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New Fast QR Decomposition Least
Squares Adaptive Algorithms

Athanasios A. Rontogiannis and Sergios Theodoridis

Abstract—This paper presents two new, closely related adaptive modified Gram—Schmidt factorization approach [10] were also
algorithms for LS system identification. The starting point for proposed. An alternativé)(p?) RLS scheme, based on the

the derivation of the algorithms is the inverse Cholesky factor update of the inverse Cholesky factor of the data correlation
of the data correlation matrix, obtained via a QR decomposition .

(QRD). Both algorithms are of O(p) computational complexity, Matrix, was also recently developed [11], [12]. . .
with p being the order of the system. The first algorithm is a  The other category of Givens rotations-based algorithms is

fixed order QRD scheme with enhanced parallelism. The second of the lattice, order recursive type, exhibitiay p) complexity
is an order recursive lattice type algorithm based exclusively on per time iteration [13]-[16]. As with all LS lattice structures
orthogonal Givens rotations, with lower complexity compared to 151 17] these algorithms compute the modeling LS error for all
previously derived ones. Both algorithms are derived following a : . . L ) .
new approach, which exploits efficient time and order updates of Intermediate orders in a pipelined fashion. A third class con-
a specific state vector quantity. sists of algorithms that compute the modeling error directly,
although they lack the pipelining property of the lattice-type
algorithms [17]-[21]. On the other hand, they have lower
complexity, compared with their lattice counterparts, and they
I. INTRODUCTION are appropriate for fixed-order modeling. This is basically due
DAPTIVE least squares algorithms for system identifi® the fact that a set of rotation parameters (corresponding to
cation [1]-[7] are popular due to their fast converginéhe lattice reflection coefficients) are generated backward in
properties and are used in a variety of applications, su€fder, starting from the one with the maximum order [1].
as channel equalization, echo cancellation, spectral analysis!his paper presents two closely related yet different Givens
and control, to name but a few. Among the various efffotations-based QR decompositiafl(p) algorithms. One is
ciency issues characterizing the performance of an algorith@t, the latter type, i.e., fixed-order, direct error computing
those of computational complexity, parallelism, and numericalgorithm. It has similar complexity, but it offers enhanced
robustness are of particular importance, especially in appharallelism compared with previously derived ones of the same
cations where medium to long filter lengths are required. ¢gtegory. Thus, if two processors are used, the computation
may sometimes be preferable to use an algorithm of higH#ne is almost halved. A modification of this algorithm leads
complexity but with good numerical error robustness sindé an order recursive lattice-type scheme involving orthogonal
this may allow its implementation with shorter wordlenght§&ivens rotations only. The complexity of the lattice-type
and fixed point arithmetic. This has led to the developmegtgorithm is the same to that of the fixed-order one. Therefore,
of a class of adaptive algorithms, based on the numericafly substantial saving is accomplished compared to already
robust QR factorization of the input data matrix via the Giverihown QR lattice schemes.
rotation approach [23]. In this work, a novel approach is used for deriving the algo-
The development of Givens rotations-based QR decomgéhms. Specifically, we concentrate on the (inverse) Cholesky
sition algorithms has evolved along three basic directiorfgéctor of the input data matrix and investigate its order and
Schemes ofO(p?) complexity per time iteration were thetime update properties. Then, a particular vector quantity,
first to be derived, witlp being the order of the system [8],which provides all the necessary for the LS error update
[9]. These schemes update the Cholesky factor of the ingotation parameters, is efficiently updated. This method is
data correlation matrix and can efficiently be implemented alifferent from the approach followed so far for the derivation
two-dimensional (2-D) systolic arrays. Furthermore, as it if fast QRD-based schemes [1], [17]-[20], where update
shown in [9], the modeling error can be extracted directigxpressions of the orthogonal fact¢y are formulated, and
without it being necessary to compute explicitly the estimatéisen, a pinning vector is applied in order to extract the
of the transversal parameters of the unknown FIR systenecessary quantities. The new method is simpler, more direct,
Square-root free forms of the above algorithms related to thad provides insight into all the internal quantities appearing
in the new algorithms.
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andU,(IV) is the N x p input data matrix given by

nn) u};(l)
u, (2)
u(n) UP(N) = A(N) .

