 68.35 27.00 0.8074 31 0.46

FCM 3 3 82.05 65.39 4.2089 66 0.04
FCM 8 8 71.88 36.91 2.5468 100 0.34
FCM 10 10 69.67 28.74 2.3466 100 0.48
FCM 15 15 67.18 21.96 0.8593 100 0.50

FCM & XB - 2 87.62 86.74 0.6346 - 3.60

PCM 3 2 87.62 86.78 0.4778 10 0.14
PCM 8 3 75.14 67.87 0.2138 26 0.59
PCM 10 3 75.64 68.35 0.1918 23 0.74
PCM 15 3 78.64 70.04 0.1877 41 1.06

APCM (α = 1) 3 2 87.73 86.83 0.0655 12 0.07
APCM (α = 1.5) 8 3 90.83 90.04 0.2268 38 0.40
APCM (α = 1) 10 3 90.80 90.00 0.2131 28 0.52
APCM (α = 1) 15 3 90.83 90.04 0.2157 35 0.55

UPC (q = 2) 3 2 87.69 86.78 0.1331 20 0.07
UPC (q = 3) 8 4 90.04 85.96 0.5517 76 0.54
UPC (q = 3) 10 4 89.92 85.78 0.5829 89 0.57
UPC (q = 3) 15 4 89.79 85.61 0.6618 111 0.80

PFCM (K = 1, a = 1, b = 1, q = 2, n = 2) 3 2 87.62 86.78 1.2927 25 0.07
PFCM (K = 1, a = 1, b = 1, q = 4, n = 2) 8 3 83.11 84.65 0.5595 55 0.47
PFCM (K = 1, a = 1, b = 2, q = 3, n = 2) 10 3 84.30 85.78 0.7517 119 0.74
PFCM (K = 1, a = 1, b = 3, q = 2.5, n = 2) 15 3 86.74 87.70 0.8414 201 1.83

UPFC (a = 1, b = 1, q = 4, n = 2) 3 2 87.76 86.83 0.4588 20 0.08
UPFC (a = 1, b = 3, q = 3, n = 2) 8 3 87.39 85.43 0.7260 85 0.49
UPFC (a = 1, b = 3, q = 3, n = 2) 10 3 87.40 85.43 0.7364 101 0.68
UPFC (a = 1, b = 1.5, q = 3, n = 2) 15 3 87.64 85.91 0.5555 94 0.83

GRPCM - 2 87.54 86.74 0.3611 90 148.03

AMPCM - 2 87.54 86.74 0.3189 87 151.64

from the whole image. Thus, a total size of N = 22 500 sam-
ple pixels are used, stemming from eight ground-truth classes:
“Corn,” two types of “Broccoli,” four types of “Lettuce” and
“Grapes,” denoted by different colors in Fig. 9(b). Note that
there is no available ground truth information for the dark blue
pixels in Fig. 9(b). It is also noted that Fig. 9 depicts the best map-
ping obtained by each algorithm taking into account not only
the “dry” performance indices but also its physical interpretation
(see [29]). Related quantitative results are shown in Table VI.

As it can be deduced from Fig. 9, when k-means and FCM
are initialized with mini = 8, they actually split the “Broccoli
2” class into two clusters, and they merge a part of “Corn” class
with “Lettuce 3” and the rest of it with “Lettuce 1.” FCM &
XB validity index concludes to mfinal = 9 and merges a part of
“Corn” class with “Lettuce 1,” while the rest of it constitutes
a separate cluster, which also appears in scattered spots in the
“Grapes” class area. In addition, FCM & XB requires long
time to conclude to a final clustering result, due to the fact that
FCM is executed for several values of mini, which increases the
required computational time in high dimensional datasets. The
PCM algorithm fails to uncover more than six discrete clusters,
merging first “Lettuce 3,” “Grapes,” and a part of “Corn” class
and second the rest part of “Corn” with “Lettuce 1.” Moreover,
it merges the two types of “Broccoli” into one, but splits the
“Lettuce 2” class into two clusters (whose pixels are spread over

several classes of the image). Both UPC and UPFC algorithms
are able to detect up to six clusters, having the same behavior
as FCM and k-means (when the latter produce eight clusters),
except that they both merge the two “Broccoli” classes into one.
PFCM algorithm, after precise fine tuning of its parameters,
manages additionally to distinguish the two types of “Broccoli”
classes, compared with UPC and UPFC, producing thus seven
clusters. GRPCM and AMPCM algorithms both end up with six
clusters, merging the two “Broccoli” classes into one, a part of
“Corn” class with “Grapes” and the rest of it with “Lettuce 1.”
However, the most important thing to be mentioned is that both
these algorithms require excessively long time to converge in
high-dimensional datasets. Finally, APCM is the only algorithm
that manages to distinguish the “Lettuce 1” from the “Corn”
class, while at the same time, it does not merge any other of the
existing classes.

