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Abstract—In this paper the problem of semisupervised hyper-
spectral unmixing is considered. More specifically, the unmixing
process is formulated as a linear regression problem, where the
abundance’s physical constraints are taken into account. Based on
this formulation, a novel hierarchical Bayesian model is proposed
and suitable priors are selected for the model parameters such
that, on the one hand, they ensure the nonnegativity of the abun-
dances, while on the other hand they favor sparse solutions for the
abundances’ vector. Performing Bayesian inference based on the
proposed hierarchical Bayesian model, a new low-complexity it-
erative method is derived, and its connection with Gibbs sampling
and variational Bayesian inference is highlighted. Experimental re-
sults on both synthetic and real hyperspectral data illustrate that
the proposed method converges fast, favors sparsity in the abun-
dances’ vector, and offers improved estimation accuracy compared
to other related methods.

Index Terms—Compressive sensing, constrained optimization,
constrained sparse regression, hierarchical Bayesian analysis, hy-
perspectral imagery, sparse semisupervised unmixing.

I. INTRODUCTION

H YPERSPECTRAL remote sensing has gained consider-
able attention in recent years, due to its wide range of

applications, e.g., environmental monitoring and terrain classi-
fication [1]–[3] and the maturation of the required technology.
Hyperspectral sensors are able to sample the electromagnetic
spectrum in tens or hundreds of contiguous spectral bands from
the visible to the near-infrared region. However, due to their
low spatial resolution, more than one different materials can be
mixed in a single pixel, which calls for spectral unmixing, [3].
In spectral unmixing, the measured spectrum of a mixed pixel
is decomposed into a collection of constituent spectra, called
endmembers and a set of corresponding fractions, called abun-
dances, that indicate the percentage contribution of each end-
member to the formation of the pixel.
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The process of hyperspectral unmixing is described by two
major steps: (a) the endmember extraction step, and (b) the in-
version process. In the endmember extraction step the spectral
signatures of the endmembers contributing to the hyperspec-
tral image are determined. Popular endmember extraction algo-
rithms include the pixel purity index (PPI), [4], the N-FINDR al-
gorithm, [5] and the vertex component analysis (VCA) method,
[6]. The inversion process determines the abundances corre-
sponding to the estimated endmembers obtained in the previous
step. The abundances should satisfy two constraints, in order
to remain physically meaningful; they should be nonnegative
and sum to one. Under these constraints, spectral unmixing is
formulated as a convex optimization problem, which can be
addressed using iterative methods, e.g., the fully constrained
least squares method, [7], or numerical optimization methods,
e.g., [8]. Bayesian methods have also been proposed for the
problem, e.g., the Gibbs sampling scheme applied to the hi-
erarchical Bayesian model of [9]. Semisupervised unmixing,
[9], [10], which is considered in this paper, assumes that the
endmembers’ spectral signatures are available. The objective of
semisupervised unmixing is to determine how many and which
endmembers are present in the mixed pixel under study and to
estimate their corresponding abundances.

An interesting perspective of the semisupervised spectral un-
mixing problem arises when the latent sparsity of the abundance
vector is taken into account. A reasonable assumption is that
only a small number of endmembers are mixed in a single pixel,
and hence, the solution to the endmember determination and
abundance estimation problem is inherently sparse. This lays the
ground for the utilization of sparse signal representation tech-
niques, e.g., [11]–[14], in semisupervised unmixing. A number
of such semisupervised unmixing techniques has been recently
proposed in [10], [15], and [16], based on the concept of
norm penalization to enhance sparsity. These methods assume
that the spectral signatures of many different materials are avail-
able, in the form of a spectral library. Since only a small number
of the available materials’ spectra are expected to be present in
the hyperspectral image, the abundance vector is expected to be
sparse.

In this paper, a novel hierarchical Bayesian approach for
semisupervised hyperspectral unmixing is presented, which is
based on the sparsity hypothesis and the nonnegativity prop-
erty of the abundances. In the proposed hierarchical model,
appropriate prior distributions are assigned to the unknown
parameters, which reflect prior knowledge about their natural
characteristics. More specifically, to account for the nonneg-
ativity of the abundances, a truncated nonnegative Gaussian
distribution is used as a first level prior. The variance param-
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eters of this distribution are then selected to be exponentially
distributed. This two-level hierarchical prior formulates a
Laplace type prior for the abundances, which is known to
promote sparsity, [17], [18]. In addition, compared to other
related hierarchical models, [14], [19], [20], which employ a
single sparsity-controlling hyperparameter, the proposed model
comprises multiple distinct sparsity-controlling hyperparame-
ters. It is proven that this extension makes the model equivalent
to a nonnegativity constrained variant of the adaptive least
absolute shrinkage and selection operator (Lasso) criterion of
[21], whose solution provides a consistent abundance estimator.
The proposed hierarchical model also retains the conjugacy of
the parameter distributions, which in the sequel is exploited to
obtain closed form expressions for the parameters’ posterior
distributions.