lu) (V)

mu(1) 0 0

v(n) u(2) u(1) S 0

/ =AWV : : :

ci, cz,/,/cp oy Lu(N) w(N-1) -+ w(N-p+1)

In other words, the prewindowed assumption is adopted. The
solution to the above problem is provided by the well-known

e(n) -
normal equations

Fig. 1. System identification problem.
where

_ 7T
tion results are provided in Section V, whereas Section VI Ry(N) =U, (N)Up(N)
concludes this work. For clarity of presentation real signals dp(N) =UL (N )y(N).

are considered throughout this paper. We mostly adopt the . .
notation that appears in [1]. The task of the current paper is to develop new algorithms for

the efficient computation of,(/V). The approach is via the
QR decomposition [23] of the input data matfi% (V) that is

[l. FORMULATION OF THE PROBLEM (V) = [RP(N)}

Fig. 1illustrates the typical system identification task, which Qp(N)Up O
is our main concern in this paper. Given an unknown FIR . _
system excited by an input signa{n), we seek the estimatesWith Q(N)Qp (V) = @ (N)Q,(N) =I. R,(N)is ap x p
of the p unknown tap coefficients so that the erregv) UPPer triangular factor. Obviously

between the measured output of the systgffv) and the R,(N) = RT(N)R,(N)
output of an associated modgN) is minimum in the least v P PR
squares sense. That is, the sum By premultiplyingy(N) with Q,(NV), we obtain
; N)
> Q) = 2|
I—n r
lep (NI = 3~ AN {y(m) = € (Nyup(n)P vp (V)
n=1

where p,(NV) is the upperp x 1 part andv,(XN) the lower
(N —p) x 1 part of the resulting (transformed) vector. It is by
now well known [1] that the LS solution is given by

Ry(N)ep(N) = p(N). (1)

The efficient update of the factdt, (V) is at the heart of our
problem. It has been shown that ([1])

and Op(N) {Al/QRp(N— 1)} _ [Rp(N)} )

u, (N) o”

is minimum, whereX is the usual forgetting factor with
0« A<l

& (V) =[ep(1),ep(2), - p(N)]
¢ (N) =[c1(N), e2(N), -+, ¢p(N)]

T — — — — ~
up (n) = [uln), u(n = 1), uln —p+ 1l andQ,(N) consists of a sequence of basic Givens rotations,

which successively annihilate the elementaud{ V) against

The quantityn(n) in the figure stands for the measuremen/{l/QRP(N _ 1), resulting in the updatéip(N). That is

noise. From the above definitions

~

QP(N) = er (N)er_l(N) o Q01 (N) (3)
ep(N) = y(N) — Up(N)cp(N)

is readily understood, where Ticy 6:(N) 0 O 0 sin ()
CcCos b, s s v,

(N) = ! !

QGZ( ) O I,

AQN) =diag[AN /2 AN 22 ) Z T
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At the same time, it is most interesting that ([1]) Qg(N), which annihilates the elements oﬁt(N) by rotating
them against its first element, we obtain
O,(N) Al/zpp(N -1) _ p,(N) (5) - \
P y(N) p(N) ) Rp(N) pp(N)
Qy(N)Qp(NUpa(N) = | 0T a’(N)
where O 0
p(IN) = sgn(ep (V) /ep(N)ep(N) with
~b _ _ b
and e,(N) is the a priori error expressed as ap(N) =/ ay(N) = [lv, (V)]
ep(N) = y(N) — c};(N — Dup(N). (6) being _the square _root of the backward prediction error power
[1]. It is now straightforward that
The so-called angle normalized er@(V) is related to the . RN VN
rotation angles; by [1, pp. 271-272] Ry 1 (N) = [ %(T ) g{,’ENﬂ (11)
P

