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On the Convergence of the Sparse Possibilistic
C-Means Algorithm

Konstantinos D. Koutroumbas, Spyridoula D. Xenaki , and Athanasios A. Rontogiannis, Member, IEEE

Abstract—In this paper, a convergence proof for the recently
proposed cost function optimization sparse possibilistic c-means
(SPCM) algorithm is provided. Specifically, it is shown that the
algorithm will converge to one of the local minima of its associated
cost function. It is also shown that similar convergence results
can be derived for the well-known possibilistic c-means (PCM)
algorithm proposed by Krishnapuram and Keller, 1996, if we view
it as a special case of SPCM. Note that the convergence results for
PCM are stronger than those established in previous works.

Index Terms—Convergence, possibilistic clustering, sparse
possibilistic c-means (SPCM), sparsity.

I. INTRODUCTION

IN MOST of the well-known clustering algorithms that deal
with the identification of compact and hyperellipsoidally

shaped clusters, each cluster is represented by a vector called
cluster representative that lie in the same feature space with the
data vectors. In order to identify the underlying clustering struc-
ture, such algorithms gradually move the representatives from
their initial (usually randomly selected) locations toward the
“center” of each cluster. Apart from hard clustering philosophy,
where each data vector belongs exclusively to a single cluster
(e.g., k-means [1]) and fuzzy clustering philosophy, where each
data vector is shared among the clusters [e.g., fuzzy c-means
(FCM) [2], [3]], an alternative well-known clustering philoso-
phy that has been developed, in order to deal with this case, is the
possibilistic clustering one, where the degree of compatibility of
a data vector with a given cluster is independent of its degrees
of compatibility with any other cluster. Algorithms of this kind,
known as possibilistic c-means algorithms (PCMs), iteratively
optimize suitably defined cost functions (e.g., [4]–[9]), aiming
at moving the cluster representatives to regions that are dense
in data points. A very well-known PCM algorithm, introduced
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in [4] and noted as PCM1 , is derived from the minimization of
the cost function as follows:

JPCM1 (U,Θ) =
N∑

i=1

m∑

j=1

uqij‖xi − θj‖2 +
m∑

j=1

γj

N∑

i=1

(1 − uij )q

(1)
while an alternative PCM algorithm, presented in [5] and noted
as PCM2 , is derived from the minimization of the cost function
as follows:

JPCM2 (U,Θ) =
N∑

i=1

m∑

j=1

uij‖xi − θj‖2

+
m∑

j=1

γj

N∑

i=1

(uij lnuij − uij ) (2)

where xi , i = 1, . . . , N denotes the ith out of N l-dimensional
data points of the dataset X under study, θj ’s, j = 1, . . . ,m
denote the representatives of the m clusters (each one denoted
by Cj ), which constitute the set Θ. U is the matrix, whose (i, j)
element uij stands for the degree of compatibility of the ith
data vector xi with the jth representative θj . Finally, γj ’s are
positive parameters, each one associated with a cluster Cj .1

Convergence results of these algorithms have been presented,
utilizing the Zangwill convergence theorem [10]. It is shown that
the iterative sequence generated by a PCM converges to either
a local minimizer or a saddle point of the cost function associ-
ated with the algorithm or any of its convergent subsequences
converges to either a local minimizer or a saddle point of the
cost function [11]. It is noteworthy that Zangwill’s theorem [10]
has been used to establish convergence properties for the FCM
algorithm as well (e.g., [2], [12], [13]).2

Recently, a novel possibilistic clustering algorithm, called
sparse possibilistic c-means (SPCM) [16], has been proposed,
which extends PCM2 by introducing sparsity. More specifically,
a suitable sparsity constraint is imposed on the vectors contain-
ing the degrees of compatibility of the data points with the
clusters (one vector per point3), such that each data vector is
compatible with only a few or even none clusters. In this study,
an analysis of the convergence properties of SPCM algorithm is
conducted and it is shown that the iterative sequence generated

1Note that, in contrast to JPCM2 , JPCM1 involves an additional parameter q,
which takes values around 2.

2A different approach for proving the convergence of the FCM to a stationary
point of the corresponding cost function is given in [14]. A relative work is also
provided in [15].

3Clearly, these vectors are the rows of the matrix U .
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by SPCM converges to a local minimum of its associated cost
function JSPCM, which is defined explicitly in the next section.
A significant source of difficulties in the convergence analysis
of SPCM is the addition of an extra term in the cost function
JPCM2 , as explained in the next section, that is responsible for
sparsity imposition, which gives the main novelty of SPCM.
This affects the updating of the degrees of compatibility, which
now are not given in closed form and they are computed via a
two-branch expression.

Moreover, it is shown that the above convergence analysis
for SPCM is directly applicable to the PCM2 algorithm [5] and
the obtained convergence results are much stronger than those
provided in [11].

The rest of this paper is organized as follows. In Section II,
a brief description of the SPCM algorithm is given for reasons
of thoroughness and in Section III its convergence proof is ana-
lyzed. In Section IV, the convergence results from the previous
section are applied for the case of PCM2 . Finally, Section V
concludes this paper.

II. SPARSE PCM (SPCM) ALGORITHM

LetX = {xi ∈ Rl , i = 1, . . . , N} be the dataset under study,
Θ = {θj ∈ Rl , j = 1, . . . ,m} be a set of m vectors that will
be used for the representation of the clusters formed inX (clus-
ter representatives) and U = [uij ], i = 1, . . . , N, j = 1, . . . ,m
be an N ×m matrix whose (i, j) element stands for the de-
gree of compatibility of xi with the jth cluster. Let also
uiT = [ui1 , . . . , uim ] be the (row) vector containing the ele-
ments of the ith row ofU . In what follows we consider Euclidean
norms only, denoted by ‖ · ‖.

As it has been stated earlier, the strategy of a possibilistic al-
gorithm is to move the vectors θj ’s toward regions that are dense
in data points of X (clusters). The aim of SPCM is twofold: to
retain the sparser clusters, provided of course that at least one
representative has been initially placed in each one of them and
to prevent noisy points from contributing to the computation of
any of the θj ’s. This is achieved by suppressing the contribution
of data points that are distant from a representative θj in its up-
dating. More specifically, focusing on a specific representative
θj , this can be achieved by setting uij = 0 for data points xi
that are distant from it. This is tantamount to imposing sparsity
on ui , i.e., forcing the corresponding data point xi to contribute
only to its (currently) closest representatives. To this end, the
cost function JPCM2 of (2) is augmented as follows:

JSPCM(U,Θ) =
m∑

j=1

[
N∑

i=1

uij‖xi − θj‖2

+ γj

N∑

i=1

(uij lnuij − uij )

]
+ λ

N∑

i=1

‖ui‖pp , uij > 0 4 (3)

where ‖ui‖p is the �p -norm of vector ui (p ∈ (0, 1)); thus,
‖ui‖pp =

∑m
j=1 u

p
ij . Each γj indicates the degree of “influence”

ofCj around its representative θj ; the smaller (greater) the value

4This is a prerequisite in order for the ln uij to be well-defined. However,
in the sequel, when refering to ln uij for uij = 0, we mean limu i j →0+ uij .
Also, we use the fact that limu i j →0+ uij ln uij = 0.

of γj , the smaller (greater) the influence of cluster Cj around
θj . The last term in (3) is expected to induce sparsity on each
one of the vectors ui and λ (≥ 0) is a regularization parameter
that controls the degree of the imposed sparsity. The algorithm
resulting by the minimization of JSPCM(U,Θ) is called SPCM
clustering algorithm and it is briefly discussed below (its detailed
presentation is given in [16]).

A. Initialization in SPCM

First, the initialization of θj ’s is carried out using the final
cluster representatives obtained from the FCM algorithm, when
the latter is executed with m clusters on X .