As is usually the case in Bayesian analysis, the resulting
joint posterior distribution of the proposed hierarchical model
does not possess a tractable analytical form. To overcome this
impediment, a novel iterative algorithm is developed, which
can be considered as a deterministic approximation of the
Gibbs sampler [22]. In this algorithmic scheme, the conditional
posterior distributions of the model parameters are derived and
their respective expectations are selected to replace the random
samples used by the Gibbs sampler. More specifically, as far
as the abundance vector is concerned, an efficient scheme is
developed to update its posterior conditional expectation, while
the conditional expectations of all remaining parameters are
updated through simple, closed form expressions. The proposed
Bayesian inference algorithm iterates through the derived con-
ditional expectations, updating each one of them based on the
current estimates of the remaining ones. To put the algorithm
to its proper setting, its connection to other Bayesian inference
methods, [23]–[26], is discussed. In particular, emphasis is
given to show the affinity of the proposed algorithm with a
variational Bayesian inference scheme, which is based on a
suitable factorization of the corresponding variational posterior
distribution.

Interestingly, the proposed algorithm produces a point esti-
mate of the abundance vector, which is sparse and satisfies the
nonnegativity constraint. As a by-product, estimates of all other
parameters involved in the problem are also naturally produced;
among them is the variance of the additive noise, which is as-
sumed to corrupt the hyperspectral image. The proposed algo-
rithm is computationally efficient and, as verified by extensive
simulations, it converges very fast to the true model parameters.
In addition, it offers enhanced estimation performance, as cor-
roborated by the application of the proposed and other related
methods for the unmixing of both simulated and real hyperspec-
tral data.

The remaining of the paper is organized as follows. The
sparse semisupervised hyperspectral unmixing problem is
formulated in Section II. Section III describes the proposed
hierarchical Bayesian model. In Section IV, the new iterative
conditional expectations algorithm used to perform Bayesian
inference is presented and analyzed. Simulation results both on
artificial and real hyperspectral data are reported in Section V.
Conclusions are provided in Section VI. Finally, the connection

of the proposed algorithm to variational Bayesian inference and
other methods is highlighted in Appendix E.

Notation: We use lowercase boldface and uppercase boldface
letters to represent vectors and matrices, respectively. With
we denote transposition, and with and the and
norm, respectively, . The
determinant of a matrix or the absolute value of a scalar is de-
noted by , while stands for a diagonal matrix, that
contains the elements of vector on its diagonal. Finally, is
the -dimensional Euclidean space, denotes the zero vector,

the all-ones vector, and is the identity matrix.

II. PROBLEM FORMULATION

In this section, we provide definitions and formulate rigor-
ously the sparse semisupervised unmixing problem. Let be a

hyperspectral image pixel vector, where is the number
of spectral bands. Also let stand for the

signature matrix of the problem, with , where
the dimensional vector represents the spectral signa-
ture (i.e., the reflectance values in all spectral bands) of the
endmember and is the total number of distinct endmembers.
Finally, let be the abundance
vector associated with , where denotes the abundance frac-
tion of in .

In this work, the linear mixture model (LMM) is adopted,
that is, the previous quantities are assumed to be interrelated as
follows

(1)

The additive noise is assumed to be a zero-mean Gaussian
distributed random vector, with independent and identically dis-
tributed (i.i.d.) elements, i.e., , where
denotes the inverse of the noise variance (precision). Due to the
nature of the problem, the abundance vector is usually assumed
to satisfy the following two constraints

(2)

namely, a nonnegativity constraint and a sum-to-one (addi-
tivity) constraint. Based on this formulation, a semisupervised
hyperspectral unmixing technique is introduced, where the
endmember matrix is assumed to be known a priori. As
mentioned before, each column of contains the spectral
signature of a single material, and its elements are nonnegative,
since they represent reflectance values. The mixing matrix
can either stem from a spectral library or it can be determined
using an endmember extraction technique, e.g., [6]. However,
the actual number of endmembers that compose a single pixel’s
spectrum, denoted as , is unknown and may vary from pixel to
pixel. Sparsity is introduced when , that is by assuming
that only few of the available endmembers are present in a
single pixel. This is a reasonable assumption, that is in line with
intuition, since it is likely for a pixel to comprise only a few
different materials from a library of several available materials.
Summarizing, in semisupervised unmixing, we are interested
in estimating the abundance vector for each image pixel,
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which is nonnegative and sparse, with out of its entries
being nonzero.

This problem can be solved using either one of the recently
proposed compressive sensing techniques, e.g., [11], [13], [14],
[19], that focus only on the sparsity issue, or quadratic program-
ming techniques, e.g., [8], that successfully enforce the con-
straints given in (2), but do not exploit sparsity. In the following,
a hierarchical Bayesian model is presented, that both (a) favors
sparsity and (b) takes into account the nonnegativity constraint
of the problem. Then, a novel algorithm that is suitable to per-
form Bayesian inference for this model is derived. Moreover, it
is shown that by a simple modification of the initial problem,
the additivity constraint could also be naturally embedded.

III. HIERARCHICAL BAYESIAN MODEL

This section introduces a novel hierarchical Bayesian model
to estimate the sparse abundance vector from (1), subject to
the nonnegativity constraint given in (2). In a Bayesian frame-
work, all unknown quantities are assumed to be random vari-
ables, each one described by a prior distribution, which models
our knowledge about its nature. Before we proceed, the defini-
tion of a truncated multivariate distribution is provided, which
will be frequently used in the sequel to follow.

