
IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 24, NO. 6, DECEMBER 2016 1611

Sparsity-Aware Possibilistic Clustering Algorithms
Spyridoula D. Xenaki, Konstantinos D. Koutroumbas, and Athanasios A. Rontogiannis, Member, IEEE

Abstract—In this paper, two novel possibilistic clustering algo-
rithms are presented, which utilize the concept of sparsity. The first
one, called sparse possibilistic c-means, exploits sparsity and can
deal well with closely located clusters that may also be of signifi-
cantly different densities. The second one, called sparse adaptive
possibilistic c-means, is an extension of the first, where now the
involved parameters are dynamically adapted. The latter can deal
well with even more challenging cases, where, in addition to the
above, clusters may be of significantly different variances. More
specifically, it provides improved estimates of the cluster represen-
tatives, while, in addition, it has the ability to estimate the actual
number of clusters, given an overestimate of it. Extensive exper-
imental results on both synthetic and real datasets support the
previous statements.

Index Terms—Adaptivity, possibilistic clustering, sparsity.

I. INTRODUCTION

C LUSTERING is a well-established data analysis method
that has been extensively used in various applications dur-

ing the last decades. It is applied on a certain set of entities, and
it aims at grouping “similar” entities to the same group (cluster)
and “less similar” entities to different groups (e.g., [1]). In most
of the practical applications, each entity is represented by a set
of l measurements, which form its corresponding l-dimensional
feature vector. Equivalently, each entity is represented by a point
(vector) in the l-dimensional space. The set of all feature vectors
(also called data vectors) is called dataset.

A major effort in the clustering bibliography has been devoted
to the identification of compact and hyperellipsoidally shaped
clusters. Usually, each such cluster is represented by a vector
called cluster representative or simply representative, which lies
in the same l-dimensional space with the data, and it is desirable
to be located to the “center” of the cluster. One way to achieve
this is to initialize the representatives at some (e.g., randomly
selected) locations and gradually move them toward the centers

Manuscript received August 7, 2015; revised December 15, 2015; ac-
cepted February 9, 2016. Date of publication March 24, 2016; date
of current version December 22, 2016. This work was supported in
part by the European Union (European Social Fund) and Greek na-
tional funds through the Operational Program “Education and Life-
long Learning” of the National Strategic Reference Framework—Research
Funding Program: ARISTEIA—HSI-MARS-1413 and in part by the
PHySIS project (http://www.physis-project.eu/) under Contract 640174, within
the H2020 Framework Program of the European Commission.

S. D. Xenaki is with the Institute for Astronomy, Astrophysics, Space Applica-
tions and Remote Sensing, National Observatory of Athens, Penteli GR-15236,
Greece, and also with the Department of Informatics and Telecommunications,
National and Kapodistrian University of Athens, GR-157 84 Ilissia, Greece
(e-mail: ixenaki@noa.gr).

K. D. Koutroumbas and A. A. Rontogiannis are with the Institute for As-
tronomy, Astrophysics, Space Applications and Remote Sensing, National Ob-
servatory of Athens, Penteli GR-15236, Greece (e-mail: koutroum@noa.gr;
tronto@noa.gr).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TFUZZ.2016.2543752

of the clusters formed by the data vectors. This is usually car-
ried out via algorithms that iteratively optimize suitably defined
cost functions, called cost function optimization clustering al-
gorithms. Celebrated algorithms of this kind are 1) the k-means,
e.g., [2], where each data vector belongs exclusively to a single
cluster, 2) the fuzzy c-means (FCM), e.g., [3], [4], where each
data vector is shared among two or more clusters, and 3) possi-
bilistic c-means (PCMs) algorithms, e.g., [1], [5]–[9], where the
compatibility of each data vector with the clusters is considered.

Some significant features that both the k-means and FCM
share are: 1) the interrelation of the updating equations of
the representatives; 2) the requirement for a priori knowledge
of the exact number of clusters m underlying in the dataset;
3) the imposition of a clustering structure on the dataset1; and
4) the vulnerability to noisy data and outliers. In contrast with
the above, in PCMs, the updating of representatives is carried
out independently from each other, and each representative is
moved toward its closest physical cluster. Thus, PCMs do not
impose a clustering structure on the dataset, in the sense that
they will not necessarily end up with m distinct clusters. Ac-
tually, only a crude a priori knowledge of the exact number of
clusters is required. In the case where m is less than the actual
number of clusters, the algorithm will identify at least some
physical clusters, while in the opposite case, it has, in principle,
the ability to recover all physical clusters with some duplicates
[10]. Finally, PCMs are more robust to noisy data or outliers
[7]. However, PCMs are sensitive to the values of some specific
parameters, whose choice is not always obvious.

In this paper, we focus on PCM. More specifically, we extend
the classical PCM algorithm, proposed in [6], in two stages.
First, given that, in practice, each data vector is compatible with
only a few or even none clusters, a suitable sparsity constraint is
imposed on the vector containing the degrees of compatibility
of each data vector with all the clusters, giving rise to the sparse
PCM (SPCM) algorithm. SPCM exhibits increased immunity
to data points that may be considered as noise or outliers by not
allowing them, in principle, to contribute to the estimation of
the cluster representatives. As a consequence, SPCM concludes
to more accurate estimates for the cluster representatives, espe-
cially in noisy environments. Moreover, in difficult cases, where
the physical clusters underlying in the dataset under study are
very closely located to each other, SPCM has the ability to allow
only the data points that are very close to the current location
of the representatives to contribute to the estimation of the next
location of the latter. As a result, SPCM is, in principle, capable
of identifying very closely located clusters of possibly various
densities. However, the requirement of the estimation of the
specific parameters involved in all PCMs still remains.

1In the sense that the algorithms will split the dataset to m distinct clusters
irrespectively of the actual number of clusters that underlie in the dataset.

1063-6706 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.



1612 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 24, NO. 6, DECEMBER 2016

It is worth noting that the proposed method is not the only
one that introduces the sparsity idea in clustering. Other methods
that introduce sparsity in the so-called outlier domain have also
been proposed in the past (e.g., [11], [12]). Also, in [13] and
[14], two variants of possibilistic clustering that impose sparsity
constraints, adopting the l1 norm, are proposed. In [14], the
clusters are recovered in a sequential manner, in contrast with
[13], where clusters are recovered simultaneously.

In order to deal with the problem of the estimation of the pa-
rameters involved in PCMs, the SPCM is further extended using
the rationale proposed in [15], based on which these parame-
ters are properly adjusted during the execution of the algorithm.
Such an extension gives rise to the so-called sparse adaptive
PCM (SAPCM) algorithm.2 A consequence of this parameter
adjustment is that, given an overestimate of the true number of
clusters, the algorithm has (in principle) the ability to reduce
it gradually toward the true number of clusters, i.e., the algo-
rithm is equipped with the ability to estimate by itself the actual
number of clusters as well as the clusters themselves.

The rest of this paper is organized as follows. In Section II,
a brief description of PCM algorithms is given. In Section III,
the proposed SPCM clustering algorithm is fully presented,
whereas in Section IV, the new SAPCM clustering algorithm is
described, and its properties are analyzed. In Section V, the per-
formance of both SPCM and SAPCM is tested against several
related state-of-the-art algorithms. Finally, concluding remarks
are provided in Section VI.

II. BRIEF REVIEW OF POSSIBILISTIC C-MEANS ALGORITHM

Let X = {xi ∈ �� , i = 1, . . . , N} be a set of N , l-
dimensional data vectors, and Θ = {θj ∈ �� , j = 1, . . . ,m}
be a set of m vectors that will be used for the representation
of the clusters formed in X . Let U = [uij ], i = 1, . . . , N, j =
1, . . . ,m, be an N × m matrix whose (i, j) element stands for
the so-called degree of compatibility of xi with the jth clus-
ter, denoted by Cj and represented by the vector θj . Let also
ui

T = [ui1 , . . . , uim ] be the vector containing the elements of
the ith row of U . In what follows, we consider only Euclidean
norms, denoted by ‖ · ‖.

According to [5] and [6], the uij’s in PCMs should satisfy
the conditions: 1) uij ∈ [0, 1]; 2) maxj=1,...,m uij > 0; and 3)
0 <

∑N
i=1 uij < N . As it has been stated earlier, the strategy of

a possibilistic algorithm is to move the vectors θj ’s to regions
that are dense in data points of X . This is carried out via the
minimization of the following objective function [6]3:

JPCM(Θ, U) =
N∑

i=1

m∑

j=1

uij‖xi − θj‖2

+
m∑

j=1

γj

N∑

i=1

(uij ln uij − uij) (1)

with respect to θj ’s and uij’s, where γj ’s are positive parame-
ters, each one associated with a cluster. More specifically, each

2A preliminary version of SAPCM is presented in [16].
3Another relevant cost function is given in [5].

γj indicates the degree of “influence” of Cj around its repre-
sentative θj ; the smaller (greater) the value of γj , the smaller
(greater) the influence of cluster Cj around θj . In addition, γj ’s
are kept fixed during the execution of the algorithm. One way
to estimate γj is to run the FCM algorithm first and after its
convergence, to set

γj = B

∑N
i=1 uFCM

ij ‖xi − θj‖2

∑N
i=1 uFCM

ij

, j = 1, . . . , m (2)

where usually constant B is set equal to 1. However, since a
prerequisite for the FCM to provide good clustering results is
the accurate knowledge of the number of clusters (which is
rarely the case in practice), the estimates for γj ’s are, in most
cases, not very accurate. Consequently, this usually leads to poor
results, especially for more demanding datasets.

Minimizing JPCM(Θ, U) with respect to uij and θj leads to
the following two coupled updating equations:

uij = exp
(

−‖xi − θj‖2

γj

)

(3)

θj =
∑N

i=1 uijxi
∑N

i=1 uij
. (4)

Thus, PCM iterates between these two equations, giving at each
iteration updated estimations for uij’s and θj ’s, until a specific
termination criterion is met. Note from (4) that all data vectors
contribute to the estimation of each one of the representatives.
However, the farthest ones from a specific θj contribute less,
since the corresponding uij’s are smaller for these vectors, as
(3) indicates. Obviously, the estimates of the uij’s highly affect
the estimation accuracy in the computation of θj ’s from (4). A
little thought reveals that this alternate updating between uij’s
and θj ’s in PCM moves each representative toward the center of
its closest dense in data region. In this sense, we say that PCM
recovers the physical clusters. In addition, the update of uij’s is
highly dependent on the parameters γj ’s (a fact that is further
magnified through the presence of the exp(·) function), thus
making imperative an accurate assessment of the latter. At this
point, it is worth emphasizing the crucial role of the initialization
of θj ’s. Specifically, we would like to place initially at least one
representative in each dense region (cluster) and hope that PCM
will lead each such representative toward the center of the dense
region where it was initially placed.