After the initialization of θj ’s, we initialize γj ’s as follows:

γj =

∑N
i=1 u

FCM
ij ‖xi − θj‖2

∑N
i=1 u

FCM
ij

, j = 1, . . . ,m (4)

where θj ’s and uFCM
ij ’s in (4) are the final parameter estimates

obtained by FCM.
Finally, we select the parameter λ as follows:

λ = K
γ̄

p(1 − p)e2−p (5)

where γ̄ = minj=1,...,m γj and K is a user-defined constant,
which is set equal toK = 0.9 for p = 0.5 (see also [16]). The ra-
tionale behind this choice is further enlightened in Section III-B,
where, in addition, appropriate bounds on the values of K are
given in terms of p.

B. Updating of θj ’s and uij ’s in SPCM

Minimizing JSPCM(U,Θ) with respect to θj leads to the fol-
lowing equation:

θj =
∑N

i=1 uijxi∑N
i=1 uij

. (6)

The derivative of JSPCM with respect to uij is f(uij ) =
dij + γj lnuij + λpup−1

ij , where dij = ‖xi − θj‖2 . In [16], it
is proved that

1) f(uij ) is strictly positive outside [0, 1],
2) f(uij ) has a unique minimum at ûij = [ λ

γj
p(1 − p)]

1
1−p ,

and
3) f(uij ) = 0 has at most two solutions.
More specifically, if f(ûij ) < 0 , then f(uij ) = 0 has exactly

two solutions u{1}ij , u
{2}
ij ∈ (0, 1), with u{1}ij < u

{2}
ij , the largest

of which corresponds to a local minimum of JSPCM with respect
to uij . In [16], it is shown that JSPCM(U,Θ) exhibits its global
minimum at u∗ij , where

u∗ij =
{
u
{2}
ij , if f(ûij ) < 0 and u{2}ij ≥

(
λ(1−p)
γj

)1/(1−p)
(≡ umin) 5

0, otherwise.
(7)

5In its original version, the second inequality in the first branch was strict.
Here, we change it to “less than or equal to.” Although this slight modification
has no implications to the behavior of the algorithm in practice, it turns out to
be important for the establishment of the theoretical results given below.



326 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 26, NO. 1, FEBRUARY 2018

Fig. 1. In all plots the dashed parts of the graphs correspond to the interval (0, um in ), which is not accessible by the algorithm [see (7)]. (a) The shape of function
f (uij ), when f (ûij ) < 0 and the right-most condition of (7) is satisfied and (b) the corresponding shape of the cost function J (uij ). (c) The shape of function
f (uij ), when f (ûij ) > 0 and (d) the corresponding shape of J (uij ). (e) The shape of function f (uij ), when f (ûij ) < 0 and the right-most condition of (7) is
not satisfied and (f) the corresponding shape of J (uij ). (a) f (uij ), (b) J (uij ), (c) f (uij ), (d) J (uij ), (e) f (uij ), and (f) J (uij ).
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Clearly, if f(uij ) = 0 has no solutions, then f(uij ) will be
positive for all valid values of uij [see Fig. 1(c)]. Thus, JSPCM

will be strictly increasing and it will be minimized at 0. Thus,
we set u∗ij = 0. Note that the right-most inequality in the first

branch of (7) turns out to be equivalent to JSPCM(θj , u
{2}
ij ) ≤

JSPCM(θj , 0) = 0, where JSPCM(θj , uij ) contains the terms of
JSPCM(U,Θ) that involve only θj and uij ([16]). All the above
possible cases are depicted in Fig. 1.

To determine u∗ij , we solve f(uij ) = 0 as follows. First, we
determine ûij and check whether f(ûij ) > 0. If this is the case,
then f(uij ) has no roots in [0, 1]. Note that, in this case, it is
f(uij ) > 0 for all uij ∈ (0, 1], since f(ûij ) > 0 [see Fig. 1(c)].
Thus, JSPCM is increasing with respect to uij in (0, 1] [see
Fig. 1(d)]. Consequently, in this case we set u∗ij = 0, impos-
ing sparsity. In the rare case, where f(ûij ) = 0, we set u∗ij = 0,
as ûij is the unique root of f(uij ) = 0 and f(uij ) > 0 for
uij ∈ (0, ûij ) ∪ (ûij , 1]. If f(ûij ) < 0, then f(uij ) = 0 has ex-
actly two solutions that both lie in [0, 1] [see Fig. 1(a) and (e)].
In order to determine the largest of the solutions (u{2}ij ), we
apply the bisection method (see e.g., [17]) in the range (ûij , 1],
as u{2}ij is greater than ûij . The bisection method is known to
converge very rapidly to the optimum uij , that is, in our case,
to the largest of the two solutions of f(uij ) = 0. If the obtained

solution u{2}ij satisfies the rightmost condition in the first branch

of (7), then we set u∗ij = u
{2}
ij [see Fig. 1(b)], as is shown in

[16]. Otherwise, u∗ij is set to 0 [see Fig. 1(f)].
A vital observation is that, as long as uij is given by the first

branch of (7), its values are bounded as follows:

umin ≤ uij ≤ umax (8)

where umax is obtained by solving the equation f(uij ) = 0, for
dij = 0; that is the equation γj lnuij + λpup−1

ij = 0. Note that
both umin and umax depend exclusively on λ, γj and p.

Before we proceed, we will give an alternative expression
for (7), which will be extensively exploited in the convergence
proof below. More specifically, we will express the condition of
the first branch of (7) in terms of θj . To this end, we consider

the case where u{2}ij = umin . This implies that f(u{2}ij ) = 0 or
f(umin) = 0. Substituting umin by its equal given in (7) and
after some straightforward algebraic manipulations, it follows
that f(umin

ij ) = 0 is equivalent to

||xi − θj ||2 =

R2
j︷ ︸︸ ︷

γj
1 − p

(
− ln

λ(1 − p)
γj

− p

)
. (9)

The above is the equation of a hypersphere, denoted by Cij ,
centered at xi and having radius Rj (note that Rj depends
exclusively on the parameters γj , p, λ and not on the data points
xi or on θj ’s and uij ’s). Clearly, its interior int(Cij ) (which in
the subsequent analysis is assumed to contain Cij itself) contains
all the positions of θj which give uij > 0, while all the points
in its exterior ext(Cij ) corresponds to positions of θj that give
uij = 0. In order to ensure that Cij is properly defined, we
should ensure that Rj is positive. This holds true if K is chosen

so that K < pe2(1−p) (see Proposition A1 in the Appendix). In
the light of the above result, (7) can be rewritten as follows:

u∗ij =

{
u
{2}
ij , if ||xi − θj ||2 ≤ R2

j

0, otherwise.
(10)

Note that the expressions for u∗ij given by (7) and (10) are
equivalent and will be used interchangeably in the subsequent
analysis.

C. SPCM Algorithm

Taking into account the previous short description of its main
features, the SPCM algorithm is summarized as follows.

Algorithm 1: [Θ, Γ, U ] = SPCM(X , m).
Input: X , m
1: t = 0

� Initialization of θj ’s part
2: Initialize: θj (t) via FCM algorithm

� Initialization of γj ’s part

3: Set: γj =
∑N

i= 1 u
F C M
i j ‖x i−θj (t)‖2

∑N
i= 1 u

F C M
i j

, j = 1, ...,m

4: Set: λ = K γ̄
p(1−p)e2−p , where γ̄ = minj=1,...,m γj

5: repeat
� Update U part
6: Update U(t) via (7), as described in the text

� Update Θ part

7: θj (t+ 1) =
N∑
i=1

uij (t)xi

/
N∑
i=1

uij (t) , j = 1, ...,m

8: t = t+ 1
9: until the change in θj ’s between two successive

iterations becomes sufficiently small
10: return Θ, Γ = {γ1 , . . . , γm}, U

It is noted that after the termination of the algorithm an addi-
tional step is required, in order to identify and remove possibly
duplicated clusters.