Definition 1: Let be a subset of with
positive Lebesgue measure, a -variate distribution,
where is a vector of parameters, and the truncated
probability density function (pdf) resulting from the truncation
of on . Then, denotes a random
vector, whose pdf is proportional to , where

is the indicator function defined as,

.
(3)

A. Likelihood

Considering the observation model defined in (1) and the
Gaussian property of the additive noise, the likelihood function
of can be expressed as follows:

(4)

B. Parameter Prior Distributions

The Bayesian formulation requires that both the sparsity and
nonnegativity properties of should emanate from a suitably
selected prior distribution. A widely used prior that favors spar-
sity, [14], [17], [19], [20], [27], is the zero-mean Laplace prob-
ability density function, which, for a single , is defined as

(5)

where is the inverse of the Laplace distribution shape param-
eter, . Assuming prior independence of the individual co-
efficients ’s, the -dimensional prior over can be written
as

(6)

It can be easily shown, [17], that under the Laplace prior, the
maximum a posteriori (MAP) estimate of is given by

(7)

which is, surprisingly enough, the solution of the Lasso criterion
of [28]. However, if the Laplace prior was applied to the sparse
vector directly, conjugacy1 would not be satisfied with respect
to the Gaussian likelihood given in (4) and hence, the posterior
probability density function of could not be derived in closed
form. As noted in [29], a key property of the Laplace distribution
is that it can be expressed as a scaled mixture of normals, with
an exponential mixing density, i.e.,

(8)

In the framework of the problem at hand, (8) suggests that the
Laplace prior is equivalent to a two-level hierarchical Bayesian
model, where the vector of abundances follows a Gaussian
distribution (first level), with exponentially distributed variances
(second level). This hierarchical Bayesian model, which is a
type of a Gaussian scale mixture (GSM), [30], has been adopted
in [14], [17], [19], [20], [27], [31]. The main advantage of this
formulation is that it maintains the conjugacy of the involved
parameters.

In this paper, a slightly different Bayesian model is devel-
oped. More specifically, in order to satisfy the nonnegativity
constraint of the abundance vector , the proposed hierarchical
Bayesian approach uses a truncated normal distribution2 in
the nonnegative orthant of as a first-level prior for .
Assuming that all ’s are i.i.d. and ’s are the (normalized
by ) variances of ’s, the prior assigned to is expressed as
(see Appendix A)

(9)

is the nonnegative orthant of , stands for the

-variate truncated normal distribution in according to
Definition 1, and is the diagonal matrix with

, where . Note that the use of
as a normalization parameter in (9), ensures the unimodality of
the posterior distribution of , [20], [31].

For the second parameter, , appearing in the likelihood func-
tion (4), a Gamma prior distribution is assumed, defined as

(10)

where , is the shape parameter, , and is
the inverse of the scale parameter of the Gamma distribution,

. The mean and variance of the Gamma distribution are
and , respectively.

1In Bayesian probability theory, if the posterior ������ belongs to the same
distribution family with the prior ����, (for instance if they are both Gaussians),
the prior and posterior are then called conjugate distributions.

2Note that the truncation of the normal distribution preserves conjugacy.
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C. Hyperparameters’ Priors

Having defined the truncated Gaussian distribution for ’s,
we focus now on the definition of the exponential distributions
for ’s, in the spirit of (8). Before we describe the model for
the priors of the hyperparameters ’s proposed in this work,
let us first describe the model adopted in [17], [19]. There, the
following exponential priors on are used

(11)
where is a hyperparameter, which controls the level of spar-
sity, . If these priors were used for the elements of in
(9), the prior distribution of would be given as follows

(12)

With respect to Definition 1, is denoted

as and is a truncated Laplace distribution on

. We have already pointed out the relationship between the
Laplace density, shown in (6), and the Lasso criterion (7). In
a similar way, it can be easily shown that under the truncated
Laplace prior given in (12), the MAP estimator of would
be the solution of a nonnegativity constrained Lasso criterion.
Moreover, from a Lasso point of view, [28], it is known that as

increases, sparser solutions arise for .
After the previous parenthesis, we proceed with the descrip-

tion of the model for ’s proposed in this work. The latter is an
extension of that given in (11), where instead of having a single

for all ’s, a distinct is associated with each (the mo-
tivation for such a choice will become clear in the analysis to
follow). Thus, in the second stage of our hierarchical model,
independent Gamma priors are assigned to the elements of ,
each parameterized by a distinct , as follows

(13)
where . By assuming that all ’s are
independent, the joint distribution of can now be written as

(14)

where and .
The first two stages of the Bayesian model, summarized in

(9) and (14), constitute a sparsity-promoting nonnegative (trun-

cated) Laplace prior. This prior can be obtained by marginal-
izing the hyperparameter vector from the model. In the one
dimensional case, we get

(15)

whereas, for the full model, the truncated Laplace prior is given
by

(16)

Our intention behind the use of a hyperparameter vector in-
stead of a single for all ’s is to form a hierarchical Bayesian
analogue to the adaptive Lasso, proposed in [21]. Indeed, as it is
shown in Appendix B, the MAP estimator of that follows the
truncated Laplace prior of (16) coincides with the estimation
of resulting via the optimization of the nonnegativity con-
strained adaptive Lasso criterion, which is expressed as

(17)
for . As shown in (17), the main feature
of the adaptive Lasso is that each coordinate of is now
weighted by a distinct positive parameter . This modification
results in a consistent estimator, [21], which is not the case for
the original Lasso estimator (7).