Let us focus for a while on the “Lettuce 2” class. This class
forms two closely located clusters in the feature space, although
this information is not reflected to the ground-truth labeling
[note, however, that it can be deduced after inspection of the
fifth PC component in Fig. 9(a)]. It is important to note that, in
contrast with APCM, none of the other algorithms succeeds in
identifying each one of them. The fact that this is not reflected
in the ground-truth labeling causes a misleading decrease in the
SR performance of APCM.
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Fig. 9. (a) Fifth PC component of Salinas HSI and (b) the corresponding ground truth labeling. Clustering results of experiment 6 obtained from (c) k-means,
min i = 8, (d) FCM, min i = 8, (e) FCM & XB, (f) PCM, min i = 35, (g) APCM, min i = 15 and α = 2, (h) UPC, min i = 35 and q = 3, (i) PFCM, min i = 8,
K = 1, α = 1, β = 6, q = 2 and n = 2, (j) UPFC, min i = 35, α = 1, β = 5, q = 5 and n = 2, (k) GRPCM, and (l) AMPCM.
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TABLE IV
PERFORMANCE OF CLUSTERING ALGORITHMS FOR THE IRIS DATASET

m ini m final RM SR M D Iter T ime

k-means 3 3 87.97 89.33 0.1271 3 0.30
k-means 10 10 76.64 40.00 0.7785 4 0.13

FCM 3 3 87.97 89.33 0.1287 19 0.02
FCM 10 10 76.16 36.00 0.7793 35 0.02

FCM & XB - 2 76.37 66.67 0.3986 - 0.16

PCM 3 2 77.19 66.67 0.3563 19 0.11
PCM 10 2 77.63 66.67 0.3488 28 0.11

APCM (α = 3) 3 3 91.24 92.67 0.1406 26 0.06
APCM (α = 1) 10 3 84.15 84.67 0.4030 67 0.09

UPC (q = 4) 3 3 91.24 92.67 0.1438 26 0.03
UPC (q = 2.4) 10 3 81.96 81.33 0.5569 150 0.11

PFCM (K = 1, a = 1, b = 10, q = 7, n = 2) 3 3 90.55 92.00 0.1833 17 0.03
PFCM (K = 1, a = 1, b = 1.5, q = 2, n = 2) 10 3 84.64 85.33 0.5411 92 0.05

UPFC (a = 1, b = 5, q = 4, n = 2) 3 3 91.24 92.67 0.1642 32 0.03
UPFC (a = 1, b = 1.5, q = 2.5, n = 2) 10 3 81.96 81.33 0.5566 180 0.16

GRPCM - 2 77.63 66.67 0.3675 26 0.47

AMPCM - 2 77.63 66.67 0.3643 28 0.47

TABLE V
PERFORMANCE OF CLUSTERING ALGORITHMS FOR THE NEW THYROID DATASET

m ini m final RM SR M D Iter T ime

k-means 3 3 79.65 87.44 0.8949 3 0.16
k-means 5 5 70.78 63.72 0.8548 12 0.14
k-means 15 15 55.01 25.12 0.7159 16 0.17

FCM 3 3 83.29 89.77 0.4385 53 0.02
FCM 5 5 60.32 46.98 1.0785 55 0.02
FCM 15 15 52.83 21.86 0.8816 91 0.11

FCM & XB - 3 83.29 89.77 0.4385 - 0.44

PCM 3 1 53.05 69.77 0.1177 7 0.06
PCM 5 1 53.05 69.77 0.0559 7 0.06
PCM 15 1 53.05 69.77 0.0577 8 0.16

APCM (α = 8) 3 3 94.58 96.74 0.7231 30 0.08
APCM (α = 3) 5 3 87.59 92.56 1.0026 21 0.06
APCM (α = 1.2) 15 3 73.73 83.72 2.7123 54 0.16

