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A Probabilistic Approach for Reducing to be followed is detennined based on the likelihood, estimated from

the Search Cost in Binary Decision Trees past experience, that the outcome is the correct one. Reducing the

Ath . R number of decisions taken is important because each decision requires
anasIos ontogIanrus and NIkitas J DImo poulos h .." ." b . Add ... .uman Intervention or expensIve o servatIon. Itlonally, this

Abstract- In many complex problems a particular decision making process seems to e.mulate ~he approach adopted by human experts

procedure is often required in order for a final solution to be found. Such who, based on theIr expenence, may assume that the outcome of
a procedure may consist of a large number of intermediate steps where certain decision nodes have been "fixed" for the majority of cases.
"Io~a~" decisions must be taken a?d can be sometim~ represe?ted as a Such an approach has the effect that we may sometimes end up
declSIO~ tree. When th~t stru~ture IS u.sed the final so~utions obtaIned vary with wrong conclusions. We can then search for the correct path by
dependIng on the available Information. However, If the same model is. ..
applied many times, experimental data can be collected and observations appropnately backtrackIng Into the tree. We must therefore choose
on the acquired knowledge can be made. In this work, we present a both the nodes where we will not test for the value but we assume

probabilistic approach for reducing the number of decisions (tests) that that the outcome will be the most probable one, and the proper
are ~equired in a particular decision making situation. Specifically, we backtracking method in case that a wrong conclusion is reached, so
con~l~er that a problem is structured as a complete binary balanced that the average number of tests perfonned until a correct conclusion
decision tree the interior nodes of which correspond to decision points; .

h the paths of the tree represent different decision making processes. By IS reac ed, IS ~ru~zed. We have f~~ulate~ a g~n function and we
assuming that there exists sufficient probabilistic information concerning propose technIques In order to maXlrruze this gain.
the decisions at the interior nodes, we propose techniques in order to After introducing the problem in Section II, the required steps for
minimize the average number of these decisions when we search for a the fonnulation of the gain function are described. This function is
final solution. subject to maximization. In Section III, the notion of the cost associ-

I I ated with the backtracking procedure, is defined and its general ex-
.NTRODUcnON .. d . ed " . I h fth d ..

I S .

IVpressIon IS env lor a sIng e pat o e ecIsIon tree. n ectlon ,

People often cope with problems in which they have to make we present two techniques for selecting the interior nodes of the tree
decisions under conditions of uncertainty. This is the case because at which a decision is based on our probabilistic infonnation. The two
som~ components of the problem under consideration are only techniques are compared to each other in tenns of the value of the gain
partially known or the cost associated with obtaining all the necessary achieved. Finally, concluding remarks are presented in Section V.
information is high. When the decision maker faces such a situation
he must base his decisions and conclusions on his experience or on II. 1){E GAIN FuNcnON
available information. The whole procedure can be facilitated when We consider a complete binary balanced tree of depth n. We
it is properly structured in a way that clarifies the particularities of assume that the interior nodes of the tree are decision nodes at which
the problem. Decision trees constitute an effective representation for an attribute test takes place as described in [5]. There exist only
modeling some aspects of human reasoning. Different paths of the two possible outcomes for each attribute test: either the value of the
decision tree express different rationales that can be followed in order attribute is verified or not. In other words, we can assume that each
for a solution to be found. Often decisions at the interior nodes of interior node of the tree contains a question with only two possible
the decision tree are taken based on incomplete infonnation. A utility answers: "yes" or "no". The "yes" answer can be ~bitrarily assigned
function can then be constructed and the decisions are taken so as to to the left "child" and the "no" answer to the right "child" of a
optimize such a utility function. particular node. The leaves of the tree constitute a set of distinct