The worst case computational complexity of (the main body
of) SPCM is O((ε+ 2)Nm · iter), where ε is the number
of iterations in the bisection method (which have very light
computational complexity6) and iter is the number of iterations
performed by the algorithm. Note, however, that the actual com-
plexity is much less since at each iteration the bisection method
is activated only for a small fraction of uij ’s. As it is shown
experimentally in [16] the computational complexity of SPCM
is slightly increased compared to that of PCM. This is the price
to pay for the better quality results of SPCM compared to PCM.

III. CONVERGENCE PROOF OF THE SPCM

In the sequel, a proof of the convergence of the SPCM is
provided. Note that, in principle, the proof holds for any choice
of (fixed) γj ’s, not only for the one given in (4).

6In our case ε is fixed to 30, which implies an accuracy of 10−10 .
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Before we proceed, we note that the cost function associated
with SPCM (3) can be recasted as

JSPCM(U,Θ) =
m∑

j=1

Jj (uj ,θj )

≡
m∑

j=1

⎡

⎢⎢⎢⎢⎣

N∑

i=1

h(ui j ,θj )
︷ ︸︸ ︷

uij‖xi − θj‖2 + γj

N∑

i=1

(uij lnuij − uij ) + λupij

⎤

⎥⎥⎥⎥⎦

(11)

where uj = [u1j , . . . , uN j ]T . Since
1) uij ’s, j = 1, . . . ,m, are not interrelated to each other, for

a specific xi ,
2) uij ’s, i = 1, . . . , N are related exclusively with θj and

vice versa, and
3) θj ’s are not interrelated to each other, minimization of

JSPCM(U,Θ) can be considered as the minimization of m
independent cost functions Jj ’s, j = 1, . . . ,m.

Thus, in the sequel, we focus on the minimization of a specific
Jj (uj ,θj ) and, for the ease of notation, we drop the index j,
i.e., when we write J(u,θ), u = [u1 , . . . , uN ]T , we refer to a
Jj (uj ,θj ).

The proof is given under the very mild assumption that for
each one cluster at least one equation f(ui) = 0, i = 1, . . . , N
has two solutions at each iteration of SPCM (Assumption 1).
This is a rational assumption, since if this does not hold at a
certain iteration, the algorithm cannot identify new locations
for θ at the next iteration. In Section III-A, it is shown how this
assumption can always be fulfilled.

Some definitions are now in order. LetM be the set containing
all the N × 1 vectors u whose elements lie in the union {0} ∪
[umin , umax], i.e., M = ({0} ∪ [umin , umax])N . Also, let Rl

be the space where the vector θ lives. The SPCM algorithm
produces a sequence (u(t) ,θ(t))|∞t=0 , which will be examined
in terms of its convergence properties.

Let

G : M → Rl , with G(u) = θ

where G is calculated via the following equation:

θ =
∑N

i=1 uixi∑N
i=1 ui

(12)

and

F : Rl → M, with F (θ) = u

where F is calculated via (10). Then, the SPCM operator T :
M×Rl → M×Rl is defined as

T = T2 ◦ T1 (13)

where

T1 : M×Rl → M, T1(u,θ) = F (θ) (14)

and

T2 : M → M×Rl , T2(u) = (u, G(u)). (15)

For operator T we have that

T (u,θ) = (T2 ◦ T1)(u,θ) = T2(T1(u,θ)) = T2(F (θ))

= (F (θ), G(F (θ))) = (F (θ), (G ◦ F )(θ)).

Thus, the iteration of SPCM can be expressed in terms of T as

(u(t) ,θ(t)) = T (u(t−1) ,θ(t−1)) = (F (θ(t−1)), (G ◦ F)(θ(t−1))).

The above decomposition of T into T1 and T2 will facilitate
the subsequent convergence analysis, since certain properties
for T can be proved relying on T1 and T2 (and, ultimately, on
F and G).

Remark 1: Note that F (and as a consequence T1) are,
in general, not continuous (actually they are piecewise
continuous).

In the sequel some required definitions are given. Let Z :
X → X (X ⊂ Rp ) be a point-to-point map that gives rise to an
iterative algorithm z(t) = Z(z(t− 1)), which generates a se-
quence z(t)|∞t=0 , for a given z(0). A fixed point z∗ ofZ is a point
for which Z(z∗) = z∗. Also, we say that Z is strictly monotonic
with respect to a (continuous) function g if g(Z(z)) < g(z),
whenever z is not a fixed point of Z. Having said the above, we
can now state the following theorem that will be proved useful
in the sequel:

Theorem 1 ([18] 7): Let Z : X → X (X ∈ Rp ) be a point-
to-point map that gives rise to an iterative algorithm z(t) =
Z(z(t− 1)), which generates a sequence z(t)|∞t=0 , for a given
z(0). Supposing that

1) Z is strictly monotonic with respect to a continuous func-
tion g : X → R;

2) Z is continuous on X;
3) the set of all points z(t)|∞t=0 is bounded; and
4) the number of fixed points having any given value of g is

finite;
then the algorithm corresponding toZ will converge to a fixed

point of Z regardless where it is initialized in X .8

In the SPCM case, Z is the mapping T (SPCM operator)
defined by (13) and g is the cost function J . Due to the fact that
SPCM has been resulted from the minimization of J , it turns
out that its fixed points (u∗,θ∗) satisfy ∇J |(u,θ) = 0.

Although the general strategy to prove convergence for an
algorithm is to show that it fulfills the requirements of the con-
vergence theorem, this cannot be adopted in this straightforward
manner in this framework. The reason is that Theorem 1 requires
continuity of T , which is not guaranteed in the SPCM case due
to T2 (F ) [see (10)], which is not continuous in its domain
(which is the convex hull of X , CH(X)).9 However, it is con-
tinuous on certain subsets of CH(X). This fact will allow the
use of Theorem 1 for certain small regions where continuity is
preserved.

Some additional definitions are now in order. Without loss
of generality, let I = (∩ki=1 int(Ci)); that is I is the (nonempty)

7This is a direct combination of Theorem 3.1 and Corollary 3.2 in [18].
8Actually, this theorem has been stated for the more general case where Z is

a one-to-many mapping [18]. The present form of the theorem is for the special
case where Z is a one-to-one mapping, which is the case for SPCM.

9Due to its updating (6), θ will always lie inCH (X ), provided that its initial
position lies in at least one hypersphere of radius R centered at a data point.
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Fig. 2. Active set of k = 3 points in cases when (a) ΘI ⊂ I and (b) ΘI �⊂ I .

intersection of the interiors of the hyperspheres of radius R (9)
that correspond to xi’s, i = 1, . . . , k (see Fig. 2).10 Note that
for θ ∈ I the above k points will have ui > 0. The set of all
data points that have ui > 0 form the so-called active set, while
the points themselves are called active points. In addition, an
active set Xq is called valid if its corresponding intersection of
hyperspheres Iq is nonempty. Finally, the points with ui = 0 are
called inactive.

Let also

UI = {u = [u1 , . . . , uk ] : u = F (θ), for θ ∈ I} (16)

be the set containing all possible values of the degrees of compat-
ibility ui of θ with the k active xi’s. Clearly, ui’s are computed
via the first branch of (10) and F is continuous in this specific
case (as it will be explicitly shown later). Also, let

ΘI = {θ : θ = G(u), for u ∈ UI } (17)

(see Fig. 2 for the possible scenarios for ΘI ). Three observations
are now in order:

1) First, due to the fact that ui’s are independent of each
other, UI can also be expressed as

UI = Πk
i=1[u

min , umax
i ] (18)

where Π denotes the Cartesian product and umax
i is the

maximum possible value ui can take, provided that θ ∈ I
(clearly umax

i ≤ umax ).
2) If at a certain iteration t of SPCM, θ(t) ∈ I , ΘI contains

all possible positions of θ(t+ 1).
3) ΘI always lies in the convex hull of the associated active

set.
In the sequel, we proceed by showing the following facts that

are preliminary for the establishment of the final convergence
result. Specifically, we will show that

Item A: J(u,θ) decreases at each iteration of the SPCM op-
erator T ;

Item B: T is continuous on every region UI × I that corre-
sponds to a valid active set;

10Clearly, by reordering the data points we can take all the possible corre-
sponding I intersections.