. ~ holds. Assuming persistency of excitation, the inverse of the
ep(N) = ep(N)ap(N) = ep (W) 11:[1 costi(N) () factor R,,1(N) exists and can easily be obtained from (11) as

. 1 .
anda,(IV) is the square root of the likelihood related variable RH(N) ~ ) L (V)ph(N)
ap(IN) defined as ([2]) R (N) = . P 1 . (12
. 0 VAT
ap(N) = (1 + A"l (N)RH(N — 1) ap(N)
RyT(N — Duy(N)) (8) Moreover, by establishing a relation betwesp,,(N) and

_ . _ _ RP(N — 1), we will end up with a step-up/step-down update
Two types of algorithms will be presented in the followingyrocedure forg,(IV). Indeed, if Q,(N — 1) triangularizes
sections. The first is of the fixed-order type, computing direct (N — 1), then

the errore, (V). A modification of this leads to an order-

. . . . T
recursive scheme (lattice type) for direct error computation. 1 0
0 Qp(N_l) U, +1(N)
ll. THE NEW FAST QRD ALGORITHMS )\N—fl/2u(1) o7
. . : =| pWN) RBN-1) (13)
In contrast to previously derived fast QRD algorithms [1], vl (V) O
r

[17]-[21], our starting point is the vector

. wherew/(N) is related to the forward error powey (V) as
Ry” (N — 1w,y (N) !
9p(N) =

. 9
I (V) = \Jab (V) = /Il (V)2 + A (D)2

P

The essence behind any fast fixed-ordefp) scheme is ¢ QJ(N) is the orthogonal matrix that annihilates the

that .th.'? time .Sh'ft property O.f the input data offer; th%Iements ofv/ (V) against the first element of the matrix in
possibility to circumvent the time update of a matrix by p

. L. . ]\‘r—l/Q
updating a vector quantity instead. Different algorithms av(%s)’ which initially is A u(1), we get

built on different vectors (the state variables of the equivalent [(AN-Y2y(1)  oF
algorithmic system [1]). In this paper, the algorithms evolve QI{(N) p]{(N) R,(N —-1)
around g,(N), whose time update provides all necessary i vg(N) O
rotation angles. [af (V) h
P
= |pl(N) R,(N-1)]. (14)

p

A. Time Update of,(N) ”E, )l O )

From the definition of the factaR, (), it is easy to see that Consider now the uppép + 1) x (p-+ 1) part of the matrix in

R,(N) po(N the right-hand side of (14), saﬁpH(N).Aln order to obtain
Qp(N)Upr(N) = [ pé ) ”{;ENH (10) the Cholesky factorr,41(N) of U1, R,41(N) must be
r multiplied with an appropriate orthogonal matrix, s@;(N),
wherep? (V) is the uppepx 1 part of the vector,,(N)y"(IV), as described by
and

A . A al(N) ot
QY (NYR, 1 (N) =Q(N LP N
p( ) P+1( ) p( ) g(N) Rp(N—l)
=R,11(N). 15
that is, the last column of the data matili%, (V). p;;(N) R () (15)
is a quantity related to the backward prediction QR problefirhe matrixQ;f(N), which fulfils the required triangularization
[1]. Multiplying both sides of (10) by an orthogonal matrixin (15), can be contructed as a sequencg Givens rotations,

yb(N) :A(N)[O,---,0,u(1),---,u(N—p)]
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which annihilate in a bottom-up procedure the elements Bfom (15), we can formulate an alternative to (12) expression
p/(N) against the element in the top row dt, 1 (N) for the inverse ofR,, (N) as

