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Alternating Iteratively Reweighted Least Squares
Minimization for Low-Rank Matrix Factorization
Paris V. Giampouras , Athanasios A. Rontogiannis , Member, IEEE, and Konstantinos D. Koutroumbas

Abstract—Nowadays, the availability of large-scale data in dis-
parate application domains urges the deployment of sophisticated
tools for extracting valuable knowledge out of this huge bulk of
information. In that vein, low-rank representations (LRRs), which
seek low-dimensional embeddings of data have naturally appeared.
In an effort to reduce computational complexity and improve es-
timation performance, LRR has been viewed via a matrix fac-
torization (MF) perspective. Recently, low-rank MF (LRMF) ap-
proaches have been proposed for tackling the inherent weakness of
MF, i.e., the unawareness of the dimension of the low-dimensional
space where data reside. Herein, inspired by the merits of itera-
tive reweighted schemes for sparse recovery and rank minimiza-
tion, we come up with a generic low-rank promoting regularization
function. Then, focusing on a specific instance of it, we propose a
regularizer that imposes column-sparsity jointly on the two matrix
factors that result from MF, thus promoting low-rankness on the
optimization problem. The low-rank promoting properties of the
resulting regularization term are brought to light by mathemati-
cally showing that it is actually a tight upper bound of a specific ver-
sion of the weighted nuclear norm. The problems of denoising and
matrix completion are redefined according to the new LRMF for-
mulation and solved via efficient alternating iteratively reweighted
least squares type algorithms. Theoretical analysis of the algo-
rithms regarding the convergence and the rates of convergence to
stationary points is provided. The effectiveness of the proposed al-
gorithms is verified in diverse simulated and real data experiments.

Index Terms—Matrix factorization, low-rank, iteratively
reweighted, alternating minimization, matrix completion.

I. INTRODUCTION

LOW-RANK representation (LRR) of data has recently at-
tracted great interest since it appears in a wide spectrum

of research fields and applications, such as signal processing,
machine learning, quantum tomography, etc., [1]. LRR shares
similar characteristics with sparse representation and hence is
in principle formulated as a NP-hard problem, [2]. Convex re-
laxations have played a remarkable role in the course of making
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the problem tractable. In that respect, the nuclear norm has
been extensively applied offering favorable results and a solid
theoretical understanding, [3]. However, in the case of high-
dimensional and large-scale datasets, conventional convex LRR
approaches are confronted with inherent limitations related to
their high computational complexity, [4].

To overcome these limitations matrix factorization (MF)
methods have been introduced lately. MF gives rise to non-
convex optimization problems and hence its theoretical under-
standing is a much more challenging task. Notably, a great
effort has been recently devoted towards deriving a compre-
hensive theoretical framework of MF with the goal to reach to
global optimality guarantees, [5]–[8]. MF presents significant
computational merits by reducing the size of the emerging opti-
mization problems. Thus, it leads to optimization algorithms of
lower computational complexity as compared to relevant con-
vex approaches. In addition, MF lies at the heart of a variety
of problems dealing with the task of finding low-dimensional
embeddings. In that respect, ubiquitous problems such as clus-
tering, [9], blind source separation, matrix completion, [10],
etc., have been seen in the literature through the lens of MF.
MF entails the use of two matrix factors with a fixed number
of columns, which, in the most favorable case, coincides with
the rank of the sought matrix. However, the rank of the matrix,
which is usually much less than its dimensions, is unknown a
priori.

In light of this, a widespread approach is based on the fol-
lowing premise: overstate the number of columns of the matrix
factors and then penalize their rank by using appropriate low-
rank promoting regularizers. Along those lines, various regu-
larizers have been recently proposed. Amongst them the most
popular one is the variational characterization of the nuclear
norm (proven to be a tight upper-bound of it) defined as the
sum of the squared Frobenious norms of the factors [11]. More
recently, generalized versions of this approach have come to
the scene. In that respect, in [12]–[14], tight upper-bounds of
the low-rank promoting Schatten-p quasinorms were presented
under a general framework. In [15], an alternative approach
for promoting low-rankness via non-convex MF was described.
The novelty of that approach comes from the incorporation of
additional constraints on the matrix factors giving thus rise to
an interesting low-rank structured MF framework. In [4], a fast
algorithm based on the above-mentioned variational character-
ization of the nuclear norm is presented. The derived algorithm
is amenable to handling incomplete big-data, contrary to con-
ventional convex and other non-MF based approaches. It should
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be noted that common characteristic of the low-rank MF meth-
ods mentioned above is the following: although the rank of the
product of the matrix factors may decrease as a result of the pe-
nalization process, the number of columns of the matrix factors
(which has initially been overstated) remains fixed throughout
the execution of the minimization algorithms. Hence, the per
iteration complexity remains unaltered, albeit the rank of the
matrix factors may potentially decrease gradually to a large
degree as the algorithms evolve.