Item C: The sequence produced by the algorithm is bounded;
Item D: The fixed points corresponding to a certain valid ac-

tive set (if they exist) are strict local minima of J and
they are finite.

1) Proof of Item (A): To achieve this goal, we prove first the
following two lemmas

Lemma 1: Let φ : M → R, φ(u) = J(u,θ), where θ is
fixed. Then, u∗ is the global minimum solution of φ if and
only if u∗ = F (θ), where F is defined as in (7).

Proof: We proceed by showing that
Step 1: the unique point u∗ that satisfies the KKT conditions

for the minimization problem

minφ(u)
subject to ui ≥ 0, i = 1, . . . , N
and 1 − ui ≥ 0, i = 1, . . . , N

(19)

is the one determined by (7) and
Step 2: this point is a minimizer of J , which implies (due to

the uniqueness) that it is the global minimizer.
Let u∗ = [u∗i ] be a point that satisfies the KKT conditions for

(19). Then, we have

(i) u∗i ≥ 0, (ii) 1 − u∗i ≥ 0 (20)

(i) ∃ κi ≥ 0 : κiu∗i = 0, (ii) ∃ τi ≥ 0 : τi(1 − u∗i ) = 0 (21)

and

∂L(u)
∂ui

|u=u∗ = 0 (22)

where L(u) is the Lagrangian function defined as

L(u) = φ(u) −
N∑

i=1

κiui −
N∑

i=1

τi(1 − ui). (23)

Recalling (3), φ(u) can be written as

φ(u) =
N∑

i=1

h(ui ;θ)
︷ ︸︸ ︷
[ui ||xi − θ||2 + γ(ui lnui − ui) + λupi ] (24)
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where h(ui ;θ) is a function of ui for a fixed value of θ. Noting
that all ui’s are computed independently from each other, for
fixed θ, it is easy to verify that, for a specific ui it is

∂φ(u)
∂ui

=
∂h(ui ; θ)
∂ui

= ||xi − θ||2 + γ lnui + λpup−1
i

≡ f(ui).

As a consequence, (22) gives

||xi − θ||2 + γ lnu∗i + λpu∗p−1
i − κi + τi = 0. (25)

We will prove next that κi = 0 and τi = 0, for i = 1, . . . , N ;
that is, the constraints on ui’s are inactive, i.e., the optimum
of φ(u) lies always in the region defined by the constraints.
Assume, on the contrary, that there exists κs > 0. From [(21-i)]
it follows that u∗s = 0 and from [(21-ii)] that τs = 0. Taking
into account that limu∗

s→0+ (γ lnu∗s + λpu∗ p−1
s ) = +∞ 11 and

applying (25) for u∗s we have

||xs − θ||2 + ∞ = κs or κs = +∞ (26)

which contradicts the fact that κs is finite.
Assume next that there exists τs > 0. From [21-(ii)] it follows

that u∗s = 1 and from [21-(i)], it is κs = 0. Applying (25) for u∗s
and substituting the above we have

||xs − θ||2 + γ ln 1 + λp1p−1 + τs = 0 or

τs = −||xs − θ||2 − λp < 0 (27)

which contradicts the fact that τs > 0. Thus τs = 0.
Since κi = τi = 0, for all i, (25) becomes

||xi − θ||2 + γ lnu∗i + λpu∗ p−1
i ≡ f(u∗i ) = 0, i = 1, . . . , N.

(28)
Note that the algorithm relies on (28) in order to derive the
updating formula of (7) [thus step (1) has been shown]. We
proceed now to show that the point corresponding to (7) [derived
through (28)] minimizesJ . We consider the following two cases:

1) u∗i is given by the first branch of (7). This implies that

f(ui) = 0 has two solutions u{1}i and u{2}i (u{1}i < u
{2}
i )

and u{2}i > ( λ(1−p)
γj

)
1

1−p (= umin) [Fig. 1(a) and (d)]. Tak-

ing into account the definition of h(ui ;θ) in (24), it can
be shown [16, Proposition 5] that the maximum of the
two solutions u{1}i , u{2}i (u{1}i < u

{2}
i ) is the one that min-

imizes h(ui ;θ) and, as a consequence, φ(u) also (which
equals to J(u,θ)) with θ fixed.

2) u∗i is given by the second branch of (7). In this case, we
have that either a) f(ui) is strictly positive, which implies
that J(u,θ) is strictly increasing with respect to ui [case
shown in Fig. 1(b) and (e)] or b) h(u{2}i ,θ) ≥ h(0,θ) = 0
[case shown in Figs. 1(c) and (f)]. In both a) and b) cases,
J(u,θ) is minimized with respect to ui only for ui = 0
[the second branch of (7)].

11Utilization of the L’ Hospital rule gives that limx→0+ x1−p ln x = 0

(p < 1). Then, limx→0+ (ln x + β 1
x 1−p ) = limx→0+

x 1−p ln x+β
x 1−p = +∞,

for β > 0. Setting x = u∗s , β = λp
γ , the claim follows.

From the above, it follows that u∗ is the global minimum
solution of φ if and only if u∗ is given by (7). �

Lemma 2: Letψ : Rl → R, withψ(θ) = J(u,θ), with u ∈
UI being fixed. Then, θ∗ (∈ ΘI ) is the unique global minimum
of ψ if and only if θ∗ = G(u), where G is calculated as in (12).

Proof: In contrast to the situation in Lemma 1, the minimiza-
tion of ψ(θ) with respect to θ is an unconstrained optimization
problem. The stationary points of ψ(θ) are obtained as the so-
lutions of the equations

∂ψ

∂θ
=

∂

∂θ

[
N∑

i=1

(
ui ||xi − θ||2 + γ(ui lnui − ui) + λupi

)
]

= 2
N∑

i=1

ui(θ − xi) = 0 (29)

which, after some manipulations, give

θ∗ =
∑N

i=1 uixi∑N
i=1 ui

. (30)

Also, it is

Hψ ≡ ∂2ψ

∂θ2 =

b︷ ︸︸ ︷

2
N∑

i=1

ui I
l (31)

where Il is the l × l identity matrix. Under Assumption 1, stating
that at least one ui is computed by the first branch of (7), it
is b > 0. Therefore, ψ is a convex function over Rl , with a
unique stationary point, given by (30), which is the unique global
minimum of ψ(θ). �

Combining now the previous two lemmas, we are in a position
to prove the following lemma.

Lemma 3: Consider a valid active set, whose corresponding
hyperspheres intersection is denoted by I . Let

S = {(u,θ) = ([u1 , . . . , uk ],θ) ∈ UI × I : ∇J |(u,θ) = 0

with ui being the largest of the two solutions of fθ(ui) = 0,

i = 1, . . . , k}.12 (32)

Then, J is continuous over UI × I and

J(T (u,θ)) < J(u,θ), if (u,θ) /∈ S.

Proof: Since {y → ||y||2}, {y → ln y}, {y → yp} are con-
tinuous and J is a sum of products of such functions, it follows
that J is continuous on UI × I . Let (u,θ) /∈ S. Recalling that

T (u,θ) = (F (θ), (G ◦ F )(θ)) = (F (θ), G(F (θ)))

we have

J(T (u, θ)) = J(F(θ),G(F(θ))). (33)

Applying Lemma 1 for fixed θ, we have that F (θ) is the unique
global minimizer of J . Thus,

J(F (θ),θ) < J(u,θ). (34)

12In the sequel, we insert θ as subscript in the notation of f in order to show
explicitly the dependence of ui from θ.
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Applying Lemma 2 for fixed F (θ), we have that G(F (θ)) is
the unique global minimizer of J . Thus, it is

J(F (θ), G(F (θ))) < J(F (θ),θ). (35)

From (33)–(35), it follows that

J(T (u,θ)) < J(u,θ), for (u,θ) /∈ S.