UPC (q = 3) 3 3 83.85 90.23 0.6982 41 0.03
UPC (q = 2) 5 3 77.94 86.51 1.0739 16 0.02
UPC (q = 1) 15 3 67.21 79.53 2.7617 34 0.05

PFCM (K = 1, a = 1, b = 5, q = 8, n = 2) 3 1 53.05 69.77 0.0507 15 0.03
PFCM (K = 1, a = 1, b = 5, q = 8, n = 2) 5 2 64.95 77.21 1.3855 41 0.05
PFCM (K = 1, a = 1, b = 8, q = 2, n = 2) 15 3 66.64 79.07 1.8381 28 0.09

UPFC (a = 1, b = 5, q = 8, n = 2) 3 2 68.21 79.53 0.4108 21 0.05
UPFC (a = 1, b = 3, q = 6, n = 2) 5 3 78.76 86.98 0.9682 27 0.05
UPFC (a = 1, b = 0.1, q = 1.5, n = 2) 15 3 72.85 83.26 1.5909 34 0.09

GRPCM - 1 53.05 69.77 0.2732 63 2.04

AMPCM - 1 53.05 69.77 0.2667 64 1.98

V. CONCLUSION

In this paper, commencing from the classic PCM algorithm
proposed in [10], a novel possibilistic clustering algorithm,
called APCM, has been derived exhibiting several new fea-
tures. The main one is that its parameters γ are adapted as the
algorithm evolves, in contrast with all the other possibilistic al-
gorithms, where parameters γ, once they are set, they remain
fixed during the execution of the algorithm. This gives APCM
more flexibility in tracking the variations in the cluster formation
as the algorithm evolves. Additional significant features are

related with the computation of the parameters γ. Specifically,
in contrast with previous possibilistic algorithms, each γj is ex-
pressed in terms to the mean absolute deviation of the vectors
that are most compatible with the jth cluster (Cj ), from their
mean. The use of the Euclidean distance, instead of the squared
Euclidean one, gives the ability to the algorithm to distinguish
closely located to each other clusters. Moreover, the use of the
mean instead of the previous location of the corresponding rep-
resentative in the computation of γj s gives better estimates for
the latter. A significant side effect of the adaptation of γj s is that
APCM is now (in principle) capable to detect the true number,
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TABLE VI
PERFORMANCE OF CLUSTERING ALGORITHMS FOR THE SALINAS HSI DATASET

m ini m final RM SR M D Iter T ime

k-means 8 8 93.07 77.12 0.54e+03 11 0.11e+02
k-means 20 20 96.46 69.89 1.03e+03 23 1.61e+02
k-means 30 30 95.94 63.29 1.17e+03 44 6.43e+02

FCM 8 8 97.39 85.96 0.56e+03 47 0.11e+02
FCM 20 20 96.33 67.28 0.89e+03 312 1.88e+02
FCM 30 30 95.80 61.14 0.94e+03 827 7.41e+02

FCM & XB - 9 91.95 70.17 2.47e+03 - 1.03e+03

PCM 8 4 91.51 67.22 0.94e+03 90 0.48e+02
PCM 20 6 94.70 74.21 0.71e+03 98 2.49e+02
PCM 30 6 94.65 74.02 0.74e+03 65 8.04e+02

APCM (α = 4) 8 8 97.35 85.42 0.76e+03 108 0.50e+02
APCM (α = 2) 20 9 97.64 88.17 0.59e+03 121 2.45e+02
APCM (α = 2) 30 9 97.64 88.17 0.60e+03 137 7.91e+02

UPC (q = 3) 8 5 95.01 77.83 0.56e+03 48 0.23e+02
UPC (q = 3) 20 6 96.32 81.35 0.45e+03 44 2.50e+02
UPC (q = 3) 30 6 96.32 81.34 0.37e+03 47 7.18e+02

PFCM (K = 1, a = 1, b = 6, q = 2, n = 2) 8 6 96.60 81.15 0.62e+03 193 0.88e+02
PFCM (K = 1, a = 1, b = 1, q = 3, n = 2) 20 7 97.69 88.97 0.49e+03 151 3.24e+02
PFCM (K = 1, a = 1, b = 1, q = 4, n = 2) 30 7 97.59 89.44 0.56e+03 201 1.02e+03