In [ I ]-[3], the interior nodes of the tree are divided into decision final conclusions to the problem that is represented by the given tree
nodes where the decision maker is in control of the choice and chance structure. In our model, we make the assumption that the arbitrary
nodes which correspond to events (often called "states of nature") interior node k of the three is assigned two probabilities, Pky, Pkn,
that lie outside the control of the human expert. The main goal of (see Fig. I), which represent the probability of occurrence of the two
the decision maker is to follow a path which maximizes an expected possible test outcomes. We have to emphasize that these probabilities

utility function that is related to the problem parameters. In [4]-[7] are conditional probabilities. That is, Pky is the probability that the
and [8] the decision tree structure is used as a classification tool. The answer in node k is positive given that we have followed the path
leaves of the tree constitute a disjoint set of classes while at each that leads to this node. For example, in Fig. 5, P5n can be written as
interior node the value of a particular attribute is checked. In [4], p, -P(EIE E ) I
[5], the author describes how such a tree can be constructed from 5n -I, 2 ( )

a set of initial objects that are distinguished through the values of where E is the statement that the answer at node 5 is "no" and E I,
different attributes. Then, that tree can be used for the classification E2 are the facts that the answers at nodes I and 2 are "yes" and
of new objects. "no" respectively.

In our work a different approach to decision problems is adopted. The probabilities of the interior nodes of the tree sometimes carry
Specifically, we consider complete binary balanced decision trees and very important infonnation. For instance, if Pky = 0.9, our belief is
assume (as in [8]) that there exist sufficient probabilistic (statistical) very strong that the outcome of the test at node k is positive. Thus,
infonnation available concerning the decisions at the interior nodes. when we reach that node, we may decide not to perfonn any test but
Our goal is to develop a model in which, relying on the given instead follow the left branch since such a decision is correct with a
infonnation, we reduce the number of decisions that are required very high probability. By avoiding a test we have a gain whose value
when we search for a conclusion. That can be achieved by selecting depends on the importance of the test under consideration. In our
the nodes at which an explicit decision, based on the state of the analysis, all the tests are assumed to have the same significance and
environment, is not taken but instead the branch of the tree that is therefore we can assign a weight of I to each of them. The aim of

...our work is to partition the interior nodes of the tree into nodes whereManuscnpt received June II, 1993; revised March 14 1994 This work. .
was supported by a grant from the Canadian Cable Labs Fund. .the te~t ~curs ~n~ nodes where It does not,.1n such a man~e~ t?at
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ing, University of Victoria, Vicloria. British Columbia, V8W 3P6 Canada. the number of nodes where the prescribed test is perfonned and yet
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1 nodes. In general, a path which corresponds to a reachable final node
has the following characteristics

I) The number mj of its statistical nodes.
2) The probability PPj that the path is going to be followed.

PPj can be expressed as the product of the probabilities of the
non-statistical branches of the path ([9]).

3) The probability POj that the path is correct given that it has
been followed. POj is the product of the probabilities of the
statistical branches of the path ([9]).

4) The backtracking cost B j .The backtracking cost represents
the number of tests that take place after the path j turns out
to be wrong and before the correct path is found. Its general

expression is given in the next section.

It was stated before that all the tests of the tree are equally
significant and therefore we can assign to each of them a weight
of I. Thus, we define the cost as the number of nodes where a test
is performed. As we traverse the tree we have two choices: either

F.
1 E I T we use the statistical data that we have collected or not. In the latter

Ig. .xamp e Tee. .

11 be dcase the cost WI expresse as

L) = n (2)

where Lj is the cost associated with the j-th conclusion and n is
the depth of the decision tree assuming a complete binary balanced
decision tree.

Equation (2) holds because we are following a path by asking the
questions in all the nodes of the path. Furthermore we are certain that
the path is correct, that is, backtracking is not required. Let us now
consider the former case. Assume that we have followed a path and
we have reached a final node j. Let us also assume that m j out of n
nodes of the path are statistical nodes. This means that in m j out of
n nodes of the path (we do not consider the last node which is not a
decision node), probabilistic information has been used to make the
decision. We have two exclusive and exhaustive events: a) Path j that
we followed is correct and b) Path j is wrong. If the probabilities of
these two events are POj and PWj respectively then

POj + PWj = 1 (3)

Fig. 2. Representation of statistical and non-statistical nodes.