[initially, a/(N)]. As a result, thgp+1) x (p+1) orthogonal

matrix Q]{(N) can be written as the product gf rotation R;il(N)

matrices, that is 1 of
. _ ah()
QP(N)=Q¢1(N)Q¢2(N)---Q¢D(N) (16) _ fl R;l(N_l)p]J;(N) R;I(N—l)
ap (V)
where QL)Y (18)
cospi(N) 0 I 0 sing;(N) O We now have available all necessary relations to obtain the
Q4. (N) = o it ‘ . time update ofg,(N) in O(p).
—sing;(N) 0 O 0 cospi(N) . 1) Step Dvan:From (9), (12), and the input vector par-
P_(Zl7) tition
Indeed, it is easily verified that such@(N) preserves the
triangular structure of the matrik, (N — 1) in (15), although wpp 1 (N +1) = [uy (N +1),u(N —p+1)]"

its value will be changed as a result. In addition to t@ﬁ(N)
“fills” the zero elements of the first row d%erl(N) and, thus, we have (19), shown at the bottom of the page, where
transformsR,, 1 (V) into a(p+ 1) x (p+ 1) upper triangular g (N +1) is the last element of,,,, (N +1), assuming that
matrix (with positive diagonal elements). the numbering of the elements gf ., (V + 1) starts from 0.

A byproduct of the triangularization in (15) is that all loweMore specifically, we have
order forward energieé{(N) are generated. These quantities
appear as top left elements of the resulting matrices after each
multiplication withQ, ., , (V) in (15) fori = p—1,p—2,---,0.
Indeed, if the initial data matrix in (13) wdg$; 1, (V) instead
of Up41(N), then the corresponding blocks of the matrix in
the right-hand side of (13) would b/ (V), R;(N — 1) and R
v/ (), respectively. Sincé/; (V) coincides with the first According to (1), however,R,*(N)pl(N) stands for the
(¢4 1) columns ofU,1(IV), completion of the procedure in coefficients vector of the backward problem at tide This,
(13), for the remaining — 4 columns ofU,,1(N), could be combined with (6) and (20), gives
accomplished in such a way thaf (V) remains unaffected.
As a resultpf(N) is essentially the uppeérx 1 part ofpg(N).
Taking the procedure for thigh-order problem further on, the
nonzero blocks of the matrix in the right-hand side of (14)
turn out to bei/ (V), p/ (N) and R;(N — 1). In other words,
the upper(: + 1) x (¢ + 1) block of such a matrix has exactly
the same form as th@ + 1) x (¢ + 1) upper left block of the . )
matrix that results after the application 6%, _, (V) in (15). From (_19), we conclude that the vecyg,r(N+1)_|s identical
Consequently, the top left element of this last matrix mul@ the firstp elements ofg,,(V + 1). Straightforward
be df(N). Moreover, due to the relation betwep}fl(N) and ©xtension of this nesting property results in the expression

p! (), the rotation matrixQ/(N) of the ith-order problem for the elements of,, (N + 1) as
is expressed as

1
VAaL(N)

— (R, (V)P (V) up(N + 1)]. (20)

9PN +1) = [w(N —p+1)

(N +1)
() S
FrN L) = VAL (N)

whereel (N + 1) corresponds to the priori backward error
of orderp at time N + 1.

) (N + 1) .
) g<z><N+1>=’(~— i=0,1,---,p.  (21)
QI (N) = Qo (N)Quy (V) -+~ Qur (N). VA& (N)
.l R, T(N) 0 up(N +1)
WD =8 | B BT o BrahistE
N 1 r : R;T(N)up(NJr 1) T 1)]
1V +1)=— T H—T Uty —p =
9yt VX ) (p;’)(N)) RV (N)uy(N +1) + 4&%(1\7)

g1 (N +1) = [Q%(N * 1))} (19)
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N r1 1 -
_QJN) | (BN (N = 1)p) (V)| [w(N +1)
s+ )=S0 e
Af ru(N +1) 3 Sl \f Ty
a2y 820 [0 = iy B~ D0 a0
_ SN — D ()

2) Step Up: Combining (9), (18), and the input vectorHowever, gV (N + 1) = ¢gO(N), ¢ (N) being the first

partition
Upi1 (N +1) = [u( +1),u, (V)]

we obtain the expression at the top of the page or

[Tp;ﬁ;)l)} = (@) gV +1) (22
where
1
rp(N +1) = W [u(N +1)

— (BZHN = Dp (V) up(N))].