UPFC (a = 1, b = 8, q = 4, n = 2) 8 6 96.31 81.33 0.34e+03 61 0.37e+02
UPFC (a = 1, b = 5, q = 5, n = 2) 20 6 96.31 81.33 0.40e+03 61 2.29e+02
UPFC (a = 1, b = 5, q = 5, n = 2) 30 6 96.31 81.33 0.32e+03 136 9.18e+02

GRPCM - 6 90.03 70.97 0.48e+03 142 2.79e+04

AMPCM - 6 90.03 70.97 0.48e+02 145 2.85e+04

m, of physical clusters provided that it is initialized with an over-
estimate of it, mini. The latter releases APCM from the noose
of knowing exactly in advance the true number of “physical”
clusters. It is worth noting that as experiments shown, mini and
α should vary inversely to each other, in order the algorithm to
work properly, which makes their choice not entirely arbitrary.
In addition, they show that if α is fixed to a value around 1 and
mini is around three to four times greater than m, then, in several
cases, the algorithm works properly. The experimental results
provided show that APCM exhibits superior performance com-
pared with several other related algorithms, in almost all the
considered datasets. In addition, Appendix B contains some
indicative theoretical results, concerning the convergence be-
havior of APCM. Extension of APCM for identifying noisy
data points and outliers, based on the concept of “sparsity,” is a
subject of on-going investigation.

APPENDIX A

Proposition 1: Let γ′
j =

∑
x i :u i j = m a x r = 1 , . . . , m u i r

‖x i −μj ‖2

nj
and

η2
j =

(∑
x i :ui j =maxr = 1 , . . . , m ui r

‖xi − μj‖
nj

)2

[see (10)]. Then, η2
j ≤ γ′

j .
Proof: Let qij =‖xi − μj‖ and qj =[qi1 , . . . , qinj

]T . Then,
γ′

j = 1
nj
‖qj‖2

2 (squared l2-norm) and η2
j = 1

n2
j
‖qj‖2

1 (squared

l1-norm). From the relation between the l1 and l2 norms (see,
e.g., [30]), it is ‖qj‖1 ≤ n

1/2
j ‖qj‖2 ≤ n

1/2
j ‖qj‖1 or ‖qj‖2

1 ≤
nj‖qj‖2

2 ≤ nj‖qj‖2
1 or 1

n2
j
‖qj‖2

1 ≤ 1
nj
‖qj‖2

2 ≤ nj
1

n2
j
‖qj‖2

1 or

η2
j ≤ γ′

j ≤ njη
2
j . Note that for finite nj values, η2

j and γ′
j are of

the same magnitude. �

APPENDIX B

In this appendix, we prove some propositions that are indica-
tive of the basic properties of APCM, namely the convergence
of the representatives to the center of dense regions and clus-
ter elimination. Note that some convergence results are given
in [31]. However, these are not applicable to APCM, due to
the adaptation mechanism employed for the parameters ηj s. We
begin with the following proposition.

Proposition 2: Let θ1 , θ2 be two cluster representatives with
η2 < η1 . The geometrical locus of the points x ∈ �� having

u2(x) > u1(x), where uj (x) = exp
(
−αdj (x)

ηj η̂

)
and dj (x) =

‖x − θj‖2 , j = 1, 2, is the set of points that lie in the interior of
the hypersphere C:

‖x − kθ2 − θ1

k − 1
‖2 =

k

(k − 1)2 ‖θ2 − θ1‖2 ≡ r2 (13)

centered at kθ2 −θ1
k−1 and having radius r =

√
k

k−1 ‖θ2 − θ1‖, where
k = η1/η2(> 1).