As it has been mentioned earlier, PCM does not require exact
prior knowledge of the number of clusters m in X , but, rather,
a crude estimation of it. In the case where m is underestimated,
the algorithm will reveal at least some physical clusters, while
if m is overestimated, the algorithm will (potentially) recover
all physical clusters, however with some duplicates. Thus, after
the convergence of PCM, one should identify and remove these
duplicates.

III. INTRODUCING SPARSITY—THE SPARSE

POSSIBILISTIC C-MEANS

A notable feature of the PCM algorithm is that all data vec-
tors contribute to the updating of the representatives [see (4)],



XENAKI et al.: SPARSITY-AWARE POSSIBILISTIC CLUSTERING ALGORITHMS 1613

Fig. 1. (a) Dataset of Example 1 and (b) the clustering result of Example 1 for
PCM with m = 5. Open (closed) circles stand for the initial (final) location of
the representatives (θj ’s) and crosses represent the true centers of the clusters
(cj ’s). The circles centered at each θj and having radius

√
γj are also drawn.

xs is a specific typical point of C1 that will also be considered in Figs. 2 and 3,
and uin i

s2 is its corresponding degree of compatibility with θin i
2 .

since, from (3), we have that all uij’s are positive. When the
physical clusters are well separated from each other, the updat-
ing of a specific θj will only slightly be affected by distant from
it data points. However, in the case where the physical clusters
are closely located to each other and have different densities,
the affection of θj from data points that belong to other physical
clusters will be increased. Moreover, the affection will be higher
for a representative in the sparser cluster. This may drive its rep-
resentative toward the center of the denser cluster, failing thus to
identify the sparser cluster. However, even if this does not hap-
pen, the corresponding final estimates of θj ’s will represent less
accurately the physical cluster centers. The previous arguments
are illustrated qualitatively via the following two examples.4

Example 1: Consider a 2-D dataset X consisting of N =
3000 points, where two physical clusters C1 and C2 are formed.
The clusters are modeled by normal distributions with means
c1 = [0, 0]T and c2 = [1.5, 1.5]T , respectively, while their
covariance matrices are both equal to 0.4 · I2 , where I2 is the
2 × 2 identity matrix. A number of 2000 points of X is generated
by the first distribution and 1000 points are generated by the
second one. Note that the clusters share the same covariance
matrix, they are located very close to each other, and they have
different densities, as shown in Fig. 1 (a). The clustering result
of the PCM, executed for m = 5 clusters, is shown in Fig. 1(b).
Apparently, PCM failed to uncover the sparser cluster. To see
qualitatively why this happens, let us focus on θ1 and θ2 in
Fig. 1(b). As can be seen, θ2 was finally attracted toward C1 ,
although it was initially placed in C2 . This happens because in
the process of determining the next location of θ2 , the many
small contributions from the data points of C1 gradually prevail
over the less but larger contributions from the data points of C2
[see (3) and (4)].

Example 2: Consider now the same 2-D dataset of Exam-
ple 1, where now the two normal distributions are more distant
from each other with means c1 = [0, 0]T and c2 = [2, 2]T ,
respectively [see Fig. 2 (a)]. As shown in Fig. 2(b), PCM now
succeeds in identifying both clusters. It seems that, in determin-
ing the next location of θ2 , the many small contributions from

4A more quantitative illustration is given in Experiment 1 in Section V.

Fig. 2. (a) Dataset of Example 2 and (b) the clustering result of Example
2 for PCM with m = 5. Note that the contribution of the typical point xs to
the computation of θin i

2 is now much smaller compared with its counterpart in
Fig. 1(b). See also the caption of Fig. 1.

TABLE I
PERFORMANCE OF PCM AND SPCM FOR THE DATASETS OF EXAMPLES 1 AND 2

Dataset m in i m f in a l RM SR MD

PCM Example 1 5 1 55.54 66.67 1.0271
SPCM Example 1 5 2 91.22 95.40 0.0822
PCM Example 2 5 2 95.35 97.60 0.1042
SPCM Example 2 5 2 96.21 98.07 0.0194

the data points of C1 were much smaller than their counterparts
in Example 1, and they did not succeed to prevail over the less
but larger contributions from the data points of C2 . However,
the final estimates of the true centers (means of the Gaussians)
are not very accurate, as shown qualitatively in Fig. 2(b) and
established quantitatively later in Table I.

One way to face situations, such as those encountered in Ex-
amples 1 and 2, is to suppress the contribution in the updating
of representatives from data points that are distant from it. Fo-
cusing on a specific representative θj , this can be achieved by
setting uij = 0 for data points xi that are distant from it. Recall-
ing that uT

i = [ui1 , . . . , uim ], i = 1, . . . , N , this is tantamount
to imposing sparsity on ui , i.e., forcing the corresponding data
point xi to contribute only to its (currently) closest represen-
tatives. To incorporate sparsity in PCM, we augment the cost
function JPCM of (1), as follows:

JSPCM(Θ, U) =
m∑

j=1

[
N∑

i=1

uij‖xi − θj‖2

+ γj

N∑

i=1

(uij ln uij − uij)

]

+ λ

N∑

i=1

‖ui‖p
p , uij > 05 (5)

5where ‖ui‖p is the �p -norm of vector ui (p ∈ (0, 1)); thus,
‖ui‖p

p =
∑m

j=1 up
ij . The last term in (5) is expected to induce

sparsity on each one of the vectors ui , while λ (≥ 0) is a

5This is a prerequisite in order for the ln uij to be well-defined. However, in the
sequel, when refering to uij ln uij for uij = 0, we mean lim

u i j →0+
uij ln uij (= 0).



1614 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 24, NO. 6, DECEMBER 2016

regularization parameter that controls the degree of the im-
posed sparsity. The selection of the parameter λ, which remains
constant during the execution of the algorithm, is discussed in
Section III-C. It is clear that by setting λ = 0, we end up
with the cost function, which is associated with the classical
PCM [see (1)]. The algorithm resulting by the minimization of
JSPCM(Θ, U) is called SPCM clustering algorithm.

We describe next in detail the various stages of the algorithm.
Specifically, we first describe the way its parameters are initial-
ized. Next, the updating of uij’s and θj ’s is considered. Note
that the updating of θj ’s is the same as in classical PCM, while
the updating of uij’s is quite different. Although the latter is
more complicated than in the classical PCM, proposed in [6], at
the same time, it is far more simpler6 than the updating in other
problems where sparsity is induced through the �p -norm with
0 < p < 1.

A. Initialization in Sparse Possibilistic c-Means

First, we make an overestimation, denoted by mini , of the
true number of clusters m, underlying in the dataset. Regarding
θj ’s, their initialization drastically affects the final clustering
result in PCM. Thus, a good starting point for them is of crucial
importance. Ideally, we would like to have at least one repre-
sentative in the region of each physical cluster. To this end, the
initialization of θj ’s is carried out using the final cluster rep-
resentatives obtained from the FCM algorithm, when the latter
is executed with mini clusters. Taking into account that FCM
is likely to drive the representatives to “dense in data” regions
(since mini > m), we have a good probability of placing at
least one of the initial θj ’s in each dense region (cluster) of the
dataset.

After the initialization of θj ’s, we initialize γj ’s utilizing (2)
for B = 1.

B. Updating of θj ’s and uij’s in Sparse Possibilistic C-Means

Minimization of JSPCM(Θ, U) with respect to θj leads to the
same updating equation as in the original PCM scheme [see (4)],
since the last term added to the cost function does not depend
on θj ’s. It is only the updating of uij’s that will be modified, in
the light of the last term of JSPCM(Θ, U). Taking the derivative
of JSPCM(Θ, U) with respect to uij , we obtain

∂JSPCM(Θ, U)
∂uij

≡ f(uij) = dij + γj lnuij + λpup−1
ij (6)

where dij = ‖xi − θj‖2 . Obviously, ∂JS P C M (Θ ,U )
∂u i j

= 0 is equiv-

alent to f(uij) = 0, the solution of which will give the requested
uij . Clearly, this equation cannot be solved analytically. How-
ever, it can be efficiently solved arithmetically based on the
following propositions.

Proposition 1: f(uij) does not become zero for uij ∈
(−∞, 0) ∪ (1,+∞).

6Note that, as it will become evident in the following, the simplicity of the
updating of uij ’s stems from the fact that the problem is decomposed with
respect to uij ’s (due to the nature of PCM).

Proof: It is clear that if uij ∈ (1,+∞), all terms in (6) are
strictly positive, and as a consequence, f(uij) is positive. More-
over, uij ∈ (−∞, 0) is meaningless, since in this case, ln uij is
not defined. �

Proposition 2: The stationary points of f(uij) are ûij =

[ λ
γj

p(1 − p)]
1

1−p and ũij = +∞.7

Proposition 3: The unique minimum of f(uij) appears at

ûij = [ λ
γj

p(1 − p)]
1

1−p .

Proposition 4: If f(ûij) < 0, then f(uij) has exactly two
solutions u1

ij , u2
ij ∈ (0, 1) with u1

ij < u2
ij .

Proposition 5: If f(uij) = 0 has two solutions u1
ij , u2

ij (with
u1

ij < u2
ij), JSPCM(Θ, U) exhibits a local minimum at the largest

of them (u2
ij).