�
Remark 2: It is noted that although the above proof has been

focused on the k (active) points, its generalization that takes also
into account the rest data points is straightforward since ui = 0,
for i = k + 1, . . . , N and the corresponding terms h(ui,θ) that
contribute to J are 0.

Remark 3: Taking into account that SPCM has been resulted
from the minimization of J (∇J |(u,θ) = 0) on a UI × I corre-
sponding to an active set, it follows that S contains all the fixed
points of T , which (as will be shown later) are local minima
of the cost function J (of course, J may have additional local
minima than those belong to S which are not accessible by the
algorithm).

Now we proceed by showing that T decreases J , in the whole
domain ({0} ∪ [umin , umax])N × CH(X).

Lemma 4: The strict monotonically decreasing property of
T with respect to J remains valid in the domain ({0} ∪
[umin , umax])N × CH(X) excluding the fixed points of T of
each valid active set.

Proof: Let (ū, θ̄) be the outcome of SPCM at a specific
iteration, û = F (θ̄) be the u for the next iteration and θ̂ = G(û)
be the subsequent θ. Recall that the ordering of the updating is

ū → θ̄ → û → θ̂. (36)

We define

Γ̄ = {i : ūi is computed via the second branch of (7)}
and

Γ̂ = {i : ûi is computed via the second branch of (7)}.
Recalling thath(ui ;θ) = ui ||xi − θ||2 + γ(ui lnui − ui) +

λupi , we can write

J(ū, θ̄) =

Ā 1︷ ︸︸ ︷∑

i∈Γ̄∩Γ̂

h(ūi ; θ̄) +

Ā 2︷ ︸︸ ︷∑

i∈˜ Γ̄∩Γ̂

h(ūi ; θ̄) +

Ā 3︷ ︸︸ ︷∑

i∈˜ Γ̂

h(ūi ; θ̄)

(37)
and

J(û, θ̄) =

Â 1︷ ︸︸ ︷∑

i∈Γ̄∩Γ̂

h(ûi ; θ̄) +

Â 2︷ ︸︸ ︷∑

i∈˜ Γ̄∩Γ̂

h(ûi ; θ̄) +

Â 3︷ ︸︸ ︷∑

i∈˜ Γ̂

h(ûi ; θ̄)

(38)
where˜Γ denotes the complement of Γ.

Focusing on Ā1 and Â1 , we have that h(ūi ; θ̄) = h(ûi ; θ̄) =
0, since i ∈ Γ̄ ∩ Γ̂. Thus

Â1 = Ā1 = 0. (39)

Considering Ā2 and Â2 , since i ∈ Γ̂, we have ûi = 0. Thus,
taking into account the order of updating (36) and Lemma 1, we

have (0 =) h(ûi ; θ̄) < h(ūi ; θ̄). Thus, it follows that

Â2 < Ā2 . (40)

Finally, focusing on Ā3 and Â3 , since i ∈ ˜Γ̂, the argumen-
tation of Lemma 1 implies that the global minimum of h(ui ; θ̄)
is met at ûi = u

{2}
i . Thus, taking also into account the order of

updating in (36), it is h(ûi ; θ̄) < h(ūi ; θ̄). Therefore, it is

Â3 < Ā3 . (41)

Combining (39)–(41) it follows that

J(û, θ̄) < J(ū, θ̄). (42)

Also, Lemma 2 gives

J(û, θ̂) < J(û, θ̄). 13 (43)

Combining (42) and (43), we have that

J(û, θ̂) < J(ū, θ̄).

�
2) Proof of Item (B): In the sequel, we give two useful

propositions concerning the continuity of the F and G map-
pings. In both propositions, without loss of generality, we con-
sider a valid active set, having xi , i = 1, . . . , k as active points,
whose corresponding hypersphere intersection is denoted by I
and UI , ΘI are defined via (16) and (17).

Proposition 1: The mapping G is continuous on UI ×
{0}N−k .

Proof: To prove that G is continuous in the N variables ui ,
note that G is a vector field with the resolution by (l) scalar
fields, written as

G = (G1 , . . . , Gl) : UI × {0}N−k → Rl

where Gq : UI × {0}N−k → R is defined as

Gq (u) =
∑N

i=1 uixi∑N
i=1 ui

≡ θq , q = 1, . . . , l. (44)

Since {ui → uixi} is a continuous function and the sum of
continuous functions is also continuous, Gq is also continuous
as the quotient of two continuous functions. Under the assump-
tion that

∑N
i=1 ui > 0, the denominator in (44) never vanishes.

Thus, Gq is well defined in all cases and it is also continuous.
Therefore, G is continuous in its entire domain. �

Proposition 2: The mapping F is continuous over I .
Proof: It suffices to show that F is continuous on the l vari-

ables θq . F is a vector field with the resolution by (N ) scalar
fields, i.e.,

F = (F1 , . . . , FN ) : I → UI

where Fq is given by (10).
The mapping {θ → ||xi − θ||2(≡ di)} is continuous. Let us

focus on the ui’s, i = 1, . . . , k, for which int(Ci) contributes
to the formation of I; that is, on ui’s given by the first branch

13Considering a valid active set with corresponding hypersphere intersection
Ī and ΘĪ defined as in (16) and (17), it is noted that although θ̄ ∈ Ī , this does
not necessarily hold for θ̂, as Fig. 2(b) indicates, since θ̂ ∈ ΘĪ , with ΘĪ �⊂ Ī .
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Fig. 3. Graphical presentation of the continuity of the mapping {dij → uij }.
Small variations in dij cause small variations in uij .

of (10). The mapping {di → ui} is continuous. To see this, note
that (since γ is constant), the graph of f(ui) (which is contin-
uous), viewed as a function of di , is simply shifted upwards or
downwards as di varies (see Fig. 3). Focusing on the rightmost
point, u{2}i , where the graph intersects the horizontal axis, it is

clear that small variations of di cause small variations to u{2}i ,
which implies the continuity of {di → ui} in this case.

Let us focus next on the ui’s, i = k + 1, . . . , N , for which
int(Ci) do not contribute to the formation of I; in this case ui
is given by the second branch of (10) and the claim follows
trivially. �

As a direct consequence of Propositions 1 and 2, we have the
following lemma.

Lemma 5: T is continuous on UI × I .
Proof: Recall that T = T2 ◦ T1 and T2 and T1 are defined in

terms of G and F , respectively [(14) and (15)]. G is continuous
onUI , as a consequence of Proposition 1, while F is continuous
on I from Proposition 2. Thus, T is continuous on UI × I as
composition of two continuous functions. �

3) Proof of Item (C): We proceed now to prove that the
sequence (u(t) ,θ(t))|∞t=0 produced by the SPCM falls in a
bounded set.

Lemma 6: Let (F (θ(0)),θ(0)) be the starting point of the
iteration with the SPCM operator T , with θ(0) ∈ CH(X) and

u(0) = F (θ(0)). Then,

(u(t) ,θ(t)) ≡ T t(u(0) ,θ(0)) ∈ [0, 1]N × CH(X).

Proof: For a given θ(0) ∈ CH(X), u(0) = F (θ(0)) ∈
[0, 1]N , since u(0)

i ∈ [0, 1] [see (7) and the argumentation in
[16]]. Also, θ(1) = G(u(0)) is computed by (12), which can be
recasted as

θ(1) =
N∑

i=1

u
(0)
i∑N

i=1 u
(0)
i

xi .

Since u(0)
i ∈ [0, 1], it easily follows that 0 ≤ u

( 0 )
i∑N

i= 1 u
( 0 )
i

≤ 1 and

∑N
i=1

u
( 0 )
i∑N

i= 1 u
( 0 )
i

= 1. Thus θ(1) ∈ CH(X). Continuing recur-

sively we have u(1) = F (θ(1)) ∈ [0, 1]N by (7) and θ(2) =
G(u(1)) ∈ CH(X), using the same argumentation as above.
Thus, inductively, we conclude that

(u(t) ,θ(t)) ≡ T t(u(0) ,θ(0)) ∈ [0, 1]N × CH(X).