Proof: It is u1(x)<u2(x)⇔ d1 (x)
η1

> d2 (x)
η2

⇔d1(x) > kd2

(x) ⇔ ‖x − θ1‖2 > k‖x − θ2‖2 ⇔ ‖x‖2 − 2xT θ1

+‖θ1‖2 > k‖x‖2 − 2kxT θ2 + k‖θ2‖2 ⇔ (k − 1)‖x‖2

−2(kθ2 − θ1)T x + k‖θ2‖2 − ‖θ1‖2 < 0 ⇔ ‖x‖2

−2
(

kθ2 − θ1

k − 1

)T

x +
k‖θ2‖2 − ‖θ1‖2

k − 1
< 0 ⇔ ‖x‖2

−2
(

kθ2 − θ1

k − 1

)T

x + ‖kθ2 − θ1

k − 1
‖2 − ‖kθ2 − θ1

k − 1
‖2



808 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 24, NO. 4, AUGUST 2016

+
k‖θ2‖2 − ‖θ1‖2

k − 1
< 0 ⇔ ‖x − kθ2 − θ1

k − 1
‖2

<
‖kθ2 − θ1‖2

(k − 1)2 − k‖θ2‖2 − ‖θ1‖2

k − 1

or ‖x − kθ2 −θ1
k−1 ‖2 < k

(k−1)2 ‖θ2 − θ1‖2 . �
Note that the radius r of C can be written in terms of η1 and

η2 as

r =
√

η1η2

|η1 − η2 |
‖θ2 − θ1‖2 . (14)

We consider next the continuous case where the data vectors
are modeled by a random vector x that follows a continuous
pdf distribution p(x). In this case, the updating equations for
the APCM algorithm (with a slight modification in notation,
in order to denote explicitly the dependence of uj (x) from the
continuous random variable x) are given below:

θt+1
j =

∫
�� ut

j (x)xp(x)dx
∫
�� ut

j (x)p(x)dx
(15)

where

ut
j (x) = exp

(

−
‖x − θt

j‖2

γt
j

)

(16)

γt
j =

η̂

α

∫
T t

j
‖x − μt

j‖p(x)dx
∫

T t
j
p(x)dx

(17)

and

μt
j =

∫
T t

j
xp(x)dx

∫
T t

j
p(x)dx

(18)

with T t
j = {x : ut

j (x) = maxq=1,...,m ut
q (x)}, j = 1, . . . ,m.

The above equations define the iterative scheme θt+1
j =

f(θt
j ), where

f(θt
j ) =

∫
�� exp

(
−‖x−θt

j ‖2

γj

)
xp(x)dx

∫
�� exp

(
−‖x−θt

j ‖2

γj

)
p(x)dx

. (19)

In the following, we give some indicative theoretical results
concerning aspects of the behavior of APCM, namely 1) the
convergence of the cluster representatives to the centers of the
dense in data regions and 2) the cluster elimination mechanism.
In the following, we state two assumptions that will be used as
premises in the propositions to follow.

Assumption 1: (a) p(x) decreases isotropically along all di-
rections around its center c14.

(b) Without loss of generality, we consider the case c = 0.
Note that this assumption indicates the existence of a single

dense in data region.
Assumption 2: p(x) is a zero mean normal distribution

N (0, σ2I).

14Such pdfs are, e.g., the independent identically distributed multivariate
normal and Laplace distribution.

(Clearly, Assumption 2 is more restrictive than Assumption
1.)

Proposition 3: Under Assumption 1, the center c = 0 of
p(x) is a fixed point for the iterative scheme defined by (19).

Proof: Assuming that θt
j = 0, we will show that θt+1

j = 0
also. Dropping the index j from θj , γj from (19), we have

θt+1 =

∫ ∞
0

[∫
‖x‖2 =r 2 exp

(
−‖x‖2

γ t

)
xp(x)dAr

]
dr

∫ ∞
0

[∫
‖x‖2 =r 2 exp

(
−‖x‖2

γ t

)
p(x)dAr

]
dr

(20)

where
∫
‖x‖2 =r 2 (·)dAr is the integral over the hypersphere

‖x‖2 = r2 .
Continuing from (20), we have

θt+1 =

∫ ∞
0 exp

(
− r 2

γ t

) [∫
‖x‖2 =r 2 xp(x)dAr

]
dr

∫ ∞
0 exp

(
− r 2

γ t

) [∫
‖x‖2 =r 2 p(x)dAr

]
dr

. (21)

However, due to the isotropic property of p(x) along all di-
rections around 0, all points on the hypersphere ‖x‖2 = r2 are
evenly distributed (and have the same magnitude). Thus, it is

∫

‖x‖2 =r 2
xp(x)dAr = 0. (22)

Noting also that exp(− r 2

γ t ) > 0 and
∫
‖x‖2 =r 2 p(x)dAr is the

area of the hypersphere ‖x‖2 = r2 , the denominator in (21) is
positive. Thus, (21) and (22) finally give θt+1 = 0. In other
words, 0 is indeed a fixed point of the iterative scheme defined
by (19). �

Proposition 4: Adopt Assumption 2 and consider the map-
ping f : �� → �� defined by (19). Then, the fixed point 0 of
the scheme θt+1 = f(θt) is stable.