Proposition 6: JSPCM(Θ, U) exhibits its global minimum
(with respect to uij) at u∗

ij , where

u∗
ij =

{

u2
ij, if f(ûij) < 0 and u2

ij >
(

λ(1−p)
γj

) 1
1−p

0, otherwise.
(7)

Based on the above propositions, we solve f(uij) = 0 as fol-
lows. First, we determine ûij and check whether f(ûij) > 0. If
this is the case, then f(uij) has no roots in [0, 1]. Note that, in
this case, it is f(uij) > 0 for all uij ∈ (0, 1], since f(ûij) > 0.
Thus, JSPCM is increasing with respect to uij in (0, 1]. Conse-
quently, in this case, we set uij = 0, imposing sparsity. In the
rare case, where f(ûij) = 0, we set uij = 0, as ûij is the unique
root of f(uij) = 0 and f(uij) > 0 for uij ∈ (0, ûij) ∪ (ûij, 1].
If f(ûij) < 0, then f(uij) = 0 has two solutions in (0, 1]. In
order to determine the largest of the solutions (u2

ij), we apply
the bisection method (see, e.g., [17]) in the range (ûij, 1], as
u2

ij is greater than ûij (see proof of Proposition 5). The bisec-
tion method is known to converge very rapidly to the optimum
uij , that is, in our case, to the largest of the two solutions of
f(uij) = 0.8 Finally, we choose the global minimum of JSPCM
(with respect to uij), as (7) indicates.

C. Selection of the Parameter λ

As it follows from the previous analysis, considering a spe-
cific data point xi and a cluster Cj , a necessary condition in or-
der for the equation f(uij) = 0 to have a solution is f(ûij) < 0,
which, taking into account (6) and solving with respect to λ

gives λ <
γj

p(1−p) exp (−1 − d i j (1−p)
γj

). Consequently, selecting

λ ≥ γj

p(1 − p)
exp

(

−1 − dij(1 − p)
γj

)

(8)

the degree of compatibility uij of a data point xi with a cluster Cj

is set to 0, promoting sparsity. Aiming at retaining the smallest
sized cluster, say Cq (i.e., the cluster with γq = minj=1,...,m γj )
until the termination of the algorithm (provided of course that
at least one representative has been initially placed in it), a
reasonable choice for λ would be the one, for which uij becomes
0 for points xi that lie at distance diq greater than γq from

7The proofs of Propositions 2–6 are given in the Appendix.
8Alternatively, any other method of this kind can also be used, e.g., [18].



XENAKI et al.: SPARSITY-AWARE POSSIBILISTIC CLUSTERING ALGORITHMS 1615

the representative θq . This way, θq will be less likely to be
“attracted” by nearby larger clusters, aiding it to remain in the
region of the physical cluster where it was first placed. This
is so because the cluster representative will be affected only
by the data points that are very close to it (i.e., points with
diq < γq = minj=1,...,m γj ).

To this end, applying inequality (8) for dij and γj equal to
γq = minj=1,...,m γj , we end up with λ ≥ γq

p(1−p)e2−p , where e
is the base of natural logarithm. In practice, we select λ as

λ = K
minj=1,...,m γj

p(1 − p)e2−p
(9)

where K is set to values around 1, i.e., actually, we allow nonzero
uij’s for points that lie at distance around γq from θq . In most
of the experiments of SPCM, we take K = 0.9.

D. Sparse Possibilistic C-Means Algorithm

From the previous analysis, the SPCM algorithm can be sum-
marized as follows.

Algorithm 1: [Θ, Γ, U ] = SPCM(X , mini).
Input: X , mini
1: t = 0
2: m = mini

� Initialization of θj ’s part
3: Initialize: θj (t) via FCM algorithm

� Initialization of γj ’s part

4: Set: γj =
∑ n

i = 1 uF C M
ij ‖x i −θj (t)‖2

∑ n
i = 1 uF C M

ij
, j = 1, . . . ,m

5: Set: λ = K
minj = 1 , . . . , m γj

p(1−p)e2−p

6: repeat
� Update U part
7: Update: U(t) (as described in the text)

� Update Θ part
8: θj (t + 1) =

∑N
i=1 uij(t)xi/

∑N
i=1 uij(t) ,

j = 1, . . . , m
9: t = t + 1

10: until the change in θj ’s between two successive
iterations becomes sufficiently small

11: return Θ, Γ = {γ1 , . . . , γm}, U

In the following, we discuss how the exploitation of sparsity
affects the clustering result in Examples 1 and 2, by comparing
PCM and SPCM through the use of some quantitative indices.
Specifically, in order to compare a clustering outcome with the
true data label information, we use 1) the Rand measure (RM)
(e.g., [1]), which measures the degree of agreement between the
obtained clustering and the physical clustering and can handle
clusterings whose number of clusters may differ from the num-
ber of physical clusters, 2) the success rate (SR), which measures
the percentage of the points that have been correctly labeled by
an algorithm, and 3) the mean of the Euclidean distances (MD)
between the true center cj of each physical cluster and its clos-
est cluster representative (θj ) obtained by each algorithm.9 In

9This is also called “quantization distortion” in centroid-based methods, pro-
vided that the number of cj ’s and θj ’s are the same.

Fig. 3. Clustering results of SPCM for the dataset of (a) Example 1 with
min i = 5 and (b) Example 2 with min i = 5. In both cases, the contribution of
the typical point xs to the determination of θin i

2 becomes zero. See also the
caption of Fig. 1.

cases where a clustering algorithm ends up with a higher num-
ber of clusters than the actual one (mfinal > m), only the m
cluster representatives that are closest to the true m centers of
the physical clusters are taken into account in the determination
of MD. On the other hand, in cases where mfinal < m, the MD
measure refers to the distances of the actual centers from their
nearest cluster representatives.10 It is noted that lower MD val-
ues indicate more accurate determination of the cluster center
locations.

Example 1 (continued): Table I shows the clustering results
of PCM and SPCM, where mini and mfinal denote the initial and
the final number of distinct clusters. Figs. 1(b) and 3(a) depict
the performances of PCM and SPCM, respectively.

As we have already seen, PCM fails to uncover the under-
lying clustering structure (as is clearly depicted quantitatively
in Table I), whereas SPCM distinguishes the two physical clus-
ters, since it annihilates the contributions of most of the points
of C1 (C2) in the determination of the next location of θ2 (θ1)
through the imposition of sparsity. Note also that the fact that
C1 is denser than C2 did not affect the computation of θ2 , since
ui2 becomes 0 for most of the points of C1 . This is also verified
through the achieved satisfactory values of RM, SR, and MD
(see Fig. 3(a) and Table I).

Example 2 (continued): Table I shows the clustering results
of PCM and SPCM, and Fig. 3(b) depicts the performance of
SPCM. As we have seen in this case, PCM is able to uncover
the underlying clustering structure. However, SPCM manages
to detect more accurately the true centers of the clusters, as the
MD index indicates.

Remark 1: Note that for p = 1, the last term in (6) be-
comes constant, and uij can be expressed in closed form as
uij = exp(− d i j +λ

γj
), i.e., it is a scaled version of (3) of the clas-

sical PCM (see pink curve in Fig. 4).
Remark 2: In Fig. 4, the degree of compatibility uij versus

dij/γj , resulting from SPCM, is plotted for several values of
p ∈ (0, 1). It can be seen that in each curve corresponding to
p < 1, there is a critical point where a discontinuity is observed,
that is, uij “jumps” from a positive value to zero. The existence
of such a point indicates that “hard” sparsity is imposed on

10In such cases, increased MD values are expected, indicating the fact that
some actual clusters have not been identified.



1616 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 24, NO. 6, DECEMBER 2016

Fig. 4. Degree of compatibility uij as a function of the dij/γj for PCM [6]
(red curve), SPCM for several values of p < 1 (blue curves), and SPCM for
p = 1 (pink curve).

ui’s, being the result of the inclusion of the third term in the
cost function of JSPCM , which, in turn, leads to the numerical
computation of uij’s. “Hard” sparsity means that we do not have
to define a small threshold below which uij is set to zero, but
sparsity is forced automatically. Note also that as p increases
toward 1, the “jump” becomes smaller and is moved to the right
in the graph. However, no such point exists in the curves of
PCM and SPCM with p = 1, i.e., no hard sparsity is imposed
in these cases. Finally, from this diagram, it can also be noted
that uij’s take generally lower values in SPCM, compared with
PCM, which, in addition to the induced sparsity, contributes to
the ability of SPCM in distinguishing closely located clusters.

IV. SPARSE ADAPTIVE POSSIBILISTIC C-MEANS

Despite the fact that SPCM can handle successfully cases of
closely located and different in density clusters, it still suffers
from the problem of its ancestor PCM as far as the estimation of
γj ’s is concerned. Specifically, the estimation of γj ’s is based on
the outcomes of the FCM, which can be significantly affected by
the possible presence of noise or outliers in the data, as well as by
the possible differences in the variance of the clusters. Moreover,
once they have been estimated, they remain fixed during the
execution of the algorithm. Thus, poor initial estimates of γj ’s
may lead SPCM to degraded performance. Furthermore, as is
the case with all PCMs, SPCM may end up with coincident
clusters (duplicates of the same cluster). This happens when
more than one representatives are led to the center of the same
physical cluster.

One way to deal with these issues is to allow γj ’s to adapt
as the algorithm evolves. This will allow the algorithm to track
the changes occurring in the formation of clusters during its
execution. Such a method has been proposed in [15], where a
PCM algorithm called adaptive PCM (APCM) was introduced.
As shown in [15], besides the above, APCM is able to determine
the true number of clusters. In the following, we extend SPCM
in order to incorporate the adaptation of γj ’s by embedding
the relevant mechanism of APCM. The resulting algorithm is
called SAPCM. As a consequence of the above, the algorithm
inherits the ability to detecting automatically also the true num-
ber of physical clusters. Next, inspired by Xenaki et al. [15], we

describe how the parameters γj ’s are adapted in SAPCM, so that
starting from an overestimated number of clusters, to conclude
to the true number of physical clusters.

The proposed SAPCM algorithm stems from the optimization
of the cost function in (5), where now γj is defined as

γj =
η̂

α
ηj (10)

with ηj being a measure of the mean absolute deviation of Cj

as it has been formed in the current iteration (to be defined
rigorously in the next subsection), α is a user-defined positive
parameter [15] and η̂ is a constant defined as the minimum
among all initial ηj ’s, i.e., η̂ = minj=1,...,m in i ηj , where mini is
the initial number of clusters.

A. Initialization of γj ’s

In SAPCM, we initialize ηj ’s as follows [15]:

ηj =

∑N
i=1 uFCM

ij ‖xi − θj‖
∑N

i=1 uFCM
ij

, j = 1, . . . ,mini (11)

where θj ’s and uFCM
ij ’s in (11) are the final parameter estimates

obtained by FCM.11 Combining (10) and (11), the initialization
of γj ’s is completely defined.