The cost in the case of a correct path is given by
By partitioning the interior nodes as described above, we may Lo = n -m (4)

sometimes end up with wrong conclusions (final nodes). That is) )

possible because the decisions which are based on probabilistic As it was mentioned before, when we end up with a wrong path,
information may not be correct, resulting in wrong final nodes. In we backtrack into the tree in order to find the correct path. Such a
such a case we assume that we are able to backtrack and search for the procedure results in a cost which will be called the backtracking cost
correct path. We have to note that when a conclusion is reached using for path j and denoted as B j .The cost in the case of a wrong path
our model, the truth of that conclusion must be verified. Therefore, is therefore
there may be a cost associated with that process. In order to simplify Lw = n -m + B. (5)

our model we assume that we are able to distinguish between correct) ) )

and incorrect final conclusions without any cost. Assume, for example, that after a wrong final conclusion we back

up to the first statistical node of the path and then we traverse theA. Denvatlon of the GaIn Function tree by asking all the questions at the nodes we meet. This way the

Before we proceed to the derivation of the gain function we give correct conclusion is reached because the path from the root node to
the following definition of a statistica[ node. the first statistical node is certainly correct. If hj is the height of that

Definition 1: An interior node of the tree is called statistical when node (where n is the height of the root and O the height of node j),
the test is not performed at that node but instead the decision is based Lwj can be written as
on the probabilistic information associated with the node. The branch
of the statistical node which is followed is called a statistical branch. Lwj = n -mj + hj (6)
All the other branches are called non-statistical. Equation (6) holds because hj more tests take place after backtracking

By partitioning the interior nodes of the tree into statistical and for the example considered.
non-statistical ones, we separate the set of final nodes F into two In general, if we weight the costs Loj and Lwj given in (4), (5)
disjoint subsets: the subset of the reachable nodes Fl and the subset with the corresponding probabilities PCj and PWj we can express the
of the non-reachable nodes F2. This can become more obvious by cost of using the probabilistic information for the path j as follows

considering the tree of Fig. 2. The tree has depth n = 4. The solid
circles represent the statistical nodes while the statistical branches Lsj = PCj .Lcj + P»'j .Lwj
are emboldened. The solid squares constitute the non-reachable final = PCj .(n -mj) + (1- PCj) .(n -mj + Bj) (7)
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If we simplify (7) we end up with the following expression for Lsj The last expression gives the probability that the path is wrong

L = ( n- m ) + B . ( 1- R . ) ( 8 ) because a wrong decision was taken at node Ai and all decisions
S) ) ) C) di th Ob . 1 .

fA ...

1 dprece ng at were correct. VIOUS y, 1 i IS a non-statlstlca no e

From (2) and (8) we can calculate the gain in the case of a single -
path of the tree as follows P(AI, A2, ...,Ai-l, AiIW) = 0

Gj = Lj -Lsj = mj -Bj .(1- PCj) (9) On the other hand, for an arbitrary statistical node Aki of the path,

We must note that the gain Gj can be negative. A negative gain the expression

indicates that the cost of using the statistical information is more than P ( A A ... A -
A IW) i = 1 2 ...m

(12)..1,2, ,ki-l,ki " ,
the cost of detenrumng the path at each node.

The tree gain which represents the average number of questions gives the probability that the first wrong decision occurred at node
that are not asked as we search for the correct conclusions, can Aki. In order to calculate this probability we apply the well-known
be computed by weighting the gain given in (9) with the posterior inversion formula ([3]). We have
probability PPj that the path j is followed and then building up the -
following sum P(AI,...,Aki-I' AkilW)

G= Lppj.Gj= Lppj.[mj-Bj.(I-PCj») (10) = P(WIAI,...,Aki-I,~(~f(AI,...,Aki-l, (13)

)EFl )EFl

For a particular partition of the interior nodes of the tree, all Clearly,
the components of (10) except for Bj are known and well-defined. -.
Therefore, in order for the gain G to be maximized, two specific tasks P(WIA1, ..., Aki-l, Aki) = 1 ! = 1, 2, ..., m (14)

must be accomplished: a) the optimal partiti on of the nodes must because the path IS certaInly wrong If a wrong decision was made at

be found and b) the backtracking cost B j for each reachable final
od Furth o.any n e. erm re,node resultIng from that partition must be minimized. The general

expression for B j is given in the next section. In Section IV two P(W) = 1 -P( C)
partitioning techniques are proposed. The problem of finding the
optimal partition appears to be a difficult and complicated one. and P( C) is the probability that the path is correct given that it has

been.followed, defined in Section n. Therefore, (13) can be rewritten
Ill. DERIVATION OF rnE BACKTRACKING COST as follows