It is obvious from (16) that the quality of the endmember
selection procedure depends on the tuning parameter vector

. Typically, tuning parameters reflect one’s prior knowledge
about the estimation problem and they can either be manually
set, or can be considered as random variables. We choose the
latter alternative, by assuming a Gamma hyperprior for ,

(18)

where and are hyperparameters, with and . Both
Gamma priors of , in (10) and , in (18), are flexible enough
to express prior information, by properly tuning their hyperpa-
rameters. In this paper, we use a noninformative Jeffrey’s prior

over these parameters, which is obtained from (10)
and (18) by setting all hyperparameters of the Gamma
distributions to zero, as in [9], [18], [19]. A schematic represen-
tation of the proposed hierarchical Bayesian model in the form
of a directed acyclic graph is shown in Fig. 1.



THEMELIS et al.: NOVEL HIERARCHICAL BAYESIAN APPROACH 589

Fig. 1. Directed acyclic graph of the proposed Bayesian model. The determin-
istic model parameters appear in boxes.

IV. THE PROPOSED BAYESIAN INFERENCE METHODOLOGY

As it is common in Bayesian inference, the estimation of the
parameters is based on their joint posterior distribution. This
posterior for the model presented in Section III is expressed as

(19)
which is intractable, in the sense that the integral

(20)

cannot be expressed in closed form. In such cases, the Gibbs
sampler [22] provides an alternative method for overcoming
this impediment. The Gibbs sampler generates random samples
from the conditional posterior distributions of the associated
model parameters iteratively. As explained in [32], this sam-
pling procedure generates a Markov chain of random variables,
which converges to the joint distribution (19) (usually the first
few iterations, also called burn-in, are ignored). In the sequel,
we compute first the conditional posterior distributions, which
are vital for the proposed Bayesian inference algorithm, and we
explain the difficulty of utilizing Gibbs sampling in the present
application. Then the proposed algorithm is discussed in detail.

A. Posterior Conditional Distributions

In this subsection, in accordance with the Gibbs sampler
spirit, we derive the conditional posterior distributions of the
model parameters , , and . Starting with , it is easily
shown (utilizing (4) and (9)) that its posterior conditional
density is a truncated multivariate Gaussian in ,

(21)

where and are expressed as follows, [33, theorem 10.3]

(22)

(23)

The posterior conditional for the precision parameter , after
eliminating the terms which are independent of , is expressed
as

(24)

Utilizing (4), (9) and (10), it is easily shown that is Gamma
distributed as follows

(25)

Straightforward computations, reported in Appendix C, yield
that the conditional pdf of given , , , is the following
generalized inverse Gaussian distribution [34]

(26)

Finally, the conditional posterior of given , , , is ex-
pressed as

(27)

which, using (13) and (18), is shown to be a Gamma pdf,

(28)
The Gibbs sampler generates a sequence of samples ,

, , and , by sampling the condi-
tional pdfs (21), (25), (26), and (28), respectively.

In this paper, a different procedure is followed. Specifically,
we propose a deterministic approximation of the Gibbs sampler,
where the randomly generated samples of the Gibbs sampler are
replaced by the means of the corresponding conditional distri-
butions, (21), (25), (26), and (28). Thus, a novel iterative scheme
among the conditional means of , , , and arises, termed
Bayesian inference iterative conditional expectations (BI-ICE)
algorithm. It should be emphasized that by following this ap-
proach, we depart from the statistical framework implied by
the Gibbs sampler and we end up with a new deterministic al-
gorithm for estimating the parameters of the proposed hierar-
chical model. Besides avoiding the complexity of sampling (26),
BI-ICE is expected to converge faster than the original Gibbs
sampler and, as a result, is expected to be much less computa-
tionally demanding. Also, as verified by extensive simulations,
BI-ICE leads to sparse solutions and offers robust estimation
performance under various experimental settings.

B. The BI-ICE Algorithm

As mentioned previously, BI-ICE needs the conditional ex-
pectations of the model parameters. These are computed ana-
lytically as described below.

1) Expectation of : As shown in (21),
is a truncated Gaussian distribution in . We
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know from [35] that in the one-dimensional case, the expecta-
tion of a random variable modeled by the truncated Gaussian
distribution in can be computed as

(29)
where is the complementary error function. Unfortu-
nately, to the best of our knowledge, there is no analogous
closed form expression for the -dimensional case. How-
ever, as shown in [36] and [37], the distribution of the
th element of conditioned on the remaining elements

can be expressed as

(30)

with

(31)

(32)

Recalling that , and represent the th
and th elements of and , respectively. The
matrix is formed by removing the th row and the th
column from , while the vector is the th
column of after removing its th element. By applying (29)
and utilizing (31)–(32), the expected values of all random vari-
ables can be analytically computed.
Based on this result, an iterative procedure is proposed in order
to compute the mean of the posterior . Specif-
ically, the th iteration, of this procedure is de-
scribed as follows3

...

(33)

This procedure is repeated iteratively until convergence. Exper-
imental results have shown that the iterative scheme in (33) con-
verges to the mean of after a few iterations.

2) Expectation of : The mean value of the
Gamma distribution in (25) is given by

(34)

3) Expectation of : As shown in
Appendix C, this expectation is expressed as

(35)

3In the following, for notational simplicity, the expectation � ��� of a
random variable�with conditional distribution ������ is denoted as���������.

TABLE I
THE BI-ICE ALGORITHM

where stands for the modified Bessel function of second
kind of order .