Proof: Focusing on the sth component fs(θ) of the above
mapping and utilizing Assumption 2 of p(x) as well as the fact

that exp(−‖x−θ‖2

γ ) =
∏�

q=1 exp(− (xq −θq )2

γ ), it is easy to verify
that

fs(θ) =

∫
� xs exp

(
− (xs −θs )2

γ

)
p(xs)dxs

∫
� exp

(
− (xs −θs )2

γ

)
p(xs)dxs

≡ fs(θs). (23)

Thus, fs(θ) depends only on θs .
In order to prove the stability of θ = 0, we will compute the

Jacobian matrix on θ = 0, and we will show that |J(θ)| < 1.
Since ∂fs (θ)

∂θq
= 0, for q �= s, the Jacobian is diagonal. Com-

puting its diagonal elements at θ = 0, we have after some alge-
bra

∂fs(θ)
∂θs

∣
∣
∣
∣
θ=0

=
2
γ

∫
� x2

s exp
(
−x2

s

γ

)
p(xs)dxs

∫
� exp

(
−x2

s

γ

)
p(xs)dxs

−

− 2
γ

(∫
� xs exp

(
−x2

s

γ

)
p(xs)dxs

)2

(∫
� exp

(
−x2

s

γ

)
p(xs)dxs

)2 . (24)
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In addition, due to the fact that p(xs) is N (0, σ2), it is easy
to verify that

exp
(

−x2
s

γ

)

p(xs) =
σ′

σ
p̂(xs) (25)

where p̂(xs)=N (0, σ′2), with

σ′2 =
1

2
(

1
γ + 1

2σ 2

) . (26)

Substituting (25) into (24) and taking into account that 1) the
numerator of the second fraction is the mean of p̂(xs), (b) the
numerator of the first fraction is the variance of p̂(xs), and 3)
the denominators are both equal to 1, we end up with

∂fs(θ)
∂θs

∣
∣
∣
∣
θ=0

=
2σ′2

γ
. (27)

Substituting (26) into (27), it is ∂fs (θ)
∂θs

∣
∣
∣
θ=0

= 2σ 2

2σ 2 +γ , which

is always less than 1, due to the positivity of σ2 and γ.
Thus, θ = 0 is a stable fixed point of the iterative scheme

θt+1 = f(θt) �
Propositions 3 and 4 are valid for both constant and time-

varying positive γj s.
In the general case where the data form more than one dense

regions,15 the above propositions are still valid, assuming that
the influence on a representative that belongs to a given dense
region from data points from other dense regions is negligible.
This can be ensured by choosing γj s properly.

In the next proposition, we focus on the cluster elimination
property of APCM for the case of two representatives that lie in
the same physical cluster.

Proposition 5: Adopt Assumption 1 and consider two cluster
representatives θ1 and θ2 . Assuming that η1(t) �= η2(t) and
ηj (t) < +∞, j = 1, 2, ∀t, one of the clusters represented by θ1
and θ2 will be eliminated.16

Proof: Utilizing Propositions 3 and 4, we have that θ1 and θ2
converge toward c. Thus, the distance between them decreases
toward zero, i.e.,

‖θ1(t) − θ2(t)‖ → 0. (28)

Taking into account (14), the radius of the hypersphere Ct

that delimits T1(t) and T2(t) at iteration t can be written as

rt =

√
η1(t)η2(t)

|η1(t) − η2(t)|
‖θ2(t) − θ1(t)‖. (29)

From hypothesis, it follows that
√

η1 (t)η2 (t)
|η1 (t)−η2 (t)| is finite, i.e.,

∃M > 0 :

∣
∣
∣
∣
∣

√
η1(t)η2(t)

η1(t) − η2(t)

∣
∣
∣
∣
∣
< M ∀t. (30)

Combining (28)–(30), we have that rt → 0. Thus, Tj (t) for
one of the two representatives will eventually become empty,

15That is, when p(x) has more than one peaks.
16Note that, in practice, the hypothesis for η1 (t) and η2 (t) is almost always

met, due to their definition.

which will lead the corresponding ηj (t) to zero value [see (9)]
and thus to the elimination of cluster Cj (from the execution of
statements 13–20 of APCM). �
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