As stated in the previous section, when we end up with a wrong -P(AI, ..., Ak.-l, Ak. )
diagnosis we backtrack and search for the correct path. Such a P(AI, ..., Aki-l, AkilW) = .1- P(G) .(15)

procedure results in a cost which is called the backtracking cost.
The backtracking cost represents the number of tests that take place In order to compute the probability P( A1 , ..., Aki -1, Aki ) we
after a wrong path is diagnosed and before the correct one is found. In apply the chain rule ([3]).
order to simplify our model we assume that during the search for the -
correct path, after backtracking, the probabilistic information that is P(AI, ..., Aki-1, Aki)
available at the nodes of the tree is not taken into account any longer. =P(AkiIA1,...,Aki-1). P(A2IA1).P(A1) (16)

From (10) it is clear that for a specific partitioning of the interior
nodes, the gain G is maximized if the backtracking cost Bj is But for a non-statistical node Ar, 1 $ r $ ki -1
minimized for every reachable node j. In this section a single path of P( A IA ...A ) = 1 (17)
the tree is considered and the general expression of its backtracking r 1, , r-1

cost is derived. The results can be applied to each path of the set F1. Substituting (17) and (16) for every non-statistical node we get
To simplify our notation the subscript j which refers to a specific -
path j is not used in the analysis below. P(AI,...,Aki-1' Aki)

=P(AkiIA1,...,Aki-1).P(Aki-lIAI,...,Aki-l-I)...A. ProbabIlistIc ConsIderatIons for a SIngle Path
( I ) ( I ).p Ak2 A1,...,Ak2-1 .p Akl AI,...,Akl-1 (18)

Let us consider an arbitrary path in the tree which ends at a

reachable final node. Let A1 , A2, ..., An be the n nodes in the path that is, P( AI , ..., Aki -1, Aki) depends exclusively on the prob-
(we do not include the final node) and let Al be the root. Assume abilities assigned to the statistical nodes which are located before
that the path contains m statistical nodes Ak 1 , Ak2' ..., Akm ; ( 1 $ node Aki in the path. More specifically, it is derived by multiplying
m $ n), with heights hl, h2, ..., hm respectively. We define as the probabilities of all the statistical branches that are before Aki
the height h of a node A the number of nodes between A and the and then by multiplying again the outcome with the probability of
leaf node of the path; this count include node A. If we follow that the non-statistical branch of Aki. All these probabilities are known
path and the final diagnosis turns out wrong, it happened because from our initial model and therefore the expression in (15) can be
a wrong decision was made in at least one statistical node. We are calculated. By applying the procedure which has been described
most interested in the first statistical node of the path where a wrong so far, the probability that the first wrong decision occurred at a
decision occurred. This is so because, after passing that node, we are particular statistical node can be computed (see (12)). We note that
already on a wrong path. Let us now define the following facts m ,

.W: The arbitrary path that we followed is wrong. Lp(AI,...,Ak-l, AkIW) = 1 (19)

.Ai: A correct decision was made at node A; of the path. ;=1 ..

.A; : A wrong decision was made at node A; of the path. ...
"7 f h f II . di . al b b.l .because the probablhtles that appear in the above summation corre-ne orm t e o owIng con tlon pro a Ilty d t a set of exha tI.

tspon o us ve even s.
We now define Pr, r = 1, 2, ..., m, to be the probability that the

P(AI, A2, ..., Ai-l, Ai IW) i = 1, 2, ..., n (11) first wrong decision took place either at node Akr or at a statistical
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SN1 St St

SI SI.

SN 2

Sk Sk

SN J Fig. 4. The Bac~cking Procedure used to CalCU~~ (a) B and (b) B' in
q lemma I.

Fig. 3. Illustration of the Backtracking Procedure for a Single Path. S t S t

node which follows Akr in the path (Akr+l'...'Akm). Then Pr
can be expressed as follows

m -S S
Pr=Lp(A1,...,Aki-l,AkiIW) (20) I. I

i=r

If we back up to node Akr after a wrong final diagnosis, Pr
expresses the probability of successful backtracking, that is, the
probability that we are going to find the correct final node after S S .
going back to node Akr and traversing the tree from this point by k k

performing all the tests at all the nodes we meet. Obviously PI = 1.
This is the case of backtracking to node Akl.