4) Expectation of : Again, the mean value
of the Gamma distribution in (28) is given by

(36)

Based on the previous expressions, the proposed BI-ICE al-
gorithm is summarized in Table I. As shown in the Table, the
algorithm is initialized with , and as in [19],

.
Regarding the updating of parameter , an auxiliary vari-

able has been utilized in Table I. This is initialized with
(the value of at iteration ) and is updated by performing a
single iteration of the scheme described in (33). The resulting
value of is assigned to . The rationale behind this choice
is that for a diagonal (which happens when the columns of
are orthogonal), it easily follows from (31), (32) that the ’s
in (33) are uncorrelated. Thus, a single iteration is sufficient to
obtain the mean of . Although, this is not valid
when is not diagonal, experimental results have evidenced
that the estimation of the mean of resulting after
the execution of a single iteration of the scheme in (33) is also
sufficient in the framework of the BI-ICE algorithm.

Due to the fact that the BI-ICE algorithm springs out from the
hierarchical Bayesian model described in Section III, it leads to
sparse estimations for , and the endmembers present in the
pixel are identified by the nonzero entries of . In addition, all
parameters of the model are naturally estimated from the data, as
a consequence of the Bayesian Lasso approach followed in this
paper. This is in contrast to deterministic algorithms for solving
the Lasso, e.g., [11], [21], or adaptive methods, [16], which face
the problem of fine-tuning specific parameters, (corresponding
to of our model), that control the sparsity of the solution. Be-
sides, useful by-products of the BI-ICE algorithm are the es-
timates of (a) the variance of the additive noise of the linear
model, as in [9], and (b) the variance of the abundance vector.
The latter, coupled with the estimate of , provides the poste-
rior distribution of the abundance vector, which can be used to
provide confidence intervals to assess the reliability of the pro-
posed estimator.
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Concerning the computational complexity, as it is clear
from Table I, the BI-ICE algorithm requires the evaluation
of simple closed form formulas. The main computational
burden is due to the calculation of the inverse matrices

appearing in (31) and (32). As shown
in Appendix D, all these matrices can be derived very efficiently
from , and thus only one matrix inversion per iteration
(related to the computation of in (23)) is required. This
results in a reduction of the computational complexity of the
BI-ICE algorithm by one order of magnitude per iteration.

Thus far, the proposed BI-ICE algorithm has been described
as a deterministic approximation of the Gibbs sampler. An alter-
native view of the BI-ICE algorithm in the framework of varia-
tional Bayesian inference is provided in Appendix E. As shown
in the Appendix, the adoption of a proper factorization of an
approximation of the posterior results to a vari-
ational Bayesian inference scheme that exploits the same type
of distributions and updates the same form of parameters. From
this point of view, BI-ICE can be thought of as a first moments
approximation to a variational Bayesian inference scheme.

C. Embedding the Sum-to-one Constraint

The sparsity-promoting hierarchical Bayesian model pre-
sented in the previous sections takes into consideration the
nonnegativity of the abundance vector . However, the abun-
dances’ sum-to-one constraint has not yet been considered.
As noted in [38], the sum-to-one constraint is prone to strong
criticisms. In real hyperspectral images the spectral signatures
are usually defined up to a scale factor, and thus, the sum-to-one
constraint should be replaced by a generalized constraint of
the form , in which the weights denote the
pixel-dependent scale factors. Moreover, it is known that the
sparse solution of a linear system with having nonnegative
entries already admits a generalized sum-to-one constraint,
[39]. Thus, it can be safely assumed that the impact of not
enforcing the sum-to-one constraint on the performance of the
algorithm is not expected to be severe. Despite this fact, in this
section we describe an efficient way to enforce this constraint,
although through a regularization parameter.

Note that direct incorporation of this constraint to the pro-
posed Bayesian framework would require truncation of the prior
normal distribution of over a simplex, rendering the deriva-
tion of closed form expressions for the conditional posterior dis-
tributions intractable. To alleviate this, we choose, as in [7], [10],
[40, p. 586], to impose the sum-to-one constraint deterministi-
cally, by augmenting the initial LMM of (1) with an extra equa-
tion as follows:

(37)

where is a scalar parameter, which controls the effect of the
sum-to-one constraint on the estimation of . Specifically, the
larger the value of is, the closer the sum of the estimated ’s
will be to one. It should be noticed that the augmentation of
the LMM as in (37) does not affect the proposed hierarchical
Bayesian model and the subsequent analysis.

V. EXPERIMENTAL RESULTS

A. Simulation Results on Synthetic Data

This section illustrates the effectiveness of the proposed
BI-ICE algorithm, by a series of experiments related to the
unmixing of a synthetic hyperspectral image. Following the
experimental settings of [38], where a thorough comparison
of several sparse semisupervised unmixing algorithms is pre-
sented, we consider two spectral data sets for the simulated
hyperspectral scene: (a) , which is a matrix
containing the spectral signatures of 220 endmembers selected
from the USGS spectral library, [41], and (b) ,
which is a matrix of i.i.d. components uniformly distributed in
the interval . As expected, the spectral signatures of the
materials of are highly correlated. The condition number
and the mutual coherence, [38], of are and
0.999933, respectively, whereas, for , the same measures are
equal to 82 and 0.8373, respectively.

The abundance fractions of the simulated image and the
number of different endmembers composing a single pixel
are generated according to a Dirichlet distribution, [6]. In all
simulations, the observations are considered to be corrupted
by either white Gaussian or colored noise. Colored noise
is produced by filtering a sequence of white noise using a
low-pass filter with a normalized cutoff frequency of .
The variance of the additive noise is determined by the SNR
level.