�
Remark 4: Note that it is possible to have θ(0) outside

CH(X), yet in a position where at least one ui is positive.
However, computing u(0) = F (θ(0)) by (7), the latter will
lie in M and, as a consequence, θ(1) = G(u(0)) will lie in
CH(X) as it follows by the argumentation given in the proof of
Lemma 5.

4) Proof of Item (D): In the sequel, we will prove that the
elements of the set S (32), for a given valid active set with
hyperspheres intersection I (if they exist) are strict local minima
of the cost function J and thus the cardinality of S is finite.

The elements of S are the solutions z∗ = (u∗,θ∗) ≡
(u∗1 , . . . , u

∗
k , θ

∗
1 , . . . , θ

∗
l )

14 of ∇J |(u,θ) = 0 with u∗i being the
largest of the two solutions of fθ(ui) = 0, i = 1, . . . , k. They
should satisfy the following equations:

2
k∑

i=1

u∗i (θ
∗
q − xiq ) = 0, q = 1, . . . , l (45)

and

||xi − θ∗||2 + γ lnu∗i + λpu∗
p −1

i = 0, i = 1, . . . , k. (46)

14Without loss of generality, we assume that the xi ’s, i = 1, . . . , k are the
active points of the valid active set under study.

Hz∗ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g∗1 0 0 2(θ∗1 − x11) 2(θ∗2 − x12) 2(θ∗l − x1l)

0 g∗2 0 2(θ∗1 − x21) 2(θ∗2 − x22) 2(θ∗l − x2l)
...

...
. . .

...
...

...
. . .

...

0 0 g∗k 2(θ∗1 − xk1) 2(θ∗2 − xk2) 2(θ∗l − xkl)

2(θ∗1 − x11) 2(θ∗1 − x21) 2(θ∗1 − xk1) 2
∑k

i=1 u
∗
i 0 0

2(θ∗2 − x12) 2(θ∗2 − x22) 2(θ∗2 − xk2) 0 2
∑k

i=1 u
∗
i 0

...
...

. . .
...

...
...

. . .
...

2(θ∗l − x1l) 2(θ∗l − x2l) . . . 2(θ∗l − xkl) 0 0 . . . 2
∑k

i=1 u
∗
i

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(47)
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Then, we have the following lemma.
Lemma 7: The points z∗ that satisfy (45) and (46) (if they ex-

ist) are strict local minima of J in the domainUI × I . Moreover,
their number is finite.

Proof: In order to prove that z∗ are local minima we need
to prove that the Hessian matrix of J computed at z∗, Hz∗ , is
positive definite over a small region around z∗. It is equation
(47) shown at bottom of the previous page where

g∗i = γu∗
−1

i − λp(1 − p)u∗
p −2

i , i = 1, . . . , k. (48)

Let z′ = (u′,θ′) ≡ (u′1 , . . . , u
′
k , θ

′
1 , . . . , θ

′
�) be a point in UI ×

I that is close to z∗. More specifically, let u′1 , . . . , u
′
k be close

to u∗1 , . . . , u
∗
k , respectively, so that

||θ∗ −
∑k

i=1 u
′
ixi∑k

i=1 u
′
i

|| < ε. (49)

After some straightforward algebraic operations it follows
that

z′T Hz∗z′ = 2||θ′||2
k∑

i=1

u∗i + 4
k∑

i=1

u′iθ
′T (θ∗ − xi) +

k∑

i=1

u′2i g
∗
i.

(50)
It is easy to verify that

∑k
i=1 u

′
iθ

′T (θ∗ − xi) =
∑k

i=1 u
′
iθ

′T (θ∗ −
∑ k

i= 1 u
′
i x i∑ k

i= 1 u
′
i

) ≥ −∑k
i=1 u

′
i ||θ′||ε.

Utilizing the fact that ui > umin ≡ ( λ(1−p)
γ )1/(1−p) , i =

1, . . . , k, for the second appearance of u∗i in the right-hand side
of (48), it turns out that g∗i ≥ (1−p)γ

u∗
i

.
Combining the last two inequalities with (50), it follows that

z′T Hz∗z′ ≥ 2
k∑

i=1

u∗i ||θ′||2 − 4
k∑

i=1

u′i ||θ′||ε

+(1 − p)γ
k∑

i=1

u′2i
u∗i

≡ φ(||θ′||). (51)

Since
∑k

i=1 u
∗
i > 0, the second degree polynomial φ(||θ′||) be-

comes positive if and only if its discriminant

Δ = 8

⎡

⎣2ε2

(
k∑

i=1

u′i

)2

− (1 − p)γ
k∑

i=1

u∗i
k∑

i=1

u′2i
u∗i

⎤

⎦ (52)

is negative. But, from Proposition A2 in the Appendix, it is
(

k∑

i=1

u′i

)2

≤
k∑

i=1

u∗i
k∑

i=1

u′2i
u∗i
.

Also, choosing ε < 1
2

√
(1−p)γ

2 , we have that Δ is negative. As a
consequence and due to the continuity of J in UI × I , ε defines
a region Yz∗ around z∗, for which z′T Hz∗z′ > 0, for z′ ∈ Yz∗ .
Thus z∗ is a strict local minimum.

In addition, since the domain UI × I is bounded, it easily
follows that the number of strict local minima is finite. �

Remark 5: It can be shown that in the specific case where
1) γ

γ̄ <
1
p e

(1−p)2 /2 and 2) K in (5) is chosen in the range

[ γγ̄ pe
2− ( 1 + p ) 2

2 , pe2(1−p) ], then the setSq (32) that corresponds to

each valid active setXq has one element at the most. The proof of
this fact follows the line of proof of Lemma 7, with the difference
that ε in (49), (51), and (52) is replaced by R (since the max-
imum possible distance between two points in the (nonempty)
intersection of hyperspheres of distanceR, is equal toR). Then,
the conditions 1) and 2) above follow from the requirement
to have 2R2 < (1 − p)γ, in order to have negative discrimi-
nant Δ. Utilizing (5) in the previous requirement it follows

that K > γ
γ̄ pe

2− ( 1 + p ) 2

2 . Taking into account that K < pe2(1−p)

(Proposition A1), condition 1) results from the requirement to

have γ
γ̄ pe

2− ( 1 + p ) 2

2 < pe2(1−p) .
In the sequel we denote by Yz∗ a region around a point z∗ in

the set Sq corresponding to a valid active set Xq , where J is
convex. Yz∗ will be called as a valley around z∗ (such a region
always exists, as shown in Proposition A3).

Having completed the proof of the prerequisites (A)–(D) and
before we proceed any further, some remarks are in order.

Remark 6: Although J is well defined in [0, 1]N ×Rl , there
are several regions in the landscape of J(u,θ) that are not
accessible by the algorithm. For example, some positions (u,θ)
where ui < umin and those where θ is expressed through (6)
with coefficients ui less that umin , are not accessible by the
algorithm.

Remark 7: It is highlighted again the fact that a certain set
of active points Xq , with corresponding (nonempty) union of
hyperspheres Iq and UIq , ΘIq as defined by (16) and (17),
respectively, may have no local minima of J in UIq × Iq that
are accessible by T . Equivalently, this means that the solution
set Sq (see Lemma 3) corresponding to Xq is empty.