B. The Backtracking Cost S S
r r

To simplify the notation, let 51, 52, ...,5m denote the m statis-
tical nodes in a given path. It is clear from the previous analysis
.that only these nodes need to be considered as backtracking points.
Furtherm~r~, a particular statistical node 5i, 1 ~ i ~ m, has two

( ) (b)charactenstlcs a

.Its height hi, which also represents the number of tests between Fig.5. The Backtracking Procedure used to calculate (a) B and (b) B' in
that node and a leaf node. lemma 2.

.The probability of successful backtracking Pi. Pi is the probabil-
ity that the first wrong decision took place either at node 5i or at Theorem 1: Given a path composed of n nodes Al, A2, ..., An
a statistical node which follows 5i in the path (5i+l, ...,5m). denote by 51, 52, ...,5m the m statistical nodes of the path and by

Out of these m statistical nodes we want to choose q nodes in such 5Nl' 5N:I , ...,5Nq the q statistical nodes at which we back up. 5Nq
a manner that the backtracking cost is minimized when we backtrack is the first node at which we backtrack (i.e., the node closest to the
to these q nodes. We note that after backtracking to a particular node, leaf) and 5 N 1 = 5 1 .The backtracking cost B can then be written
we traverse the tree from that point by explicitly performing the test in the following form

at all the subsequent nodes. If we end up again with a wrong final q
node we back up to the next statistical node of the sequence and we B = LhNi .(1- PNi+l ), where PN.+l = 0 (21)

repeat the same procedure. i=l

We will prove the following theorem in which the general expres- Proof As was stated previously, the cost B gives the number of
sion of the backtracking cost is derived (see also Fig. 7) nodes where the test at the node is performed, during the backtracking
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Furthermore

, 1 -PN.
1 -PN. = 1- R (24)

N.+1

82 If we substitute (23) and (24) into (22). we observe that the

denominators of the above fractions cancel out. Thus the cost B

can be rewritten as

B = PN .hN + ( 1- PN ) .hN + ( PN -PN ) .hN4 4 4 4 4-1 4 4-1

+ ( 1 -PN ) .h N + ...+ ( PN -P N ) .h N4-1 4-1 1 2 2

+ (1- PN1) .hN2 + (1- PN2) .hN1

= hN1 + (1- PN1) .hN4-1 + ...+ (1 -PNJ) .hN2

+ (1- PN2) .hN1 {:}

q

B = LhN; .(1- PNi+1)' where PN4+1 = 0

i=l

8 The above result can also be verified intuitively. Indeed, aft=

ending up with a wrong path and following the backtracking process

described in theorem I, ( I -PN ;+ 1 ) expresses the probability that the

first wrong decision occurred at a statistical node of the path before

we reach the statistical node SNi+1. Therefore, in such a case we

always back up to node SNi and thus in (21) we weight hNi (the

height of S N ; ) with ( I -PN i+ 1) .Indeed, assuming that the tree is

complete and that after backtracking to a particular node S N ; we

traverse the tree by asking all the questions at the nodes we meet,
Fig.6. The Path of Example 1. we conclude that the number of these nodes is equal to hNi. Hence

the summation in (21 ) represents the cost of the backtracking process

G according to the definition given before.

To achieve the minimum value of the backtracking cost B we must

solve the following optimization problem

min [thNi .(1- PNi+1) ] (25)

In general, if there are m statistical nodes, we have 2m-l different

backtracking procedures which result in 2m-l costS. That is SO

because the last node to which we back up is always node Si and

2m-1 is the number of all the possible combinations of the remaining

m- 1 nodes. Out of these 2m-l procedures there is one (or possibly

more) with the minimum cost given in (25). In other words there

0.5 p 1 p r p r + 1 p s 1 t is a combination of q nodes, 1 :$ q :$ m, which minimizes the

backtracking cost given in (21). By exhaustively examining all the

Fig.7. Representation of the Subintervals. possible combinations, the minimum cost B for a particular path

through the tree can be obtained. If we then repeat the same procedure

for every path j of the set Fl and substitute the results in (10)
procedure. If.we assume that we back up to nodes SN1' SN2' ..., SN4 the maximum G for a specific partition of the interior nodes of

as was descnbed before, the cost B can be expressed as follows the tree can be achieved. We must note that it is not necessary to