It is worth noting that the above initialization of ηj ’s involves
Euclidean instead of squared Euclidean distances, as is the
case with the classical PCM algorithm. This gives the algorithm
the agility to deal well with closely located clusters, for appro-
priate values of α [15].

B. Parameter Adaptation in Sparse Adaptive
Possibilistic C-Means

This part of SAPCM is adopted by APCM [15] and refers to
1) the adjustment of the number of clusters and 2) the adapta-
tion of γj ’s, which are two interrelated processes. In the fol-
lowing, for the sake of completeness, we describe in some
detail the above characteristics. As far as the first is concerned,
we proceed as follows. Let label be an N -dimensional vector,
whose ith component contains the index of the cluster, which
is most compatible with xi , that is the cluster Cj for which
uij = maxr=1,...,m uir at the current iteration. Let nj denote
the number of the data points xi , which are most compatible
with the cluster Cj , and μj be the mean vector of these data
points. The adjustment (reduction) of the number of clusters is
achieved by examining if the index j of a cluster Cj appears in
the vector label. If this is the case (i.e., if there exists at least
one vector xi that is most compatible with Cj ), Cj is preserved.
Otherwise, Cj is eliminated (see Possible cluster elimination
part in Algorithm 2).

Regarding the adaptation of γj ’s at the iteration t + 1 of
the algorithm, we proceed as follows. Each parameter ηj of a
cluster Cj is estimated as the mean absolute deviation of the
most compatible data vectors to cluster Cj (see Adaptation of

11An alternative initialization for γj ’s is proposed in [19].



XENAKI et al.: SPARSITY-AWARE POSSIBILISTIC CLUSTERING ALGORITHMS 1617

ηj ’s part in algorithm 2), i.e.,

ηj (t + 1)

=
1

nj (t)

∑

x i :u i j (t)=maxr = 1 , . . . , m ( t + 1 ) u i r (t)

‖xi − μj (t)‖. (12)

Note that the proposed updating mechanism of ηj ’s differs
from others used in the classical PCM, as well as in many of its
variants, in two distinctive points. First, ηj ’s are updated taking
into account only the data vectors that are most compatible to
cluster Cj and not all the data points weighted by their corre-
sponding coefficients uij . Second, the distances involved in the
formula are between a data vector and the mean vector μj of
the most compatible points of the cluster; not from the repre-
sentative θj , as in previous works (e.g., [5], [20]). This allows
more accurate estimates for ηj ’s [15]. It is also noted that in
the (rare) case where there are two or more clusters, that are
equally compatible with a specific xi , xi will contribute to the
determination of the parameter η of only one of them, which is
chosen arbitrarily. The adaptation of the parameters γj ’s results
after combining (10) and (12). For more details on the rationale
behind the definition of γj ’s, see [15].

Let us focus for a while on the immunity of the SAPCM algo-
rithm to its initialization with an overestimated number of clus-
ters. Taking into account 1) that all representatives are driven to
dense in data regions, due to the possibilistic nature of SAPCM,
2) that the probability to select as representative at least one
point in each dense region is increased, since the overestimated
number of representatives are initially selected via FCM algo-
rithm, and 3) the mechanism for reducing the number of clusters,
then, in principle, the number of the representatives which move
to the same dense region will be reduced to a single one. In or-
der to get some further insight on this issue, assume that two
cluster representatives θr and θs almost coincide, which, for a
given xi , implies that dir � dis ≡ d, but let say that γr > γs .
Consider also the functions fr (u) = d + γr ln u + λpup−1 and
fs(u) = d + γs ln u + λpup−1 for u ∈ (0, 1]. It is easy to see
that fr (u) ≤ fs(u), for each u ∈ (0, 1]. Assume now that both
have positive solutions. It is easy to verify that uir ≥ uis , where
uir and uis are the largest of the two solutions of fr (u) = 0 and
fs(u) = 0, respectively (see Fig. 5). In the case where uir = 0, it
trivially follows that uis = 0. Finally, if uis = 0, then uir ≥ uis .
Thus, the influence of the cluster with the smaller γ (γs) will be
vanished by the influence of the one with the greater γ (γr ), in
the sense that uir > uis , for all data points xi ∈ X . As a conse-
quence, the index s will not appear in the label vector, and thus,
Cs will be eliminated.

C. Sparse Adaptive Possibilistic C-Means Algorithm

The proposed SAPCM algorithm is summarized in “Algo-
rithm 2” box below (the choice of λ is justified later).

In the following, we give some very demanding experimental
setups, which exhibit the enhanced abilities of SAPCM com-
pared with APCM.

Example 3: Consider the setup of Example 1, where now C1
and C2 consist of 2000 and 500 points, respectively. Note that

Fig. 5. Graphical presentation of f r (u) and f s (u) for constant d, λ and p,
with γr > γs . The largest of the two solutions of f r (u) = 0 and f s (u) = 0,
uir and uis , are also shown, respectively. It is observed that uir ≥ uis .

Fig. 6. (a) Dataset of Example 3. (b) Dataset of Example 4. xs is a specific
typical point that will also be considered in Figs. 7 and 8.

Fig. 7. Clustering results of Example 3 for (a) APCM, min i = 5 and α = 1.5,
and (b) SAPCM, min i = 5 and α = 2. See also the caption of Fig. 6. Note that
the degree of compatibility of xs (defined in Fig. 6) with θin i

2 , uin i
s2 , is positive

in APCM and zero in SAPCM.

the clusters have the same variances yet even more different
densities compared with the dataset of Example 1, while at the
same time, they are located very close to each other, as shown
in Fig. 6(a). Table II shows the clustering results of APCM
and SAPCM, and Fig. 7(a) and (b) depicts the performance of
APCM and SAPCM, respectively, with their parameter α being
chosen as stated in the figure caption (after fine-tuning). As can
be deduced from Fig. 7 and Table II, APCM fails to uncover the
underlying clustering structure, whereas SAPCM distinguishes
the two physical clusters and achieves very satisfactory results in
terms of RM, SR, and MD. To see why this happens, let us focus
on θ1 and θ2 in Fig. 7(a) and (b). Clearly, APCM fails to recover



1618 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 24, NO. 6, DECEMBER 2016

Algorithm 2: [Θ, Γ, U , label] = SAPCM(X , mini , α).
Input: X , mini , α
1: t = 0
2: m(t) = mini

� Initialization of θj ’s part
3: Initialize: θj (t) via FCM algorithm

� Initialization of ηj ’s part

4: Set: ηj (t) =
∑ n

i = 1 uF C M
ij ‖x i −θj (t)‖

∑ n
i = 1 uF C M

ij
, j = 1, . . . ,m(t)

5: Set: η̂ = minj=1,...,m (t) ηj (t)
6: Set: γj (t) = η̂ηj (t)/α, j = 1, . . . ,m(t)
7: Set: λ(t) = K

minj = 1 , . . . , m ( t ) γj (t)
p(1−p)e2−p , K = 0.1

8: repeat
� Update U part
9: Update: U(t) (as in SPCM)

� Update Θ part

10: θj (t + 1) =
N∑

i=1
uij(t)xi/

N∑

i=1
uij(t) ,

j = 1, . . . ,m(t)
� Possible cluster elimination part
11: for i ← 1 to N do
12: Determine: uir(t) = maxj=1,...,m (t) uij(t)
13: if uir(t) �= 0 then
14: Set: label(i) = r
15: else
16: Set: label(i) = 0
17: end if
18: end for
19: p = 0 //number of removed clusters at iteration t
20: for j ← 1tom(t) do
21: if j /∈ label then
22: Remove: Cj (and renumber accordingly

Θ(t + 1) and the columns of U(t))
23: p = p + 1
24: end if
25: end for
26: m(t + 1) = m(t) − p
� Adaptation of ηj ’s part
27: ηj (t + 1) = 1

nj (t)∑
x i :u i j (t)=maxr = 1 , . . . , m ( t + 1 ) u i r (t) ‖xi−

μj (t)‖, j = 1, . . . ,m(t + 1)
28: Set: γj (t + 1) = η̂ηj (t + 1)/α,

j = 1, . . . ,m(t + 1)
29: Set: λ(t + 1) = K

minj = 1 , . . . , m ( t + 1 ) γj (t+1)
p(1−p)e2−p , K = 0.1

30: t = t + 1
31: until the change in θj ’s between two successive

iterations becomes sufficiently small
32: return Θ, Γ = {γ1 , . . . , γm}, U , label

C2 , since, in determining the next location of θ2 , the many small
contributions from the points of C1 gradually prevail over the
less but larger contributions from the points of C2 . Note that
this happens despite the fact that APCM adjusts dynamically
the γj ’s and it is oughted to the combination of 1) the strict

TABLE II
PERFORMANCE OF APCM AND SAPCM FOR THE DATASETS OF EXAMPLES

3 AND 4

Dataset α m in i m f in a l RM SR MD

APCM Ex. 3 1.5 5 1 67.99 80.00 1.0363
SAPCM Ex. 3 2 5 2 90.07 94.76 0.0673
APCM Ex. 4 1.5 5 2 97.86 98.92 0.0183
SAPCM Ex. 4 1 5 2 97.78 98.88 0.0142

Fig. 8. Clustering results of Example 4 for (a) APCM, min i = 5 and α = 1.5,
and (b) SAPCM, min i = 5 and α = 1. See also the caption of Fig. 6. In this
case, uin i

s2 is significantly smaller than in Fig. 7(a).

positivity of all uij’s, 2) the very different cluster densities, and
3) the closeness of the clusters. However, this is not the case
for SAPCM, since the latter annihilates the contributions of the
points of C1 in the determination of the next location of θ2 , via
the imposition of sparsity.

Example 4: Consider now the same 2-D dataset of Example
3, where now the means of the two normal distributions are c1 =
[0, 0]T and c2 = [2, 2]T , respectively, as shown in Fig. 6(b).
Table II shows the clustering results of APCM and SAPCM, and
Fig. 8(a) and (b) depicts the performance of APCM and SAPCM,
respectively. As can be deduced, APCM is now able to uncover
the underlying clustering structure. However, SAPCM manages
to detect even more accurately the true centers of the clusters
(as MD index indicates).