Sincef?.;l(N - l)p]{(N) stands for the forward coefficients

vector at timeN, r,(N
error ¢/ (N + 1) as

+1) is related to the priori forward

el (N +1)

P NED = R

element ofg, (V). This is the case becaugé’ (IV +1) does
not change after the application of the remaining rotations. We
can therefore rewrite the above equations as

g O () — sin(ps(IV)ro(N +1)

gV
W= cos(s (V)
71 (N +1) = cos(d1(N))ro(N + 1)
— sin(¢1(N))g™ (N +1).

Proceeding in the same way, we obtain the general expressions

g I(N) — sin(¢i (N))ri—1 (N +1)
cos(¢i(NV))

ri(N +1) = cos(¢i(N))ria (N + 1)

— sin(¢i(N))gD (N + 1)

dNN+1) =

fori =1,2,---,p. Thus, combining (22) and (19), we achieve
the time update ofg, (V) in O(p), which was our initial

Due to the (order recursive) form «fyg(N) and the nesting purpose.

property ofg,(N) andg, . ;(N + 1), the following quantities

appear at the top of the vector in the right-hand side of (223, Rotation Angles Update

after the application of the rotation matriceg} (N),i =
1727"'7]71

AN +1

Lf—’_) i=1--,p.
Va!l (V)

Note, however, that the first elementgf, ; (N +1),70(N +
1) = (u(N + 1)/af(N)VX) is known at time N + 1.
Furthermore, given the rotation angles Qg{(N) and the

ri(N+1) = (23)

vectorg,(IV), we can calculate from (22) the lastelements

Having completed the time update gf(N) in O(p), we
have all information necessary to obtain the rotation angle
parameterg(,,) that provide thea priori error (e,,). Indeed,
by considering the effect C(@I{(N—F 1) on the first column of
R,41(N + 1) [see (15)], we have

OI(N +1) {dg(N—i—l)} _ [a

pL(N +1) (24)

£(N0+1>}

of g,,1(&V +1) in O(p). For example, when the first rotationThe rotation parameters (ﬁ]{(N + 1) can be produced from

matrix QF (N) multiplies the vectog,,,, (N + 1), we get

cosp1(N) —sing(N)| | ro(N +1)

k | )

sing(N)  cos(N) | [¢(N+1)
[ le>(](VN++11)

g W (N F1) = sin(¢y(N))ro(N + 1)
+cos(pr(NV))g (N + 1)
r (N +1) = cos(¢1(N))ro(N +1)
— sin(¢ (N)gD (N + 1).

1This outcome becomes more evident by describing the effe(@;fc@f\/‘) as

in (22). Note that the errors; (N + 1) could also be generated in a backward
manner by Ietting,)If(N) premultiply the vector on the left-hand side of (22).

This would lead to an alternative form for this step of the algorithm.

(24) as
Nf
‘ @ (N+1)
cosd;(N +1) —4~ SN+
f(Z)
- (N+1)
o) = 7—1(N +1)

fori = p,p—1,---,1. ph (N + 1) is the ith element of

p/(N +1), and the square roots of the lower order forward

prediction energies are calculated according to

al (N+1)= \/(d{(N +1)2+ (ph PV +1))2
i=pp—1,..-,1.
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TABLE |
NEw FIXeD-ORDER FAST QRD ALGORITHM

(Step 1)

N+ 1) =gON +1) = 2dNH)
(N +1) =gV +1) = AEL
fori=1:p,

7 ( ) —s1ny{ T

SO + 1) = e,

Ti(N + 1) = cos(¢:(N))ri—1 (N + 1) — sin(¢;(N)) g (N + 1);
end;
(Step 2)
E(N+1) = u(N +1);
fori=1:p,

pi (N + 1) = A2 cos 0(N)pL (V) + sin 6,(N) &L, (N + 1);