B = PN .hN + (1- PN ) calculate the costs of all the possible backtracking procedures. The
.{ ~N + 4p;. .hN 4 + 1 -p'. back.tracking p~ocess whic~ re.sults in th.e minimum cost has some

4 4-1 4-1 ( N4-1) Special propertIes the applIcatIon of which reduces the number of

.{hN4-1 + ...(1- P'N2) .{hN2 + hN1 .P'N2} ...} (22) cost evaluations significantly. These properties are summarized in

the following lemmas:

In
( 22 ) the term P' 2 < k < - 1 ts th b b . l . ty.Lemma I: The optimal backtracking procedure, that is, the one

, N. ' q represen e pro a 1 t h . h h .
th that the first wrong decision took place at node SN., denoted as fact w ~c ;c le~esth ~ nummum cost given In (25), does not contain a

A, given that it did not take place at the nodes SN.+1' ..., SN4 ' n e / suc a

denoted as fact D. According to the definition of the probability of h/
successful backtracking we have "p; > hr (26)

p;.. = P(AID) = P(A, D) = PN. -PN.+1 (23) where hr is the height of node Sr, Sr being part of the backtracking

P(D) 1- PN.+1 procedure, and hr > h/.
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In the latter case we have 1.6

B2 = h2 + hl .(1- P2) = 6.3136
1.

We conclude that 6.3136 is the minimum cost. Therefore, every
time that we follow this path and find out that it is wrong we first 1.

backtrack to node S2. If we end up again with wrong final node we
back up to node SI. ;j

5 0.8
~

;j

IV. PAR1mONING OF mE INTERIOR NODES
0.6

It was mentioned earlier that in order for the maximum value of
the gain G, given in (10), to be attained, the appropriate partition of 0.4
the interior nodes of the tree must be found. This partition can be
called the optimal. Under the hypothesis that the optimal separation 0.2

of the nodes is given, the maximum gain G can be obtained by
minimizing the backtracking cost Bj for all j in FI. In general, ~.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
if there exist s interior nodes, 28 possible partitions of them into
statistical and non-statistical can be considered. For each of them the Th=hold.t

maximum gain must be calculated according to (10) and (25) and Fig. 8. The Gain versus the Threshold.

the results must be compared to each other in order for the optimal
gain to be obtained. More specifically, in a tree of depth n there probabilities of the tree a unifonn random generator has been used.
exist 2n -1 interior nodes. Clearly, the corresponding number of In this example, the maximum value of the gain obtained is 1.40 15,
possible partitions is large. Even for a tree with n = 5 that number for t E (0.575, 0.712].
is too high (231) resulting in an excessive amount of computation
during the maximization procedure. For these reasons an exhaustive B. An Alternative Method
evaluation of the gain for each possible partition is to be avoided. Irrespective of their heights the threshold method handles nodes
However, in the following, tw~ partitioning t.ech~ques ~e proposed. with the same maximum probability in a similar manner. But, in
In both of the~ the. computauonal complexIty IS kept lInear to the general, a node which is located closer to the root of the tree has
number of the Intenor nodes of the tree. a higher backtracking cost. Therefore, in addition to the maximum

probability P~ax, the height of an arbitrary node k must be also taken
A. The Threshold Method into account when we search for a partition of the interior nodes of

As it was stated in section II, each interior node (test) k is the tree.
associated with two probabilities that add up to 1 and represent We observe from (21) that the backtracking cost associated with a
the probability of occurrence of the two possible test outcomes. single path is increased when statistical decisions take place at high
Obviously, the maximum of these two probabilities, say P~ax, is levels of the tree. ~at happens because when we end with a wrong
greater than or equal to 0.5. We define a threshold t to be a number path we back up WIth some probability to high levels of the tree and
in the interval [0.5, 1 ]. When node k is reached, P~ax is compared to then we have to traverse the tree by performing all the tests at all the
the threshold t. If it is greater than or equal to t we follow the branch nodes we meet. Therefore, if we reduce the number of probabilistic
with the maximum probability without performing any test at the decisions in such nodes and at the same time we increase the number
node. Otherwise, the branch which will be followed is determined of probabilistic decisions in nodes with relatively small height, we
according to the test outcome. may obtain a higher value for the gain G. Thus, a different partition