Remark 3: In SAPCM, the parameter λ is chosen as in
SPCM, as (9) indicates. Note that in SAPCM, the parameters
γj ’s are updated during the execution of the algorithm; thus,
the parameter λ should also be updated after the adaptation of
γj ’s (see line 29 in Algorithm 2). Moreover, in SAPCM, the
parameter K should take much smaller values than in SPCM,
due to the definition of γj ’s. This has to do with the fact that
in SAPCM, the adaptation of the parameters γj ’s leads to more
accurate estimates for the variances of the clusters (see the ra-
dius of the circles (

√
γj ) in Fig. 3(a) and (b) for SPCM and the

corresponding ones for SAPCM in Figs. 7(b) and 8(b) and [15]).
Taking into account that 1) the choice of (9) imposes sparsity
for all the points at distance greater than minj=1,...,m γj from a
given representative and 2) γj ’s in SAPCM are of much smaller
sizes with respect to their corresponding ones in SPCM, values
of K close to 1 would lead to such a large degree of sparsity
[as indicated by f(uij) in (6)], where the cluster representatives
could hardly move (through (4), see line 10 in Algorithm 2).
Extensive experimentation indicated that values around 0.1 are



XENAKI et al.: SPARSITY-AWARE POSSIBILISTIC CLUSTERING ALGORITHMS 1619

Fig. 9. PCM and SPCM snapshots at their initialization step, their first iter-
ation, fifth and eighth iteration for PCM, and fifth (final) iteration for SPCM
(Experiment 1). (a) Initial step of PCM/SPCM. (b) First iteration of SPCM.
(c) Fifth (final) iteration of SPCM. (d) First iteration of PCM. (e) Fifth iteration
of PCM. (f) Eighth iteration of PCM.

the most appropriate. Therefore, in all SAPCM experiments, we
set K = 0.1.

V. EXPERIMENTAL RESULTS

In this section, we assess the performance of the proposed
algorithms in several experimental settings and illustrate the re-
sults. More specifically, we use several 2-D simulated datasets as
well as real-world datasets (Iris [21] and a hyperspectral image
(HSI) dataset [22]) to evaluate the performance of SPCM and
SAPCM in comparison with several other related algorithms.

Experiment 1: This experiment illustrates the rationale of
SPCM, which has been approached in Example 1 more qual-
itatively. Let us consider a 2-D dataset consisting of N = 17
points, which form two clusters C1 and C2 with 12 and 5 data
points, respectively (see Fig. 9). The means of the clusters are
c1 = [1.75, 2.75] and c2 = [4.25, 2.75]. In this experiment, we
consider only the PCM and the SPCM algorithms, both with
m = 2. Fig. 9(a) shows the initial positions of the cluster repre-
sentatives that are taken from FCM and the circles with radius
equal to

√
γj ’s resulting from (2) (for B = 1) for both PCM and

SPCM. Similarly, Fig. 9(b) and (d) shows the new locations of
θj ’s after the first iteration of the algorithms, and Fig. 9(c) and

(e) shows the locations of θj ’s after the fifth (final) and fifth
iterations for SPCM and PCM, respectively. Finally, Fig. 9(f)
shows the locations of θj ’s after the eighth iteration for PCM.
Table III shows the degrees of compatibility uij’s of all data
points xi’s with the cluster representatives θj ’s at the three
iterations considered in Fig. 9 for both PCM and SPCM.

As can be deduced from Table III and Fig. 9, the degrees
of compatibility of the data points of C1 with the cluster
representative θ2 increase as PCM evolves, leading gradually
θ2 toward the region of the cluster C1 and, thus, ending up
with two coincident clusters, although θ1 and θ2 are initialized
properly through the FCM algorithm [see Fig. 9(a)]. However,
this is not the case in the SPCM algorithm, as both the cluster
representatives remain in the centers of the actual clusters. It is
of great interest to mention that in SPCM, θ1 and θ2 conclude
closest to the actual centers compared to its initial state through
the FCM algorithm [see Fig. 9(c)]. Obviously, the superior
performance of SPCM is due to the sparsity imposed on ui’s
leading several uij’s to 0 for points xi that lie “away” from θj

(see Table III), thus preventing these points from contributing
to the estimation of θj . This experiment indicates the ability
of SPCM to handle successfully cases where relatively closely
located clusters with different densities are involved.

In the following, we compare the clustering performance of
SPCM and SAPCM with that of the k-means, the FCM, the
PCM [6], the UPC [23], the UPFC [24], the PFCM [7], the
SPCM-L1 [14], and the APCM [15] algorithms, which all re-
sult from cost optimization schemes. For a fair comparison, the
representatives θj ’s of all algorithms (except for SPCM-L1) are
initialized based on the FCM scheme, and the parameters of
each algorithm are first fine-tuned. Moreover, in PCM, UPC,
UPFC, PFCM, and SPCM, duplicate clusters are removed after
their termination. In order to compare a clustering with the true
data label information, we utilize again the RM, SR, and the
MD indices defined previously. In particular, in Experiments
2 and 3, the SR of each physical cluster (SRcj

, j = 1, . . . , m)
is presented, which measures the percentage of the points of
each physical cluster that have been correctly labeled by each
algorithm. Finally, the number of iterations and the total time
required for the convergence of each algorithm is provided. All
algorithms have been executed using MATLAB R2013a on Intel
i7-4790 machine with 16-GB RAM and 3.60 GHz.

Experiment 2: Consider a 2-D dataset consisting of N =
5300 points, where three clusters C1 , C2 , and C3 are formed.
Each cluster is modeled by a normal distribution. The means of
the distributions are c1 = [0.27, 7.99]T , c2 = [6.28, 1.49]T , and
c3 = [7.81, 3.76]T , respectively, while their covariance matrices
are set to 3 · I2 , 0.5 · I2 , and 0.01 · I2 , respectively. A number
of 200 points are generated by the first distribution, 100 points
are generated by the second one, and 5000 points are generated
by the third one. Note that C2 and C3 clusters are very close to
each other, and they have a big difference in their variances [see
Fig. 10(a)]. Also note the difference in the density among the
three clusters.

Table IV shows the results of all algorithms for Experiment
2. Fig. 10(b) and (c) shows the clustering obtained using the
k-means and FCM algorithms, respectively, both for mini = 3.



1620 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 24, NO. 6, DECEMBER 2016

TABLE III
DEGREES OF COMPATIBILITY OF THE DATA POINTS OF EXPERIMENT 1 FOR PCM AND SPCM ALGORITHMS, AFTER: 1) FIRST ITERATION (FOR BOTH ALGORITHMS);

2) FIFTH ITERATION FOR PCM AND FIFTH (FINAL) ITERATION FOR SPCM; AND 3) EIGHTH ITERATION FOR PCM

First iteration Fifth iteration Fifth (final) iteration Eight iteration

PCM SPCM PCM SPCM PCM

x i C1 C2 C1 C2 C1 C2 C1 C2 C1 C2

(1.5, 3.5) 0.3701 0.0018 0 0 0.3616 0.0064 0 0 0.3606 0.0118
(2.0, 3.5) 0.3526 0.0127 0 0 0.3619 0.0352 0 0 0.3630 0.0570
(1.0, 3.0) 0.3884 2.5e-04 0 0 0.3613 0.0012 0 0 0.3583 0.0024
(1.5, 3.0) 0.8348 0.0027 0.4625 0 0.8157 0.0095 0.4478 0 0.8134 0.0174
(2.0, 3.0) 0.7954 0.0188 0.4316 0 0.8164 0.0523 0.4476 0 0.8186 0.0846
(2.5, 3.0) 0.3360 0.0897 0 0 0.3623 0.1949 0 0 0.3653 0.2766
(1.0, 2.5) 0.3884 2.5e-04 0 0 0.3613 0.0012 0 0 0.3583 0.0024
(1.5, 2.5) 0.8348 0.0027 0.4625 0 0.8157 0.0095 0.4478 0 0.8134 0.0174
(2.0, 2.5) 0.7954 0.0188 0.4316 0 0.8164 0.0523 0.4476 0 0.8186 0.0846
(2.5, 2.5) 0.3360 0.0897 0 0 0.3623 0.1949 0 0 0.3653 0.2766
(1.5, 2.0) 0.3701 0.0018 0 0 0.3616 0.0064 0 0 0.3606 0.0118
(2.0, 2.0) 0.3526 0.0127 0 0 0.3619 0.0352 0 0 0.3630 0.0570
(4.25, 3.5) 1.2e-05 0.6415 0 0.4850 1.5e-05 0.5883 0 0.4852 1.6e-05 0.5276
(3.5, 2.75) 0.0058 0.6566 0 0.4983 0.0069 0.8712 0 0.4854 0.0070 0.9512
(4.25, 2.75) 3.0e-05 0.9997 0 0.8046 3.9e-05 0.9168 0 0.8049 4.0e-05 0.8222
(5.0, 2.75) 2.5e-08 0.6267 0 0.4720 3.5e-08 0.3972 0 0.4849 3.6e-08 0.2926
(4.25, 2.0) 1.2e-05 0.6415 0 0.4850 1.5e-05 0.5883 0 0.4852 1.6e-05 0.5276

Fig. 10. (a) Dataset of Experiment 2. Clustering results for (b) k-means, min i = 3, (c) FCM, min i = 3, (d) PCM, min i = 5, (e) UPC, min i = 5, q = 1.5,
(f) UPFC, min i = 10, α = 5, β = 1, q = 2.2, n = 3, (g) PFCM, min i = 5, K = 1, α = 1, β = 5, q = 1.5, n = 1.5, (h) SPCM-L1 , λ = 15, q = 2 (i) APCM,
min i = 5, α = 0.3, (j) SPCM, min i = 5, and (k) SAPCM, min i = 10 and α = 0.15.