First, the fast convergence and sparse estimations of exhib-
ited by the new algorithm are depicted in Fig. 2. In this exper-
iment, a pixel with three nonzero abundances (0.1397, 0.2305,
0.6298) is considered, and white noise is added to the model,
such that the SNR is equal to 25dB. The curves in Fig. 2 are the
average of 50 noise realizations. We observe that less than 15
iterations are sufficient for the BI-ICE algorithm to converge to
the correct sparse solution of . That is, it determines correctly
the abundance fractions of the endmembers present in the pixel,
while all remaining abundance fractions converge to zero.

Next, the BI-ICE algorithm was compared to: (a) the least
squares (LS) algorithm, (b) a quadratic programming (QP) tech-
nique, which enforces the constraints, but does not specifically
exploit the problem’s sparsity, [8], (c) the orthogonal matching
pursuit (OMP) algorithm, [12], which is a widely used, greedy,
sparsity promoting algorithm, (d) the sparse unmixing by vari-
able splitting and augmented Lagrangian (SUnSAL) algorithm,
[16], [38], which is based on the alternating direction method
of multipliers to solve the penalization problem of (7) sub-
ject to the physical constraints of the unmixing problem, and (e)
the constrained version of SUnSAL, CSUnSAL, which solves
the constrained version of the problem in (7), (see also [38] for
details). In our experiments, the parameters used for SUnSAL
are and , while for CSUnSAL we used ,

and , see also [16]. Based on the following
metric:

(38)
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Fig. 2. Estimation of the entries of the sparse vector�, as BI-ICE progresses. The algorithm is applied to simulated data, generated using (a) a highly correlated
matrix of spectral data (b) a matrix of i.i.d uniform data. White noise is added (SNR = 25 dB). Dashed lines: True values. Solid lines: Estimated values.

Fig. 3. MSE as a function of the level of sparsity obtained by different unmixing methods when applied to simulated data with white additive noise (SNR = 20
dB) and using two different spectral libraries.

where and are the true and the estimated abundance vec-
tors, respectively, the corresponding MSE curves for different
sparsity levels ranging from 1 (pure pixel) to 20 are shown in
Fig. 3, for both spectral libraries and . Due to poor re-
sults, the MSE curve of the LS algorithm is not shown in the
figure. It can be seen that the proposed algorithm outperforms
the OMP, QP, and CSUnSAL algorithms and has similar perfor-
mance to the SUnSAL algorithm. In comparison to BI-ICE, the
adaptive methods SUnSAL and CSUnSAL are of lower compu-
tational complexity. However, it should be pointed out that the
comparable performance, in terms of MSE, of the alternating di-
rection algorithms SUnSAL and CSUnSAL with BI-ICE comes
at the additional expense of manually fine-tuning nontrivial pa-
rameters, such as the sparsity promoting parameter , (see (7),
and [38]). Thus, an advantage of the proposed BI-ICE algo-
rithm over SUnSAL and CSUnSAL algorithms is that all un-
known parameters are directly inferred from the data. Besides
that, BI-ICE bears interesting byproducts such as: (a) estimates
of all model parameters; a useful parameter in many applica-
tions is the noise variance; (b) estimates for the variances of the
estimated parameters, which may serve as confidence intervals;

and (c) approximate posterior distributions for the estimated pa-
rameters. In contrast, all other algorithms considered are itera-
tive algorithms that return point estimates of the parameters of
interest.

A quick view of Fig. 3 also reveals that the OMP and QP al-
gorithms attain the worst performance, in terms of MSE. OMP
adds one endmember to its active set in each iteration, and sub-
tracts its contribution from the residual signal, until the corre-
lation coefficient of the remaining signal vector drops below a
certain threshold, or the maximum of 20 selected endmembers
is reached. However, due to its greedy nature and the high con-
ditioning of , OMP fails to detect the correct endmembers
that compose the pixel. This is the reason for the algorithm’s
poor performance, shown in Fig. 3. Note also that, in the cases
of high sparsity, the QP algorithm fails to detect the correct sup-
port of the sparse vector , resulting in poor MSE performance.
This may not come as a surprise, since the QP algorithm is not
specifically designed for sparse regression problems.

In Fig. 4 the MSE values of the various sparse unmixing al-
gorithms versus the SNR are displayed. For this experiment, the
spectral libraries and were used to simulate two different
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Fig. 4. MSE as a function of the SNR obtained by different sparse unmixing methods when applied to simulated data with white additive noise and using different
spectral libraries for sparsity level � � �.

Fig. 5. MSE as a function of the level of sparsity obtained by different unmixing methods when applied to simulated data with colored additive noise (SNR = 20
dB) and using two different spectral libraries.

hyperspectral scenes, each having 100 pixels. The level of spar-
sity for the abundance vectors of all pixels is held fixed and
equal to five. As expected, the MSE values of all algorithms
decrease as the SNR increases. This is not the case for the QP
algorithm though, which completely fails to retrieve the correct
support of the sparse abundance vector , and its MSE is al-
most constant. Again, the performance of SUnSAL and BI-ICE
is comparable, with BI-ICE having slightly better performance
in the case of the i.i.d. mixing matrix . In Figs. 5 and 6 the
same experimental results are provided in the scenario where
the simulated pixels are contaminated with colored noise. We
observe that the performance pattern of the various algorithms
is not affected by the presence of colored noise, apart form the
fact that the MSE values are now slightly increased. Although
our hierarchical Bayesian model assumes i.i.d. noise, these fig-
ures provide us with enough evidence to conclude that the pro-
posed BI-ICE algorithm can also provide reliable results in col-
ored noise environments.