Any threshold t, 0.5 ~ t ~ 1, separates the interior nodes of of the interior nodes of the tree results.
the tree into statistical and non-statistical as follows: all the interior In the new method we make a level-order visit to all the interior
nodes whose maximum probability is greater than or equal to t nodes of the tree starting from the last level (see Fig. 9). At each node
are considered statistical and the remaining become non-statistical. we calculate the total gain of the paths which contain that node by
Therefore, the gain G is expressed as a function of the probability c~nsidering it as a statistical one. The gain so obtained, is compared
threshold t in the interval [0.5, 1]. wIth the sum of the gains of the two sub-trees originating at the

In a complete binary balanced tree of depth n there are s = 2n -1 node, and if it is greater than the sum, the node becomes statistical.
interior nodes and therefore there exist s probabilities greater than Otherwise it remains non-statistical and we proceed to the next node
or equal to 0.5. For simplicity and without loss of generality we of the same level of the tree (if any) or to the first node of the next
can assume that these probabilities are distinct and different from level. We note that the gains of the two sub-trees have already been
0.5 and I. Under this assumption, these probabilities divide the calculated in the previous level of the tree.
interval [0.5, 1] into 2n subintervals of the fonn Ir = (pr, Pr+I]; As it is clear the new technique is based on a greedy algorithm
T = 1, 2, ..., 2n, P2n = 1, plus the interval 10 = [0.5, PI) (Fig. 7). [10~. At each step of the algorithm we make the "locally" optimal
Among these subintervals there is one (and possibly more), denote choIce. We must note that not every greedy approach succeeds in
it by Iopt, such that if t E Iopt the gain G is maximized. The value producing the best result overall. However, if the problem is such
of G is constant in each of the subintervals. This is so because, that the only way to get an optimal solution is to use an exhaustive
for each value of the threshold in a particular interval, the resulting search technique, then a greedy algorithm or other heuristic for getting
partition of the nodes is the same. In order to get the maximum a g~d but not necessarily optimal solution may be our only real
value of G, equation (10) is evaluated in each of the subintervals. choIce.

We must note that the maximum of G obtained is not the absolute
maximum discussed before. It simply is the optimal gain achieved by C. Comparison of the two Methods
applying the threshold method. The gain as a function of the threshold Consider the tree of depth n = 4 drawn in Fig. 10. The probabil-
for a tree of depth 4 is shown in Fig. 8. For the production of the ities that are greater than 0.5 appear attached to the corresponding
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Fig. II. The State of the Tree after applying the Threshold Method. Solid
circles indicate statistical nodes, open squares indicate reachable final nodes.
The threshold interval is (.702, .731].

Fig. 9. lllustration of the Alternative Method.

Fig. 12. The State of the Tree after applying the Alternative Method. Solid
0.8 880 circles indicate statistical nodes, open squares indicate reachable final nodes.

Fi 10 E le T We must note that the alternative technique which gives the best
19. .xamp ree.

results so far was compared to a method that exhaustively evaluates
the gain for all the possible partitions of the interior nodes into

branches. After applying the threshold and the alternative techniques statistical and non-statistical and therefore achieves the absolutely
the state of the tree appear in the Figs. I I and 12, respectively. We maximum value of the gain. That took place for several trees of
can observe the different partitions of the interior nodes resulting depth 4 and one tree of depth 5. Exhaustive evaluation of the gain
from the two methods. In these figures, we use solid circles to is computationally expensive (the depth 5 tree required several days
indicate statistical nodes and solid squares to indicate nonreachable of run time on an HP 715/50 system) and thus larger trees or more
final nodes. Observe that for both methods children of statistical nodes examples of trees of depth 5 were not attempted. In all cases tried,
corresponding to the minimum probability path are unreachable and the results obtained by the alternative method were identical to those
have been marked as non-statistical by default. When the threshold of the exhaustive evaluation of the gain.
method is used the maximum value of the gain is G = 1.157. On the
other hand, the gain is equal to 1.327 when the alternative method V. SUMMARY-CONCLUSIONS
is applied. In this paper we presented a probabilistic model for reducing the ,