N+ = cos;(N)&l_ (N +1) — AM2sin 0,~(N)p,{(i)(N);

end;
(Step 3)
SN +1) = /2la {(V + D)%
fori=p:1,
al (N41)= \/[6{(N+ D2+ [pg(i)(N+ e
cosgi(N +1) = 71%
singi(N +1) = %
end;
(Step 4)
So(N+1)=1;
fori=1:p,
(N +1) \/5 F N+ 1)+ [gE-I(N + 1)1%

cosf; (N +1) = 55_5_(1_1(\’]_\’;1.)1)’

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 46, NO. 8, AUGUST 1998

TABLE | (Continued)

(i-1)
sing;(N + 1) = g—E(lﬁf—;SQ,

end;

(Step 5)
éo(N +1) = y(N +1);
fori=1:p,

Py (N + 1) = A2 cos (N + 1)pi) (V) +sin 6 (¥ + 1)&i_1 (N + 1);
&(N +1) = cos; (N + D)é_ (N + 1) — AY2sin (N + 1)pS(N);
end;
ep(N+1) = &,(N + 1)6,(N +1);
Initialization

= VX, g,(0) = 0, p{(0) = 0

c0s0;(0) =1, cosg;(0) =1,i=1,2,...,p

Note from (3) and (4) that when the rotation matrix
Qo.(N),: = 1,2,---,p is applied in (25), theith-order
angle normalized forward error appears at the bottom of
the resulting vector.

Matrix QP(N) includes the second set of rotation param-
eters, which are used in the algorithm. Therefore, in order
to complete our derivation, we need a formula for updating
these rotation parameters. In the following, it will be shown
that such a formula employs the vecigy(V + 1), which is
obtained by (22) and (19).

It is already known [22] that the orthogonal matrix, which
updatesR,(N — 1), also time updatesR (N —1). More
specifically, from [22, Th. 4 and Lemma 5] and taking into
account the results of [11] (where a forgetting fackof 1 is
considered), we can write

However, in order to use (24), we must know the forwardnere

rotated reference vect@t}f (N +1) and the square root of the
forward prediction energ&p(N—i- 1) attime N+1. The vector

pp(N + 1) can be obtained by applying (5) to the forwar% d
prediction problem at timeV. Indeed

whereé]{(N—i- 1) is the angle-normalized forward error of th
pth order at timeN + 1. dg(N + 1) can then be computed

0[S ] - [+ )

from the well-known formula [1]

J(N+1) \/)\ + (v + D2

(26)  6p(

. —1/2—T _ -T
[ ][] e
o [ 5]y 8] e
) = 22 1%6_]7(%1’(” (29)
N) = \/1+ gL (N)g,(N). (30)

(25)  Note thatw, (V) is a scaled version of the Kalman gain vector.

To be more precise, i, (V) stands for the Kalman gain,

dhen [22]
Wy (N) = (31)
Moreover, from (30) and (9), we get

N) = 1+ A1l (V)R (N = DRy T (N — 1wy (N)

—Wy(N)bp(N).
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TABLE I TABLE 1lI
CoMPARISON OF COMPLEXITIES OF FAST ROTATION-BASED ALGORITHMS NEw LATTICE TYPE ALGORITHM
Algorithm | Additions | Multiplications | SQRT/Divisions ro(N +1) = gO(N + 1) = %;
QR-Lattice 8p 27p+1 6p el(N+1) =u(N+1);
Fast QRD | 8p+2 20p + 3 6p+4 (N + 1) = A (NP + [N + )]
New 8p+ 1 19p + 3 7p+ 3 o(N+1)=1;

Fo(NV+1) =y(N+1);