We prove next the following lemma.
Lemma 8: There exists at least one valid active set Xq (with

Iq �= ∅) for which there exists at least one local minimum
(u∗

qr
,θ∗

qr
), with θ∗

qr
∈ Iq ∩ (∩i: ui =0ext(Ci)).15

Proof: Suppose on the contrary that for all possible active
sets Xq , there is no local minimum (u∗

qr
,θ∗

qr
) with θ∗

qr
∈ Iq ∩

(∩Ni: ui =0ext(Ci)) (see Fig. 4). Equivalently, this means that the
solution sets Sq for all valid active sets are empty. Then, from
Lemma 3 we have that if at a certain iteration t1 , θ(t1) belongs
to the intersection Iq of a certain active set Xq , the algorithm
may move θ(t) (t > t1) to other positions in Iq that always
strictly decrease the value of J . Since J is bounded below (due
to the fact that u ∈ [0, 1]N and θ ∈ CH(X)) it follows that θ
will leave Iq at a certain iteration. In addition, Lemma 4 secures
the decrease of the value of J as we move from one hypersphere
intersection to another (or, equivalently, from one active set to
another). Thus, the algorithm will always move (u(t),θ(t))
from one position to another in the domain [0, 1]N × CH(X),
without converging to any one of them, while, at the same time
the value of J decreases from iteration to iteration.

Assuming that at a specific iteration t′, θ(t′) belongs to a
certain Iq , then, due to the continuity of J in Iq , there ex-
ists a region V (t′) around (u(t′),θ(t′)), for which J(u,θ) >
J(u(t′ + 1),θ(t′ + 1)), for (u,θ) ∈ V (t′).

15Note that θ∗
q r ∈ ΘIq due to the definition of the latter set from (17).
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Fig. 4. (a) Active set of k = 3 points where (I ∩ (∩i : u i =0 ext(Ci ))) �≡ I and (b) an active set of k = 4 points where (I ∩ (∩i : u i =0 ext(Ci ))) ≡ I .

From the previous argumentation, it follows that, since the
domain where (u(t),θ(t)) moves is bounded, the regions
V (t) (defined as above) will cover the regions of the whole
domain that are accessible by T . Thus there exists an it-
eration t′′ at which the algorithm will visit a point in the
region V (t′), where t′ is a position the algorithm visited be-
fore (t′ < t′′). Then, due to the strict decrease of J as SPCM
evolves we have that J(u(t′′),θ(t′′)) < J(u(t′ + 1),θ(t′ +
1)) < J(u(t′),θ(t′)). However, since (u(t′′),θ(t′′)) ∈ V (t′), it
follows that J(u(t′′),θ(t′′)) > J(u(t′ + 1),θ(t′ + 1)), which
leads to a contradiction. Therefore, there exists at least one ac-
tive set Xq for which there exists at least one local minimum
(u∗

qr
,θ∗

qr
), with θ∗

qr
∈ Iq ∩ (∩Ni: ui =0ext(Ci)). �

Now we are in the position to state the general theorem con-
cerning the convergence of SPCM.

Theorem 2: Suppose that a data set X = {xi ∈ Rl , i =
1, . . . , N} is given. Let J(u,θ) be defined as in (11) for
m = 1, where (u,θ) ∈ M× CH(X). If T : M× CH(X) →
M× CH(X) is the operator corresponding to SPCM algo-
rithm, then for any (u(0),θ(0)) ∈ M× CH(X) the SPCM
converges to one of the points of the set Sq that corre-
sponds to a valid active set Xq , z∗qr = (u∗

qr
,θ∗

qr
), provided that

θ∗
qr

∈ Iq ∩ (∩i: ui =0ext(Ci)).
Proof: Following a reasoning similar to that of Lemma 8 we

have that the regions of the whole space that are accessible by
T will eventually be covered by regions V (t′) defined as in the
proof of Lemma 8. Then, the algorithm

1) either will visit a valley Yz∗
q r

in UIq × Iq around a (strict)
local minimum (u∗

qr
,θ∗

qr
) of a certain active setXq and, as

a consequence of theorem 1 (due to a) the local convexity
of J in Yz∗

q r
, b) the monotonic decrease of J with T , c) the

continuity of T in the corresponding UI × I , and d) the
uniqueness of the minimum in this valley) it will converge
to it;

2) or it will never visit the valley of such a local minimum.
This means that the algorithm starts from a (u(0),θ(0)),
whose J(u(0),θ(0)) is less than the values of J at
all local minima. However, this case can be rejected

following exactly the same reasoning with that in the proof
of Lemma 8.

Therefore, the algorithm will converge to a local minimum
Yz∗

q r
that corresponds to one of the possible active setsXq (with

Iq �= ∅) provided that θ∗
qr

∈ Iq ∩ (∩i: ui =0ext(Ci)). �

A. Fulfilling Assumption 1

Next, we show how Assumption 1 requiring that at each itera-
tion of SPCM at least one equation f(ui) = 0, i = 1, . . . , N for
each cluster Cj , j = 1, . . . ,m has two solutions, can always be
kept valid. In other words, we show that each cluster has at least
one data point xi , i = 1, . . . , N with ui > 0 at each iteration.
To this end, we will prove that 1) Assumption 1 is fulfilled at the
initial step of SPCM (base case) and 2) this inductively holds
also for each subsequent iteration of the algorithm (induction
step).

1) Base Case: Taking into account that the initialization of
SPCM is defined by the FCM algorithm and in particular (4), it
is obvious that initially each cluster Cj with representative θj
has at least one data point with ‖xi − θj‖2 ≤ γj . Focusing on
a certain cluster Cj , let xq be the closest to θj data point, where
θj denotes the initial (FCM) estimate of the representative
of Cj . Then, in general, ‖xq − θj‖2 << γj . According to
Proposition A4 (see Appendix), this data point has uqj > 0,

if K ≤ γj
γ̄ pe

(2−μj )(1−p) , where here μj = ‖xq −θj ‖2

γj
(<< 1).

In order to fulfill Assumption 1 for each cluster, K should be
chosen such that K ≤ minj=1,...,m [ γjγ̄ pe

(2−μj )(1−p) ]. Also,

it is minj=1,...,m [ γjγ̄ pe
(2−μj )(1−p) ] ≥ γ̄

γ̄ pe
(2−μm a x )(1−p) ≡

pe(2−μm a x )(1−p) , where we recall that γ̄ = minj=1,...,m γj .
Thus, if K is chosen so that K ≤ pe(2−μm a x )(1−p) ≡ B(p),
where μmax = maxj=1,...,m μj (<< 1), Assumption 1 is
satisfied. Note also that B(p) ≤ pe2(1−p) , thus the condition of
Proposition A1 is valid.

In Fig. 5, the upper bound B(p) of K is illustrated with
respect to parameter p for different values of μmax , so that each
initial cluster has at least one data point with u > 0. Note that
K = 0.9 is an appropriate value for p = 0.5 that ensures that
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Fig. 5. Upper bound B(p) of K with respect to parameter p for different
values of μm ax , so that each initial cluster has at least one data point with
u > 0.

Assumption 1 is fulfilled at the initial step of SPCM (this is the
choice made for K in [16]).

2) Induction Step: Let us focus on a specific cluster C.16

Assume that at iteration t, its representative is θ(t) and it has a
certain set of active points Xt 17 with its corresponding
nonempty intersection of hyperspheres, denoted by It . Obvi-
ously, it is CH(Xt) ⊆ (∪i:ui >0 int(Ci)). Taking into consider-
ation that all possible positions of θ(t+ 1) lie inside CH(Xt),
we have that θ(t+ 1) will lie inside ∪i:ui >0 int(Ci). As a con-
sequence, there exists at least one data point of Xt that will
remain active at the next iteration of the algorithm.

As a result, each cluster will have at least one data point xi ,
i = 1, . . . , N with ui > 0 at each iteration of SPCM.

IV. ON THE CONVERGENCE OF THE PCM2 ALGORITHM

In [11], it is proved that the sequence T t(U (0) ,Θ(0)) pro-
duced by PCM2 terminates to either a local minimum or a
saddle point of J , or every convergent subsequence of the above
sequence terminates to a local minimum or a saddle point of J .
This result follows as a direct application of Zangwill’s conver-
gence theorem [10]. However, viewing PCM2 as a special case
of SPCM, we can utilize the convergence results of the latter
to establish stronger results for PCM2 , compared to those given
in [11].