XENAKI et al.: SPARSITY-AWARE POSSIBILISTIC CLUSTERING ALGORITHMS 1621

TABLE IV
PERFORMANCE OF CLUSTERING ALGORITHMS FOR THE EXPERIMENT 2 DATASET

m in i m f in a l SRc 1 SRc 2 SRc 3 MD Iter Time

k-means 3 3 51 0 100 3.4066 2 0.265
k-means 5 5 51 94 51.48 0.5369 20 0.202
FCM 3 3 51 0 100 3.3432 110 0.140
FCM 5 5 50.50 93 51.62 0.5537 86 0.218
PCM 5 2 100 0 100 0.9242 15 0.514
PCM 10 2 100 0 100 0.9254 18 1.185
UPC (q = 1.5) 5 4 50 95 100 0.4589 65 0.390
UPC (q = 1.2) 10 4 50 95 100 0.4480 89 0.910
UPFC (a = 5, b = 1, q = 2, n = 1.5) 5 4 50.50 96 100 0.4170 41 0.390
UPFC (a = 5, b = 1, q = 2.2, n = 3) 10 3 100 94 100 0.3601 190 2.940
PFCM (K = 1, a = 1, b = 5, q = 1.5, n = 1.5) 5 4 51.50 100 100 0.4573 38 0.380
PFCM (K = 1, a = 2, b = 1, q = 2, n = 1.2) 10 5 44 97 100 0.4011 60 0.880
SPCM-L1 (λ = 15, q = 2) - 2 76 0 100 1.1831 6 0.031
APCM (α = 0.3) 5 4 53 100 100 0.4469 73 0.390
APCM (α = 0.3) 10 4 52.50 100 100 0.4748 90 0.889
SPCM (K = 0.9) 5 2 100 0 100 0.9256 15 3.276
SPCM (K = 0.9) 10 2 100 0 100 0.9263 19 7.769
SAPCM (α = 0.18) 5 3 100 100 100 0.3222 91 13.40
SAPCM (α = 0.15) 10 3 100 100 100 0.3020 100 18.94

Fig. 10(d)–(i) depicts the performance of PCM, UPC, UPFC,
PFCM, SPCM-L1 , and APCM, respectively, with their param-
eters chosen (after fine-tuning), as stated in the caption. In ad-
dition, the circles, centered at each θj and having radius

√
γj

(as they have been computed after the convergence of the algo-
rithms), are also drawn.

As can be deduced from Fig. 10 and Table IV, even when the
k-means and the FCM are initialized with the (unknown in prac-
tice) true number of clusters (m = 3), they fail to unravel the
underlying clustering structure mainly due to the big difference
in the variances and densities between clusters. The classical
PCM also fails to detect the physical cluster 2, because of its
position that is next to the densest physical cluster. The UPC
algorithm has been fine-tuned so that the parameters γj ’s, which
remain fixed during its execution and are the same for all clus-
ters, get small enough values, in order to identify the cluster C2 .
However, it splits the high-variance/low-density cluster C1 in
two clusters. The same seems to hold for the PFCM algorithm,
after fine-tuning of its several parameters. The UPFC algorithm
produces three clusters, at the cost of a computationally de-
manding fine-tuning of the (several) parameters it involves. The
APCM algorithm also splits the big variance cluster in two sub-
clusters, failing to detect the underlying clustering structure. On
the other hand, SPCM identifies two clusters with high accu-
racy of the center of the actual clusters, but misses the third
one. Finally, as it is deduced from Table IV, the SAPCM al-
gorithm manages to identify all clusters, achieving the best SR
and MD results and detecting very accurately the true centers
of the clusters, since it exhibits the minimum MD among all
algorithms.

Experiment 3: Consider the dataset of Experiment 2, where
50 data points are now added randomly as noise in the region
where data live [see Fig. 11(a)]. It can be seen that APCM and
SAPCM algorithms are the only algorithms that distinguish all
clusters. In addition, SAPCM keeps MD at low values, whereas
all other algorithms conclude to higher MD values compared

with the results of Experiment 2 (see Tables IV and V). Finally,
as shown in Fig. 11, SAPCM is the only algorithm that identifies
the noisy points of the dataset and ignores them in the updating
of the location of the cluster representatives.

Experiment 4: Let us consider the Iris dataset ([21]) con-
sisting of N = 150, 4-D data points that form three classes,
each one having 50 points. In this dataset, two classes are over-
lapped; thus, one can argue whether the true number of clusters
m is 2 or 3. As shown in Table VI , k-means and FCM work
well, only if they are initialized with the true number of clus-
ters (mini = 3). The classical PCM and SPCM fail to end up
with mfinal = 3 clusters, independently of the choice of the ini-
tial number of clusters. On the contrary, the UPC, the PFCM,
the UPFC, the APCM, and the SAPCM algorithms, after ap-
propriate fine-tuning of their parameters, produce very accurate
results in terms of the RM, SR, and MD metrics. However, the
APCM and SAPCM algorithms detect more accurately the cen-
ters of the true clusters compared with the other algorithms.
It is noted again that the main drawback of PFCM and UPFC
is the requirement for fine-tuning of several parameters, which
increases excessively the computational load required for de-
tecting the appropriate combination of parameters that achieves
the best clustering performance. Finally, the SPCM-L1 algo-
rithm concludes also to three clusters, however, with degraded
clustering performance.

The next experiment indicates the ability of the proposed
algorithms to deal successfully with high-dimensional data.

Experiment 5: In this experiment, the dataset under study is
an HSI, which depicts a subscene of size 220 × 120 of the flight-
line acquired by the AVIRIS sensor over Salinas Valley, Califor-
nia [22]. The AVIRIS sensor generates 224 spectral bands across
the range from 0.2 to 2.4 μm. The number of bands is reduced to
204 by removing 20 water absorption bands. The aim in this ex-
periment is to identify homogeneous regions in the Salinas HSI.
A total size of N = 26 400 samples-pixels are used, stemming
from seven ground-truth classes: “Grapes,” “Broccoli,” three



1622 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 24, NO. 6, DECEMBER 2016

Fig. 11. (a) Dataset of Experiment 3. Clustering results for (b) k-means, min i = 3, (c) FCM, min i = 3, (d) PCM, min i = 10, (e) UPC, min i = 5, q = 1.5,
(f) UPFC, min i = 10, α = 5, β = 1, q = 2.5, n = 2, (g) PFCM, min i = 5, K = 1, α = 1, β = 1, q = 1.5, n = 1.5, (h) SPCM-L1 , λ = 17, q = 2, (i) APCM,
min i = 5, α = 0.4, (j) SPCM, min i = 5, and (k) SAPCM, min i = 10 and α = 0.18.

TABLE V
PERFORMANCE OF CLUSTERING ALGORITHMS FOR THE EXPERIMENT 3 DATASET

m in i m f in a l SRc 1 SRc 2 SRc 3 MD Iter Time

k-means 3 3 54.50 0 100 3.8296 8 0.156
k-means 5 5 99.50 94 50.96 0.0843 35 0.203
FCM 3 3 56 0 100 3.4345 75 0.110
FCM 5 5 99.50 92 38.92 0.3334 129 0.375
PCM 5 1 0 0 100 3.7899 9 0.421
PCM 10 2 99 0 97.60 0.9254 29 1.943
UPC (q = 1.5) 5 4 50 95 100 0.4424 80 0.328
UPC (q = 1.3) 10 4 50 95 100 0.4517 113 1.186
UPFC (a = 1, b = 1, q = 2.5, n = 2) 5 2 100 0 100 1.1388 60 0.421
UPFC (a = 5, b = 1, q = 2.5, n = 2) 10 2 100 0 100 1.1346 151 2.044
PFCM (K = 1, a = 1, b = 1, q = 1.5, n = 1.5) 5 2 100 0 100 0.9519 45 0.343
PFCM (K = 1, a = 1, b = 1, q = 1.2, n = 1.5) 10 2 98.50 0 100 0.9575 61 1.358
SPCM-L1 (λ = 17, q = 2) - 3 58.50 0 100 4.1291 9 0.016
APCM (α = 0.3) 5 3 100 100 100 0.3150 83 0.374
APCM (α = 0.3) 10 4 97 100 100 0.3518 93 0.655
SPCM (K = 0.9) 5 2 100 0 100 0.9117 19 4.695
SPCM (K = 0.9) 10 2 100 0 100 0.9118 13 5.991
SAPCM (α = 0.24) 5 3 100 100 100 0.3808 202 27.82
SAPCM (α = 0.19) 10 3 100 100 100 0.3193 122 21.20



XENAKI et al.: SPARSITY-AWARE POSSIBILISTIC CLUSTERING ALGORITHMS 1623

TABLE VI
PERFORMANCE OF CLUSTERING ALGORITHMS FOR THE IRIS DATASET

m in i m f in a l RM SR MD Iter Time

k-means 3 3 87.97 89.33 0.1271 3 0.30
k-means 10 10 76.64 40.00 0.7785 4 0.13
FCM 3 3 87.97 89.33 0.1287 19 0.02
FCM 10 10 76.16 36.00 0.7793 35 0.02
PCM 3 2 77.19 66.67 0.5428 19 0.11
PCM 10 2 77.63 66.67 0.5286 28 0.11
UPC (q = 4) 3 3 91.24 92.67 0.1438 26 0.03
UPC (q = 2.4) 10 3 81.96 81.33 0.5569 150 0.11
UPFC (a = 1, b = 5, q = 4, n = 2) 3 3 91.24 92.67 0.1642 32 0.03
UPFC (a = 1, b = 1.5, q = 2.5, n = 2) 10 3 81.96 81.33 0.5566 180 0.16
PFCM (K = 1, a = 1, b = 10, q = 7, n = 2) 3 3 90.55 92.00 0.1833 17 0.03
PFCM (K = 1, a = 1, b = 1.5, q = 2, n = 2) 10 3 84.64 85.33 0.5411 92 0.05
SPCM-L1 (λ = 4.5, q = 2) - 3 66.65 58.67 0.69.04 13 0.02
APCM (α = 3) 3 3 91.24 92.67 0.1405 26 0.03
APCM (α = 1) 10 3 84.15 84.67 0.4030 61 0.06
SPCM (K = 1.2) 3 3 83.22 83.33 0.3631 27 0.14
SPCM (K = 0.95) 10 3 79.38 76.00 0.2151 35 0.36
SAPCM (α = 2.2) 3 3 91.24 92.67 0.1419 33 0.16
SAPCM (α = 0.8) 10 3 84.15 84.67 0.4224 60 0.34

Fig. 12. (a) Fourth PC component of Salinas HSI and (b) the corresponding ground truth labeling. Clustering results of experiment 6 obtained from (c) k-means,
min i = 7, (d) FCM, min i = 7, (e) PCM, min i = 15, (f) UPC, min i = 15 and q = 4, (g) UPFC, min i = 15, α = 1, β = 3, q = 5 and n = 2, (h) PFCM,
min i = 15, K = 1, α = 1, β = 2, q = 3 and n = 2, (i) APCM, min i = 15 and α = 3, (j) SPCM, min i = 30, and (k) SAPCM, min i = 15 and α = 1.8.

types of “Fallow,” “Stubble,” and “Celery,” denoted by differ-
ent colors in Fig. 12(b). Note that there is no available ground
truth information for the dark blue pixels in Fig. 12(b). It is also
noted that Fig. 12 depicts the best mapping obtained by each

algorithm12 taking into account not only the “dry” performance
indices, but their physical interpretation as well.