Finally, in Fig. 7 the MSE performance of the proposed
BI-ICE algorithm is shown, when the sum-to-one constraint is
incorporated to the regression problem, as explained earlier in
Section IV-C, with . It can be seen that the performance
of the algorithm is particularly enhanced in the case of high
sparsity, i.e., when the image pixel is either pure or it
is composed of a few endmembers. As verified by ex-
periments, the BI-ICE with the sum-to-one constraint correctly
detects the support of the sparse signal with a probability close
to one, which accounts for a significant decrease of the MSE.
The experiment has been conducted for both spectral libraries

and . The higher MSE improvement is observed for the
case of i.i.d. spectral data.

B. Simulation Results on Real Data

This section describes the application of the proposed BI-ICE
algorithm to real hyperspectral image data. The real data were
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Fig. 6. MSE as a function of the SNR obtained by different sparse unmixing methods when applied to simulated data with colored additive noise and using
different spectral libraries for sparsity level � � �.

Fig. 7. MSE as a function of the level of sparsity obtained by different unmixing methods when applied to simulated data with white additive noise (SNR = 20
dB) and using two different spectral libraries. The sum-to-one constraint is incorporated to the BI-ICE algorithm, as explained in Section IV-C.

collected by the airborne visible/infrared imaging spectrom-
eter (AVIRIS) flight over the Cuprite mining site, Nevada,
in 1997, [42]. The AVIRIS sensor is a 224-channel imaging
spectrometer with approximately 10-nm spectral resolution
covering wavelengths ranging from 0.4 to . The spatial
resolution is 20 m. This data set has been widely used for
remote sensing experiments [6], [43]–[45]. The spectral bands
1–2, 104–113, 148–167, and 221–224 were removed due to
low SNR and water-vapor absorption. Hence, a total of 188
bands were considered in this experiment. The subimage of the
150th band, including 200 vertical lines with 200 samples per
line (200 200) is shown in Fig. 8.

The VCA algorithm was used to extract 14 endmembers
present in the image, as in [6]. Using these spectral signatures,
three algorithms are tested to estimate the abundances, namely
the LS algorithm, the QP method, and the proposed BI-ICE
algorithm. The unmixing process generates an output image
for each endmember, depicting the endmember’s estimated
abundance fraction for each pixel. The darker the pixel, the
smaller the contribution of this endmember in the pixel is. On
the other hand, a light pixel indicates that the proportion of

Fig. 8. Band 150 of a subimage of the Cuprite Aviris hyperspectral data set.

the endmember in the specific pixel is high. The abundance
fractions of four endmembers, estimated using the LS, QP, and
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Fig. 9. Estimated abundance values of four endmembers using: (a) the LS algorithm; (b) the QP algorithm; (c) the proposed BI-ICE algorithm.

BI-ICE algorithms, are shown in Fig. 9(a)–(c), respectively.
Note that, for the sake of comparison, a necessary linear scaling
in the range has been performed for the LS abundance
images. By simple inspection, it can be observed that the
images taken using the LS algorithm clearly deviate from the
images of the other two methods. The LS algorithm imposes no
constraints on the estimated abundances, and hence the scaling
has a major impact on the abundance fractions, resulting in
performance degradation. On the contrary, the images obtained
by QP and BI-ICE share a high degree of similarity and are in
full agreement with previous results concerning the selected
abundances and reported in [6], [45], as well as with the con-
clusions derived in Section V-A.

VI. CONCLUSION

A novel perspective for sparse semisupervised hyperspectral
unmixing has been presented in this paper. The unmixing
problem has been expressed in the form of a hierarchical
Bayesian model, where the problem constraints and the pa-
rameters’ properties were incorporated by suitably selecting
the priors’ and hyperpriors’ distributions of the model. Then,
a new Bayesian inference iterative scheme has been developed
for estimating the model parameters. The proposed algorithm
is computationally efficient, converges very fast and exhibits
enhanced estimation performance compared to other related
methods. Moreover, it provides sparse solutions, without ne-
cessitating the tuning of any parameters, which are naturally
estimated from the algorithm. As it is also the case for other
Bayesian inference methods, the theoretical proof of conver-
gence of the proposed algorithm turns out to be a cumbersome
task. Such a theoretical analysis is currently under investigation.

APPENDIX A
DERIVATION OF THE TRUNCATED GAUSSIAN PRIOR

DISTRIBUTION OF

Assuming that all ’s are i.i.d., the prior of the abundance
vector can be analytically expressed as

(39)

where is the set of nonnegative real numbers and is the
nonnegative orthant of , stands for the -variate

truncated normal distribution in according to Definition 1,
is the vector containing the hy-

perparameters, and is the
diagonal matrix, with .

APPENDIX B
THE NON-NEGATIVITY CONSTRAINED

BAYESIAN ADAPTIVE LASSO

The MAP estimator of is defined as

(40)
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From Bayes’ theorem, the MAP estimator can be expressed as

(41)

Then, substituting in (41) the likelihood function from (4) and
the truncated Laplace prior from (16), the MAP estimator can be
expressed as shown in (42) at the bottom of the page. Note that

, for and

, for , i.e., this term severely penalizes ’s with neg-
ative elements. Thus, it is established that the MAP estimation
of , given the truncated Laplace prior of (16), is equivalent to
solving the adaptive Lasso criterion of (17), for

, subject to being nonnegative, i.e., .