Let us be more specific. We focus again to a single θ and
its corresponding u = [u1 , . . . , uN ]T vector. Note that JPCM2

results directly from JSPCM, for λ = 0. In this case, the radiusR
(9) becomes infinite for any (finite) value of p. This means that
the convex hull of X , CH(X), lies entirely in the intersection
of the hyperspheres centered at the data points of X . As a
consequence, ui > 0, for i = 1, . . . , N . This implies that the
whole X is the active set. Also, note that for λ = 0, f(ui) = 0
gives a single positive solution, i.e., ui = exp(−||x i−θ||2

γ ).

16For notational convenience, we drop the cluster index j for the rest of this
section.

17We drop the index q, in order to lighten the notation. Index t shows the time
dependence of the active set corresponding to C , as it evolves in time.

Let us define the solution set S for PCM2 as

SPCM2 = {(u,θ) ∈ [0, 1]N × CH(X) : ∇J |(u,θ) = 0}.
The requirements for 1) the decreasing of JPCM2 , 2) the conti-

nuity of TPCM2 (the operator that corresponds to PCM2 , defined
in a fashion similar to T ), and 3) the boundness of the se-
quence produced by PCM2 can be viewed as special cases of
Lemmas 3, 5, and 6, respectively, where UI × I is replaced by
[0, 1]N × CH(X).18 Then, Theorem A1 (see the Appendix)
guarantees that there exist fixed points for TPCM2 and Lemma
7 proves that these are strict local minima of JPCM2 .19 Finally,
in correspondence with SPCM, the following theorem can be
established for PCM2 .

Theorem 3: Suppose that a data set X = {xi ∈ Rl , i =
1, . . . , N} is given. Let JPCM2 (u,θ) be defined by (2) for m =
1, where (u,θ) ∈ [0, 1]N × CH(X). If TPCM2 : [0, 1]N ×
CH(X) → [0, 1]N × CH(X) is the operator corresponding
to the PCM2 algorithm, then for any (u(0) ,θ(0)) ∈ [0, 1]N ×
CH(X), the PCM2 algorithm converges to a fixed point of T
(which is a local minimum of JPCM2 ).

V. CONCLUSION

In this paper, a convergence proof for the recently proposed
SPCM algorithm is conducted. The main source of difficulty
in the provided SPCM convergence analysis, compared to those
given for previous possibilistic algorithms, relies on the updating
of the degrees of compatibility, which are not given in closed
form and are computed via a two-branch expression. In this
paper, it is shown that the iterative sequence generated by SPCM
converges to a local minimum (fixed point) of its associated
cost function JSPCM. Finally, the above analysis for SPCM has
been applied to the case of PCM2 [5] and gave much stronger
convergence results compared to those provided in [11].

APPENDIX

Proposition A1: If K < pe2(1−p) , then Rj > 0.
Proof: Substituting λ from (5) into the definition ofR2

j from
(9) and after some manipulations, we have

R2
j =

γj
1 − p

(
− ln

γ̄

γj
− ln

K

e2−p − p

)

or, since γ̄
γj
< 1

R2
j ≥

γj
1 − p

(
− ln

K

e2−p − p

)
.

Straightforward operations show that the positivity of the
quantity in parenthesis is equivalent to the hypothesis condition
K < pe2(1−p) . �

18The only slight difference compared to SPCM concerns the establishment
of requirement 1). Specifically, in the proof of Lemma 1 in (26), it turns out that
for PCM2 , it is κs = −∞, which still contradicts the fact that κs is finite. Also,
in (27) in the same proof it results that τs ≤ 0, which gives also a contradiction.

19The only thing that is differentiated in the PCM2 case is that g∗i = γ
u ∗
i

. As

a consequence, ε is chosen as ε < 1
2

√
γ
2 .
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Proposition A2: It is (
∑k

i=1 u
′
i)

2 ≤∑k
i=1 ui

∑k
i=1

u ′2
i

u i
, for

ui, u
′
i > 0, i = 1, . . . , k.

Proof: It is
(

k∑

i=1

u′i

)2

≤
k∑

i=1

ui

k∑

i=1

u′2i
ui

⇔

k∑

i=1

u′2i + 2
k∑

i=1

k∑

j=i+1

u′iu
′
j ≤

k∑

i=1

u′2i +
k∑

i=1

k∑

j=1

ui
uj
u′2j ⇔

k∑

i=1

k∑

j=i+1

(
ui
uj
u′2j +

uj
ui
u′2i − 2u′iu

′
j

)
≥ 0 ⇔

k∑

i=1

k∑

j=i+1

(uiu′j − uju
′
i)

2

uiuj
≥ 0

which obviously holds. �
Proposition A3: Let z∗ = (u∗,θ∗) ∈ Sq corresponding to

a certain active set Xq . Let also Yz∗ = Yu × Yθ be a set

of (u,θ), such that Yu = {u ∈ M : ||θ∗ −
∑ k

i= 1 ui x i∑ k
i= 1 ui

|| < ε}
where ε < 1

2

√
(1−p)γ

2 and Yθ = {θ : θ =
∑ k

i= 1 ui x i∑ k
i= 1 ui

,u ∈ Yu}.

Then, 1) Yz∗ is a convex set and 2) J is a convex function
over Yz∗ .

Proof: 1) Since the domain Yu of u is a cartesian product of
closed one-dimensional intervals, it is convex. In addition, the
set Yθ is also convex by its definition. Thus Yz∗ is convex.

2) We prove that for any z ∈ Y , it is z′T Hzz′ > 0, ∀z′ ∈ Y .
Following a reasoning similar to that in Lemma 7, we end up
with the following inequality [with corresponds to (51)]

z′T Hzz′ ≥ 2
k∑

i=1

ui ||θ′||2 − 4
k∑

i=1

u′i ||θ′||(2ε)

+ (1 − p)γ
k∑

i=1

u′2i
ui

≡ φ(||θ′||). (53)

Note that the factor 2ε in the right-hand side of the above in-
equality, results from the fact that this is the maximum possible
difference between two elements in Yθ. The discriminant of
φ(||θ′||) is

Δ = 8

⎡

⎣8ε2

(
k∑

i=1

u′i

)2

− (1 − p)γ
k∑

i=1

u∗i
k∑

i=1

u′2i
u∗i

⎤

⎦ . (54)

Proposition A2 and the choice of ε guarantee that Δ is neg-
ative, which implies that z′T Hzz′ > 0 and as a consequence J
is convex over Yz∗ . �

Proposition A4: A data point x has u > 0 with respect to a
clusterC with representative θ and parameter γ or, equivalently,
f(u) = 0 has solution(s), if K ≤ γ

γ̄ pe
(2−μ)(1−p) , where μ =

‖x−θ‖2

γ .
Proof: According to (9), a data point x has

u > 0 if and only if ‖x − θ‖2 ≤ R2 ⇔ ‖x − θ‖2 ≤
γ

1−p (− ln λ(1−p)
γ − p) ⇔ μ ≤ 1

1−p (− ln λ(1−p)
γ − p),

which, using (5), gives μ ≤ 1
1−p (− ln K γ̄

pe2−p γ − p) ⇔

μ(1 − p) ≤ − ln K γ̄
pγ + 2 − 2p⇔ (2 − μ)(1 − p) ≥ ln K γ̄

pγ ⇔
e(2−μ)(1−p) ≥ K

p
γ̄
γ ⇔ K ≤ γ

γ̄ pe
(2−μ)(1−p) . �

Theorem A1 (Leray–Schauder–Tychonoff fixed point theo-
rem, e.g., [19]): If X ⊂ Rp is nonempty, convex and compact
and ifZ : X → X is a continuous function, there exists x∗ ∈ X ,
such that Z(x∗) = x∗ (fixed point).
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