12The results for the SPCM-L1 algorithm were rather poor; thus, they are not
provided.



1624 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 24, NO. 6, DECEMBER 2016

TABLE VII
PERFORMANCE OF CLUSTERING ALGORITHMS FOR THE SALINAS HSI DATASET

m in i m f in a l RM SR MD Iter Time

k-means 7 7 93.75 79.89 1.84e + 03 25 0.18e + 02
k-means 9 9 91.03 68.55 1.91e + 03 10 0.27e + 02
k-means 15 15 89.90 59.18 0.60e + 03 28 0.60e + 02
FCM 7 7 93.18 75.31 2.41e + 03 99 0.23e + 02
FCM 9 9 90.93 67.92 1.96e + 03 103 0.31e + 02
FCM 15 15 89.75 57.89 0.59e + 03 137 0.67e + 02
PCM 7 4 88.09 69.37 1.92e + 03 28 0.52e + 02
PCM 15 5 92.75 80.84 1.21e + 03 29 1.00e + 02
PCM 30 5 93.39 81.62 1.19e + 03 56 2.90e + 02
UPC (q = 4) 7 3 80.97 57.43 3.14e + 03 38 0.27e + 02
UPC (q = 4) 15 6 95.61 86.21 0.61e + 03 48 0.85e + 02
UPC (q = 3) 30 6 95.65 86.28 0.58e + 03 48 2.30e + 02
UPFC (a = 1, b = 5, q = 4, n = 2) 7 3 80.98 57.43 3.14e + 03 38 0.31e + 02
UPFC (a = 1, b = 3, q = 5, n = 2) 15 6 95.67 86.31 0.57e + 03 45 0.93e + 02
UPFC (a = 1, b = 3, q = 5, n = 2) 30 6 95.61 86.21 0.62e + 03 54 2.57e + 02
PFCM (K = 1, a = 1, b = 7, q = 2, n = 2) 7 3 80.98 57.44 3.06e + 03 349 1.48e + 02
PFCM (K = 1, a = 1, b = 2, q = 3, n = 2) 15 7 94.17 76.86 2.82e + 03 162 1.86e + 02
PFCM (K = 1, a = 1, b = 2, q = 3, n = 2) 30 7 93.60 76.63 2.91e + 03 206 4.96e + 02
APCM (α = 4) 7 6 95.45 85.92 0.72e + 03 82 0.50e + 02
APCM (α = 3) 15 8 95.91 85.85 0.56e + 03 191 1.60e + 02
APCM (α = 1.5) 30 8 95.92 85.84 0.53e + 03 262 3.47e + 02
SPCM 7 5 92.73 81.19 1.15e + 03 35 0.52e + 02
SPCM 15 5 93.33 81.79 1.21e + 03 47 1.51e + 02
SPCM 30 6 95.62 86.15 0.48e + 03 36 3.34e + 02
SAPCM (α = 2) 7 6 95.85 86.51 0.71e + 03 71 0.84e + 02
SAPCM (α = 1.8) 15 9 95.25 83.40 0.55e + 03 223 3.69e + 02
SAPCM (α = 1.3) 30 9 95.20 83.31 0.56e + 03 286 6.67e + 02

As can be deduced from Fig. 12 and Table VII, when k-means
and FCM are initialized with mini = 7, they actually split the
“Stubble” class into two clusters and merge the “Fallow 1” and
“Fallow 3” classes. The PCM algorithm fails to uncover more
than five discrete clusters, merging the three different types of
the “Fallow” class. The UPC, UPFC, and SPCM algorithms
are able to detect up to six clusters, merging the “Fallow 1”
and “Fallow 3” classes. PFCM, after exhaustive fine-tuning of
its parameters, manages additionally to distinguish two types of
“Celery,” compared with UPC, UPFC, and SPCM, although this
information is not reflected to the ground-truth labeling. Finally,
APCM and SAPCM are the only algorithms that manage to
distinguish the “Fallow 1” from the “Fallow 3” class, while
at the same time, they do not merge any other of the existing
classes.

Let us focus for a while on the “Celery” class. This class is
formed by two similar yet distinguished from each other “sub-
classes,” although this is not reflected to the ground-truth la-
beling [note, however, that this can be deduced from the fourth
PC component in Fig. 12(a)]. These subclasses are likely to
form two closely located clusters in the feature space. It is
important to note that, in contrast with PFCM, APCM, and
SAPCM, none of the other algorithms succeeds in identify-
ing each one of them. The fact that this is not reflected in the
ground-truth labeling causes a misleading decrease in the SR
performance of these three algorithms. Similar comments result
for the “Grapes” class, after the inspection of the fourth PC com-
ponent in Fig. 12(a). However, in this case, only the SAPCM
algorithm succeeds in unraveling this situation.

VI. CONCLUSION

In this paper, two novel possibilistic c-means algorithms have
been proposed, namely SPCM and SAPCM, which both impose
a sparsity constraint on the degrees of compatibility of each data
vector with the clusters. Both algorithms are initialized through
FCM with the latter executed for an overestimated number of the
actual number of clusters. SPCM, which results by extending
the cost function of the original PCM with a sparsity promoting
term, unravels the underlying clustering structure much more
accurately than PCM. This is achieved via the improvement on
the estimation of the cluster representatives by excluding points
that are distant from them in contributing to their estimation.
Thus, it is able to identify closely located clusters with possi-
bly different densities. In addition, SPCM exhibits immunity
to noise and outliers. The second algorithm, termed SAPCM,
further extends SPCM by adapting the parameters γj ’s as the
algorithm evolves, incorporating the relative adaptation mech-
anism described in [15]. The SAPCM algorithm is immune to
noise/outliers, as its predecessor SPCM. In addition, SAPCM
has the ability 1) to cope well with closely located clusters with
possibly different densities and/or variances, 2) to determining
the number of natural clusters, and 3) to improve even more
the estimates of the cluster representatives. In extensive exper-
iments, it is shown that SAPCM has a steadily superior perfor-
mance, compared with other related algorithms, irrespective of
the initial estimate of the number of clusters. Both algorithms
compare favorably with relevant state-of-the-art algorithms, ex-
hibiting in most cases a superior clustering performance. Finally,
they are able to cope with high-dimensionality datasets.



XENAKI et al.: SPARSITY-AWARE POSSIBILISTIC CLUSTERING ALGORITHMS 1625

APPENDIX

Proof of Proposition 2: Taking the derivative of f(uij) with
respect to uij , we obtain

∂f(uij)
∂uij

= γju
−1
ij

[

1 − λ

γj
p(1 − p)up−1

ij

]

. (13)

Solving ∂f (u i j )
∂u i j

= 0 with respect to uij and taking into account
that uij > 0 (by definition), after some elementary algebraic
manipulations, we have the following solutions:

ûij =
[

λ

γj
p(1 − p)

] 1
1−p

and ũij = +∞. (14)

�
Proof of Proposition 3: It suffices to show that ∂f (u i j )

∂u i j
≤ 0

for uij ∈ (0, ûij ] and ∂f (u i j )
∂u i j

≥ 0 for uij ∈ [ûij ,+∞). Indeed,

for uij ∈ (0, ûij ], we have uij ≤ ûij , which implies that u1−p
ij ≤

λ
γj

p(1 − p) (from (14)) or 1 ≤ λ
γj

p(1 − p)up−1
ij . From the latter

and taking into account (13) again, it follows that ∂f (u i j )
∂u i j

≤ 0 in

uij ∈ (0, ûij ]. Similarly, for uij ∈ [ûij ,+∞), we have uij ≥ ûij ,
which, utilizing (14), implies that u1−p

ij ≥ λ
γj

p(1 − p) or 1 ≥
λ
γj

p(1 − p)up−1
ij . From the latter and taking into account (13),

it follows that ∂f (u i j )
∂u i j

≥ 0 in uij ∈ [ûij ,+∞). Consequently, ûij

is the unique minimum of f(uij), since in [ûij ,+∞), f(uij)
is increasing, and as a consequence, ũij is not a minimum of
f(uij). �

Proof of Proposition 4: It is f(1) = dij + γj ln 1 + λp ·
1p−1 = dij + λp > 0. Moreover, it is

f(0) = lim
u i j→0+

f(uij) = lim
u i j→0+

(dij + γj ln uij + λpup−1
ij )

= dij + lim
u i j→0+

[
1

u1−p
ij

(γju
1−p
ij ln uij + λp)

]

= +∞,

as it follows from the application of the L’ Hospital rule, since
lim

u i j→0+

1
u1−p

i j
= +∞ and lim

u i j→0+
(γju

1−p
ij ln uij) = 0.