8i-1 @ 5 fori=1:p,
gU= 1 (N)—sin(g; (N))T (N+1)
=~ ¢, D] gIN +1) = o BN

r(N 1) = cos(@(V))rioa (N + 1) ~ sin(@(N))gO(N + 1);

g(i‘i—’@ g p,f(")(NﬂLl) :’\l/zcosol(N)Pr{(i)(N)+Sin0,-(N)é{_l(N+1);
ri_j LL N+ = cos&,-(N)éLl(N +1) — AY2sin 0i(N)p1f’(i)(N);
al(N+1)= \//\[&{(N)]2 +E W+
ef ‘ ~f cosd;(N +1) = 7“%
i-1 e; sing;(N +1) = L}%;
N+ 1) = /8L (V4 1)+ 6DV D
cosf;(N +1) = 5;(1](\]1\%)12’

sinf; (N +1) = %&)Vi—%ll;

Fig. 2. ith stage of the prediction section of the lattice type algorithm. Y (N + 1) = A2 cos 6 (N + 1P (W) +sin 0:(N + 1)1 (N +1);

(N +1) = cosi(N + 1)é_1 (N + 1) — A/ 2sin 6;(N + 1)pP(WV);
or from (8)

end;

(32) ep(N 4+ 1) = &,(N +1)8,(N +1);

Initialization

that is, 6,(N) equals the inverse of the angle normalized
variable. g»(0) =0, p}(0) =0

The rotation angles of@p(N + 1) can be calculated by
rewriting (28) at timeN + 1. Indeed

Qp(N +1) [ g”(NJrl)} {5 (N0+ 1)} (33)

cos0;(0) =1, cosg;(0) =1,i=1,2,...,p

al(0) =P, i=0,1,...,p

Each rotation matrix of,, (N + 1) annihilates one elementthe filtering part of the algorithm. Indeed, (5) at timé+ 1
of —g,(IN + 1) by rotating it against the last element ofiakes the form
the vector in (33), which is initially 1. The procedure starts ) A2p () P (N +1)
from the first element and proceeds downwards. This is so Qp(N +1) { » } = {f’ } (34)
_ € _ : y(N+1) ép(N +1)

because the rotations ¢f, (N + 1) are also used in the time
update ofR,(N) [(2) written for time N + 1]. As a result, Thea priori error is then given according to (7) and (32) as
the corresponding rotation matrices must be of the form given _ s
in (3) and (4). Due to the nesting property @f(/V + 1), it p(N +1) =GN+ 15N +1). (35)
is clear that during the rotation process described in (33), Wote that having availablé,(N + 1) forn =1,2,---,p, we
generates,, (N + 1) for n = 1,2,---,p. Thus, according to can similarly calculate the priori errors of all orders.
(32), we essentially obtain the angle normalized variables forThe algorithm described so far is summarized in Table I.
all orders at timeN + 1. The complexity of the algorithm is shown in Table II. Its

Equations (19), (22), (24)—(26), and (33) compose tlemplexity is similar to that of the fast QRD algorithm of
prediction part of our algorithm. However, tlzepriori error [1] and [18]-[21] (see Table II). However, there is a distinct
at time V 4+ 1 must be calculated. This is accomplished imadvantage. Note that steps 1 and 2 of Table | can be performed
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Fig. 3. Initial convergence curves.

concurrently. The same holds for steps 3 and 4 of TableQRD schemes. Let us consider the rotation ma@x(N)
Thus, by using two sets of DSP’s, the execution time is almostitten in block form [1]
halved. This is not possible with the algorithms of [17]-[21], R S, (N) g, (N)
which are sequential for each time iteration. Qp(N) = [a’?(N) dp(N)}