APPENDIX C
THE CONDITIONAL POSTERIOR DISTRIBUTION

AND ITS MEAN

Using (9) and (13) the posterior conditional distribution
for can be computed as

(43)

where we used [46, eq. 3.471.15] to compute the integral. The
mean of (43) is computed as

(44)

where we used [46, eq. 3.471.9] for the integral computation.
Finally, we set , for . Note that
this does not affect the BI-ICE algorithm, since ’s are guar-
anteed to be nonnegative (the fact is impossible by the
formulation of the problem).

APPENDIX D
FAST COMPUTATION OF (31) AND (32)

Let us define . In [36], the formula
, has been utilized for

computing all matrices from ,
where and are related to in the same way
and are related to . It has been seen in simulations that
this rank-one downdate formula is numerically susceptible. In
the following, an alternative method is proposed, which avoids
direct computation of and has exhibited numerical
robustness in all simulations performed. Let be an
permutation matrix, which when it premultiplies a matrix,
moves its th row to the th position, after upshifting rows

. Then, by defining , it is easily
verified that

(45)

Moreover, due to the orthogonality of ,
, i.e., all ,

are obtained from by simple permutations. From [47, p.
54] and (45), we get

(46)

Let

(42)
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(47)

Then, by rearranging (47) the term can be written
as

(48)

and from (32)

(49)

Define and

(50)

Then, solving for , we get

(51)

and (31) becomes

(52)

In summary, after obtaining from , , and are com-
puted from the first equations in (47) and (50), respectively.
Then, are efficiently computed from
(49) and (52), respectively.

APPENDIX E
RELATION TO VARIATIONAL BAYESIAN

INFERENCE AND OTHER METHODS

In this Appendix, we highlight the relation of the pro-
posed BI-ICE algorithm with other known Bayesian inference
methods and primarily with variational Bayesian inference,
[23]–[25], [48]. To this end, we first apply the variational
inference method to the proposed Bayesian model described in
Section II. In variational inference, the joint posterior distribu-
tion of the model parameters is approximated
by a variational distribution . Assuming posterior

independence among the model parameters, this variational
distribution factorizes as follows

(53)

According to the variational Bayes methodology, [48, pp.
466], the factors in (53) can be computed by minimizing the
Kullback—Leibler divergence between the approximate distri-
bution and the target distribution .
After some straightforward algebraic manipulations, it turns out
that is expressed as

(54)

with

(55)

where denotes the mean value of with respect to the
distribution . For the rest factors, we have (56)–(57) shown
at the bottom of the page, and

(58)

Equations (54)–(58) do not provide an explicit solution, since
they depend on each other’s factors. However, in principle, a
solution may be reached iteratively, by initializing the required
moments and then cycling through the model parameters, up-
dating each distribution in turn. It may come as a surprise, but,
although a different approach is used, the derived expressions
resemble the conditional posterior distributions (21), (25), (26),
and (28) employed in the iterative scheme of BI-ICE. Notice
that both approaches share (a) the same type of distributions and
(b) the updating of the same form of parameters. The only dif-
ference is that, in a variational Bayesian framework, the com-
putation of the mean values of the model parameters require a
blend of their first and second moments with respect to the ap-
proximate posterior distributions given in (54), (56)–(58), while
this is not the case with BI-ICE (see (33), (34), (35) and (36)).
As a result, the proposed BI-ICE can be considered as a first
moments approximation of the variational Bayesian inference
scheme, which is based on the factorization given in (53).

(56)

(57)
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To elaborate further on the relation of BI-ICE to variational
Bayes approximation, let us assume that in the variational
framework is factorized as . Then, it
can be shown that the posterior approximate distributions ,

and of the variational Bayes scheme remain exactly
the same as in (57), (58) and (56), respectively, while is
expressed as

(59)

(60)

(61)

where is the matrix resulting from after removing its th
column. By superimposing (59)–(61) and (30)–(32) reveals that
the posterior independence of ’s assumed in the variational
framework leads to a different updating mechanism compared
to BI-ICE, in which such an assumption is not made. This means
that the proposed scheme in (33) cannot result from a factorized
approximation of the form .

It is also worth noting that the motivation for the deriva-
tion of the BI-ICE algorithm has been the so-called Rao-Black-
wellized Gibbs sampling scheme [49], [50]. In a Rao-Black-
wellized Gibbs sampler with two random variables , , the
sequences and are generated first by sam-
pling the conditional distributions and , respec-
tively, as in the conventional Gibbs sampler. Then, the condi-
tional expectations and are computed and
the sample means and for
large are obtained. According to the Rao-Blackwell theorem
[51], these estimates improve upon the original Gibbs sampler
estimates and , [32], [49]. Note that in
the proposed iterative scheme, the conditional expectations of
all involved parameters are computed as well. However, each
one of them is now evaluated directly in each iteration, condi-
tioned on the current values of the remaining conditional expec-
tations.

Finally, it should be mentioned that the proposed BI-ICE al-
gorithm resembles the iterative conditional modes (ICM) algo-
rithm presented in [26]. As noted in [48, pp. 546], the ICM
algorithm can be viewed as a “greedy” approximation to the
Gibbs sampler, where instead of drawing a sample from each
conditional distribution, the maximum of the conditional distri-
bution is selected. The difference with the ICM method is that in
BI-ICE the first order moment of the conditional posterior dis-
tributions is used instead of the maximum.
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