Taking into account 1) that f(0) > 0 and f(ûij) < 0, 2) the
continuity of f(uij), and 3) the Bolzano’s theorem, there is at
least one u1

ij ∈ (0, ûij) : f(u1
ij) = 0. Moreover, based on Propo-

sition 3, ∂f (u i j )
∂u i j

< 0 for uij ∈ (0, ûij); thus, f(uij) is decreas-

ing on (0, ûij). Therefore, there is exactly one u1
ij ∈ (0, ûij) :

f(u1
ij) = 0. Similarly, taking into account 1) that f(ûij) < 0

and f(1) > 0, 2) the continuity of f(uij), and 3) the Bolzano’s
theorem, there is at least one u2

ij ∈ (ûij , 1) : f(u2
ij) = 0. More-

over, based on Proposition 3, it is ∂f (u i j )
∂u i j

> 0 for uij ∈ (ûij , 1);
thus, f(uij) is increasing on (ûij , 1). Therefore, there is exactly
one u2

ij ∈ (ûij, 1) : f(u2
ij) = 0. Consequently, there are exactly

two u1
ij, u

2
ij ∈ (0, 1) such that f(uij) = 0. �

Proof of Proposition 5: As previously mentioned, if
f(uij) = 0 has two solutions, then f(ûij) < 0. From Proposi-

tion 4, it is u1
ij < ûij < u2

ij . Since ∂f (u i j )
∂u i j

≤ 0 for uij ∈ (0, ûij ]

and ∂f (u i j )
∂u i j

≥ 0 for uij ∈ [ûij,+∞) (proof of Proposition

3), it turns out that f(uij) is decreasing for uij ∈ (0, ûij ] and
increasing for uij ∈ [ûij ,+∞). In addition, it can be easily ver-
ified that f(0) ≥ 0 and f(+∞) ≥ 0. Taking into account these
facts, the continuity of f and the fact that f(u1

ij) = f(u2
ij) = 0,

it follows that f(uij) is positive for uij ∈ (0, u1
ij) ∪ (u2

ij ,+∞)
and negative for uij ∈ (u1

ij , u
2
ij). Thus, u2

ij is a turning point
for JSPCM(Θ, U) before which JSPCM(Θ, U) decreases
with respect to uij and after which JSPCM(Θ, U) increases
with respect to uij . Therefore, u2

ij is a local minimum of
JSPCM(Θ, U), whereas, employing similar reasoning, it turns
out that u1

ij is a local maximum of JSPCM(Θ, U). �
Proof of Proposition 6: Let JSPCM(θj , uij) contain the

terms of JSPCM(Θ, U) that involve θj , uij . According to Propo-
sitions 3–5, it turns out that if f(ûij) < 0, then the global
minimum of JSPCM(θj , uij) with respect to uij is u2

ij , pro-
vided that JSPCM(θj , u

2
ij) < JSPCM(θj , 0). However, the latter

becomes u2
ij [dij + γj ln u2

ij − γj + λ(u2
ij)

p−1 ] < 0 and taking
into account that f(u2

ij) ≡ dij + γj ln u2
ij + λp(u2

ij)
p−1 = 0, it

is equivalent to u2
ij [−λp(u2

ij)
p−1 −γj + λ(u2

ij)
p−1 ] < 0 or u2

ij >

( λ(1−p)
γj

)
1

1−p . Clearly, in the case where f(ûij) < 0 and u2
ij <

( λ(1−p)
γj

)
1

1−p , it is uij = 0. Finally, in the case where f(ûij) > 0,

it is f(uij) > 0, for uij ∈ (0,+∞). Thus, JSPCM(Θ, U) in-
creases with respect to uij in (0,+∞) and, as a consequence,
its minimum is achieved at uij = 0. �

REFERENCES

[1] S. Theodoridis and K. Koutroumbas, Pattern Recognition, 4th ed. New
York, NY, USA: Academic, 2009.

[2] J. A. Hartigan and M. A. Wong, “Algorithm AS 136: A K-means clustering
algorithm,” J. Royal Statist. Soc., vol. 28, pp. 100–108, 1979.

[3] J. C. Bezdek, “A convergence theorem for the fuzzy Isodata clustering
algorithms,” IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-2, no. 1,
pp. 1–8, Jan. 1980.

[4] J. C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algo-
rithms. New York, NY, USA: Plenum, 1981.

[5] R. Krishnapuram and J. M. Keller, “A possibilistic approach to clustering,”
IEEE Trans. Fuzzy Syst., vol. 1, no. 2, pp. 98–110, May 1993.

[6] R. Krishnapuram and J. M. Keller, “The possibilistic C-means algorithm:
Insights and recommendations,” IEEE Trans. Fuzzy Syst., vol. 4, no. 3,
pp. 385–393, Aug. 1996.

[7] N. R. Pal, K. Pal, J. M. Keller, and J. C. Bezdek, “A possibilistic fuzzy
c-means clustering algorithm,” IEEE Trans. Fuzzy Syst., vol. 13, no. 4,
pp. 517–530, Aug. 2005.

[8] M. S. Yang and K. L. Wu, “Unsupervised Possibilistic Clustering,”
J. Pattern Recog. Soc., vol. 39, pp. 5–21, 2005.

[9] K. Treerattanapitak and C. Jaruskulchai, “Possibilistic Exponential Fuzzy
Clustering,” J. Comput. Sci. Technol., vol. 28, pp. 311–321, 2013.

[10] M. Barni, V. Cappellini, and A. Mecocci, “Comments on “A possibilistic
approach to clustering”,” IEEE Trans. Fuzzy Syst., vol. 4, no. 3, pp. 393–
396, Aug. 1996.

[11] P. A. Forero, V. Kekatos, and G. B. Giannakis, “Robust clustering us-
ing outlier-sparsity regularization,” IEEE Trans. Signal Process., vol. 60,
no. 8, pp. 4163–4177, Aug. 2012.

[12] M. S. Yang, K. L. Wu, and J. Yu, “Alpha-cut implemented fuzzy clustering
algorithms and switching regressions,” IEEE Trans. Syst., Man, Cybern.,
B Cybern., vol. 38, no. 3, pp. 588–603, Jun. 2008.

[13] R. Inokuchi and S. Miyamoto, “Sparse possibilistic clustering with
L1 regularization,” in Proc. IEEE Int. Conf. Granular Comput., 2013,
pp. 442–445.

[14] Y. Hamasuna and Y. Endo, “On sparse possibilistic clustering with
crispness—Classification function and sequential extraction,” in Proc.
Joint 6th Int. Conf. Soft Comput. Intell. Syst./13th Int. Symp. Adv. Intell.
Syst., 2012, pp. 1801–1806.



1626 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 24, NO. 6, DECEMBER 2016

[15] S. D. Xenaki, K. D. Koutroumbas, and A. A. Rontogiannis, “A novel
adaptive possibilistic clustering algorithm,” IEEE Trans. Fuzzy Syst., 2015,
to be published, doi: 10.1109/TFUZZ.2015.2486806.

[16] S. D. Xenaki, K. D. Koutroumbas, and A. A. Rontogiannis, “Sparse adap-
tive possibilistic clustering,” in Proc. IEEE Int. Conf. Acoustic Speech
Signal Process., 2014, pp. 3072–3076.

[17] G. Corliss, “Which root does the bisection algorithm find?,” SIAM Rev.,
vol. 19, pp. 325–327, 1977.

[18] A. S. Householder, The Numerical Treatment of a Single Nonlinear Equa-
tion. New York, NY, USA: McGraw-Hill, 1970.

[19] S. D. Xenaki, K. D. Koutroumbas, and A. A. Rontogiannis, “Adaptive
possibilistic clustering,” in Proc. IEEE Int. Symp. Signal Process. Inf.
Technol., 2013, pp. 422–427.

[20] J. S. Zhang and Y. W. Leung, “Improved possibilistic c-means cluster-
ing algorithms,” IEEE Trans. Fuzzy Syst., vol. 12, no. 2, pp. 209–217,
Apr. 2004.

[21] UCI Library database. [Online]. Available: http://archive.ics.uci.edu/
ml/datasets.html

[22] [Online]. Available: http://www.ehu.es/ccwintco/index.php?title=
Hyperspectral_Remote_Sensing_Scenes

[23] M. S. Yang and K. L. Wu, “Unsupervised possibilistic clustering,” Pattern
Recog., vol. 39, pp. 5–21, 2006.

[24] X. Wu, B. Wu, J. Sun, and H. Fu, “Unsupervised possibilistic fuzzy
clustering,” J. Inf. Comput. Sci., vol. 5, pp. 1075–1080, 2010.

Spyridoula D. Xenaki was born in Piraeus, Greece,
in 1988. She received the Diploma degree in in-
formatics and telecommunications in 2010 and the
M.Sc. degree in signal processing for communication
and multimedia in 2012, both from the National and
Kapodistrian University of Athens, Ilissia, Greece,
where she has been working toward the Ph.D. degree
since 2013 in the area of signal processing in cooper-
ation with the Institute for Astronomy, Astrophysics,
Space Applications and Remote Sensing, National
Observatory of Athens, Penteli, Greece.

Her research interests include the area of signal processing and pattern recog-
nition with application to image processing.

Konstantinos D. Koutroumbas received the
Diploma degree from the University of Patras,
Patras, Greece, in 1989, the M.Sc. degree in advanced
methods in computer science from the Queen Mary
University of London, London, U.K., in 1990, and
the Ph.D. degree from the National and Kapodistrian
University of Athens, Ilissia, Greece, in 1995.

Since 2001, he has been with the Institute of
Astronomy, Astrophysics, Space Applications and
Remote Sensing, National Observatory of Athens,
Penteli, Greece, where currently he is a Senior Re-

searcher. His research interests include mainly pattern recognition, time-series
estimation and their application to 1) remote sensing and 2) the estimation of
characteristic quantities of the upper atmosphere. He has co-authored the books
Pattern Recognition (Academic, 2008, 1st, 2nd, 3rd, 4th editions) and Introduc-
tion to Pattern Recognition: A MATLAB Approach (Academic, 2010). He has
more than 3000 citations in his work.

Athanasios A. Rontogiannis (M’97) was born in
Lefkada Island, Greece, in 1968. He received the
(five-year) Diploma degree in electrical engineering
from the National Technical University of Athens,
Athens, Greece, in 1991, the M.A.Sc. degree in elec-
trical and computer engineering from the University
of Victoria, Victoria, BC, Canada, in 1993, and the
Ph.D. degree in communications and signal process-
ing from the National and Kapodistrian University of
Athens, Ilissia, Greece, in 1997.

From 1998 to 2003, he was with the University of
Ioannina. In 2003, he joined the Institute for Astronomy, Astrophysics, Space
Applications and Remote Sensing, National Observatory of Athens, Penteli,
Greece, where since 2011, he has been a Senior Researcher. His research in-
terests include the general areas of statistical signal processing and wireless
communications with emphasis on adaptive estimation, hyperspectral image
processing, Bayesian compressive sensing, channel estimation/equalization, and
cooperative communications.

Dr. Rontogiannis serves on the Editorial Boards of the EURASIP Journal
on Advances in Signal Processing, Springer (since 2008) and the EURASIP
Signal Processing Journal, Elsevier (since 2011). He is a Member of the IEEE
Signal Processing and Communication Societies and the Technical Chamber of
Greece.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