The algorithm of Table | is a fixed-order algorithm. As we P v
can easily observe from Table I, the execution of step 3 statgere a,(V) is the angle-normalized variable, and,(N)
after step 2 has been completed af{N + 1) has been Stands for the upper lefp x p part of Q,(V). From (2),
calculated. Then, the loop of step 3 goes backward in ordé?/7), and the orthogonality of,(V), the remaining blocks
and this does not comply with the basic “pipeline” concept aff Q,(/N) can be expressed as

a lattice structure. However, steps 2 and 3 of the algorithm SN = AV2R-T(NVRT(N —1 36
can be combined if (26) is adopted for the calculation of the p(V) - » (DR ) (36)
forward energies of all orders. Such a modification leads to q,(N) =R, (N)u,(N) (37)
a new lattice-type algorithm with the same complexity as our a,(N)= _,\—1/2}?,;T(N — Du,(N)a,(N).  (38)

fixed-order scheme. Furthermore, the new lattice-type scheme ) ) )
includes orthogonal rotations only. The new lattice algorithfOt€ that the new algorithms presented in Section I1l are based

is shown in Table Ill. Compared with its previously derived®" the update og,(IV), which is a scaled version of,(V). It
counterparts [13], [14], [16], the new lattice algorithm has § really interesting that the already existing fast QRD schemes
substantially lower complexity (Table I1). One lattice stage i&/1-[21] essentially stem from the time update @f(V).
depicted in Fig. 2. Due to the form ofg, (V) (37), the approach introduced in
The initialization of the new algorithms is based on the sofe€ction Il can also be applied, and expressions similar to

constraint approach. More specifically, we make the following®) @nd (22) can be obtained for the updategpflV). In
assumption concerning the input signal addition to this, formulae equivalent to (21) and (23) can be

directly derived, which now involve tha posterioribackward

and forward errors, in contrast with (21) and (23), which

hwolve thea priori quantities. Specifically, the elements of
(N 4+ 1) can be expressed as

(N +1)
a?(N +1)

whereas the new quantitie§ /N +1) corresponding te; (\V -+
In this section, we exploit the connection of the new) satisfy

u(—p) = p*/?

. " . . i
where is a small positive scalar. Under this assumption, a
initial conditions that appear at the bottom of Tables | and Ifip+1

are easily obtained.

IV. RELATION TO OTHER FAST QRD ALGORITHMS

algorithms with previously derived fast QRD algorithms [1], Ef(N +1)
[17]-[21]. We further show that the methodology developed M(N+1)= Zfi i=0,1,---,p.
in Section Il can be applied for deriving both classes of fast a; (N +1)
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The fast QRD algorithms that appear in [1] and [18]-[21}0]
include steps 2 and 3 [see (24) and (25)], whereas the rotation
parameters of),,(V +1) can also be obtained from,(N+1) 199
(although in a backward manner). It must be emphasized
that the methodology that appears so far in the Iiterathfz]
([1], [17]-[20]) is quite different. Time and order update

formulas of the factof,, are initially derived. Since the vector

g, is contained in the last row of), [1], pinning vectors 23]
x = [0,0,---,0,1]% are then applied in order to extract the

update expressions fay,. (14]

V. SIMULATIONS [15]

In order to verify the validity of the derived algorithms, a
system identification problem was considered. The unknowtf!
FIR system was of order 10, the SNR30 dB, the forgetting
factor A = 0.98, and the initialization parameter = 0.01. [17]
Fig. 3 shows the obtained error convergence curves. Thr 8
curves are overlaid, although they are not distinguished. Two
correspond to the novel algorithms developed in Section |
and the third to the fast QRD algorithm of [21]. The curveglgl
are the average of 200 realizations. Note that experiments wizh]
up to 500000 iterations were run with no indication of nu-
merical stability problems for the new direct error computingy;
algorithms.

[22]
VI.

In this paper, two new fast QRD algorithms are deriveg3]
following a novel approach. The new approach is based on the
efficient time and order updates of a particular vector quantity
that is basically the state vector of the equivalent state space
description of the algorithmic process. The first algorithm is
a fixed-order QRD scheme for direct error computation wit'*
enhanced parallelism. A modification of the scheme lea
to an order recursive lattice-type QR algorithm with lowe
complexity compared with previously derived QRD lattice
algorithms. It is shown that the methodology proposed in th
paper can easily be adopted for the development of alree
existing fast QRD schemes.

CONCLUSIONS
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