In Table n the two techniques disc~ed -.!:.0 far are compared for number of tests that are required in a specific decision procedure.
trees of different depths. In that table Gt, Ga stand for the average We assumed that a problem is structured as a complete binary
gain of the threshold and the alternative technique respectively. The balanced decision tree and we attempted to select the nodes of the
third and fifth columns contain the corresponding standard deviations. tree where a probabilistic decision is taken. A gain function was
For each value of n, we calculated the gain for 5000 different trees, constructed and dominance criteria were derived which reduce the
that is trees with different uniform distributions of probabilities at the computational complexity of the gain function. Thoo heuristic methods
interior nodes. Then the entries of Table n are computed ([1 I]). From were proposed for the selection of the nodes where a decision is taken
that table we observe that the alternative method performs better than probabilistically and they were compared to each other in terms of the
the threshold method. In general, the performance of both methods value of the gain achieved. Both techniques are linear to the number
depends exclusively on the probabilities and their locations in the tree of the interior nodes of the tree while an exhaustive evaluation of the
structure. Therefore, the value of the gain may vary significantly for gain would result in exponential complexity.
trees of the same depth, which explains why large deviations appear It is envisioned that the probabilities attached to the decision nodes
in the corresponding columns of Table n. will be acquired during a learning process where the decision making
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TABLE n A New Safe-Point Thinning Algorithm
PERFORMANCE OF 11IE Two TECHNIQUES FOR DIFFERENT DEprHS OF 11IE TREE Based on the Mid-Crack Code Tracing

n Gt St Ga Sa

4 1.586 0.521 1.658 0.472 Frank Y. Shih and Wai-Tak Wong

5 1.660 0.556 1.806 0.483

6 1.691 0.562 1.934 0.467 Abstr.act-~ new thin.Ding algorithm fo~ b~ary images, .base~ on the
safe-poIDt testing and nnd-crack code tracIDg, IS presented ID thIS paper.

7 1 700 ° 545 2 034 ° 448 Thinning is treated as the deletion of nonsafe border pixels from the con-
tour to the center of the object layer-by-Iayer. The deletion is detennined

8 1.696 0.520 2.123 0.427 by maskin.g a 3 x 3 weighted templ.ate and ~y the use ?f look-up ta~les.
The resulting skeleton does not reqwre clearung or prurung. The obtalDed

9 1.688 0.492 2.204 0.408 skel~t?n possesses s!ngle-.pixel llii.ckness and p~rv~ the object's con-
nectiVlty. The aIgonthm IS very slDlple and efficIent sIDce only boundary

10 1.672 0.445 2.269 0.382 pixels are processed at each iteration and look-up tables are used.

I. INTRODUCrION
of a user(s) will be observed for a period of time, and the node Sk I t . tI. thi ... rt t roc . nge e omza on or nmng IS a very Impo an prep essl

probabilItIes wIll be adjusted accordIngly. t . tt al . h . d tn.al- arts .
pectl . O [I]seplnpaernanyslssuc as In us p InS n ,

This process resembles the matunng of a novice declslonmaker fi . t .tI. [2] tI. al h t eco .tI. n [3] and...ngerpnn recogm on, op c c arac er r gm o ,
to an expert who, based on past expenence, IS capable of reachIng b. edi 1 di . [4] O d ta f keleto . tI . on I. S the.lom ca agnosls .ne a van ge o s mza

directly to a conclusion after some early observatIons have narrowed ed tI. f uired " t . th ess tI.
al s ' ctural..r uc on o memory space req lor s onng e en uu

the number of alternatIves to a few highly probable ones. . nf tI. ted . tt M .t s . I .fies the dataI orma on presen In a pa ern. oreover, I Imp I

structure required in pattern analysis. Most of the skeletonization
ACKNOWLEDGMENT algorithms require iterative passes through the whole image, or at

least through each pixel of the object considered. At each pass, a
The authors would like to thank the anonymous referees for their relatively complicated analysis over each pixel's neighborhood must

helpful comments and suggestion. be performed, which makes the algorithms time-consuming.

A practical problem with the definition of the skeleton is that
circular neighborhoods cannot be represented exactly on a discrete
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