In the current work, motivated by the latter (possibly undesir-
able in large-scale data applications) issue, we propose a novel
generic formulation for non-convex low-rank MF. To this end,
recent ideas stemming from iterative reweighted approaches for
sparse recovery, [16] and low-rank matrix estimation, proposed
in [17]–[19] as efficient alternatives for nuclear norm mini-
mization, are now extended to the MF framework. This way,
we come up with a novel alternating reweighted scheme for
low-rank promotion in MF problems. As is shown, the recent
low-rank MF schemes proposed in [12] can be cast as special
occasions of the proposed formulation by suitably selecting the
reweighting matrices applied on the matrix factors. Going one
step further, we propose the selection of a common diagonal
reweighting matrix that couples the matrix factors and leads
to a joint column sparsity promoting regularization term, [20],
[21]. In doing so, low-rank promotion now reduces to the task
of jointly annihilating columns of the matrix factors. Interest-
ingly, the resulting term is proven to be a tight upper bound
of the weighted nuclear norm (upon appropriately selecting the
weights), whose enhanced low-rank promoting properties have
been recently reported in the literature, [19].

In an effort to better highlight the efficiency and ubiquity of
the proposed low-rank MF formulation, we address two popular
problems in the signal processing and machine learning litera-
ture, namely denoising and matrix completion. These problems
are accordingly formulated in Section II. Then by exploiting the
block successive upper bound minimization (BSUM) concept,
[22], we minimize the arising non-smooth and non-separable
objective functions in Section III. This is achieved by intro-
ducing appropriate upper bound functions for each subproblem
related to the matrix factors, where minimization leads to
closed-form analytical expressions thereof. In this regard, novel
iteratively reweighted least squares (IRLS) type denoising and
matrix completion algorithms are devised that rely exclusively
on efficient matrix-wise updates. In addition, to further reduce
complexity, we may incorporate a column pruning procedure
that removes the matrix factor columns whose power has
become negligible, thus reducing the size of the optimization
problems towards that of the actual rank of the sought matrix.
The connection of the proposed schemes with previously
reported IRLS algorithms is established in Section IV. Analysis
regarding the convergence of the algorithms to stationary
points and their rates of convergence are given in Section V.
In Section VI, the merits of the proposed algorithms in terms
of estimation performance and computational complexity,
compared to relevant state-of-art algorithms, are illustrated
on simulated and real data experiments. In order to test the
effectiveness of the algorithms on real applications involving

large-scale data, the problems of hyperspectral image denoising
and matrix completion in movies recommender systems are
employed. Finally, Section VII concludes this work.

Notation: Matrices are represented as boldface uppercase let-
ters, e.g., X, and, column vectors as boldface lowercase letters,
e.g., x, while the i-th component of vector x is denoted by
xi and the ij-th element of matrix X by xij . Moreover, T de-
notes transposition, Im is the m × m identity matrix and 0
is a zero matrix with respective dimensions, rank(X) is the
rank of X, tr{X} denotes the trace of matrix X, diag(x) is
a diagonal matrix with the elements of vector x on its di-
agonal, σ(X) is the vector of the singular values of X ar-
ranged in a non-ascending order, ‖ · ‖p is the standard �p vec-

tor norm, ‖X‖∗ = tr(
√

XT X) =
∑rank(X)

i=1 σi(X), denotes the

nuclear norm, ‖X‖∗,w =
∑rank(X)

i=1 wiσi(X), is the weighted
nuclear norm and ‖X‖Sp

= ‖σ(X)‖p is the Schatten-p norm,

‖X‖F =
√∑

i

∑
j x2

ij , stands for the Frobenius norm. N (·)
denotes the Gaussian distribution. Also, Rm×n stands for the
m × n-dimensional Euclidean space and ⊗ denotes the kro-
necker product operation.

II. LOW-RANK MATRIX FACTORIZATION

Low-rank matrix estimation per se has been addressed by a
wealth of different approaches, lending itself to disparate appli-
cations. Focusing on the task of recovering low-rank matrices
from linear measurements, we come up with the ubiquitous
affine rank minimization problem, [3], which is formulated as
follows,

min [rank(X)] s.t. A(X) = b, (1)

where A denotes the linear operator that maps X ∈ Rm×n to
b ∈ Rl . Problem (1) is tantamount to solving the �0 minimiza-
tion problem on the singular values of X and hence is NP-hard.
To this end various relaxation schemes have come to the scene in
literature, many of which are based on the Schatten-p quasinorm
[19], [23]. The Schatten-p quasinorm is defined as

‖X‖Sp
= ‖σ(X)‖p , (2)

with 0 < p ≤ 1. As is known, for p = 1, the Schatten-p quasi-
norm reduces to the well-known nuclear norm ‖X‖∗, which has
been proven to be the convex envelope of the rank [2]. Schatten-
p quasinorms have played a significant role in numerous cases
involving the rank minimization problem of (1) reformulating
it as

min‖X‖p
Sp

s.t. A(X) = b. (3)

Nowadays, Schatten-p quasinorm based minimization has been
seen via a more intriguing perspective i.e. using an iterative
reweighting approach. In this vein, inspired by the IRLS method
used in place of �1 norm minimization for imposing spar-
sity, [16], in [17] and [18] the authors propose to minimize a
reweighted Frobenious norm. The equivalence of the Schatten-p
quasinorm and those minimized in [17], [18], is mathematically
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expressed as follows,

‖X‖p
Sp

= tr
{ (

XT X
)p/2 }

= tr
{ (

XT X
) (

XT X
)p/2−1 }

= tr{(XT X
)
W} = ‖XW

1
2 ‖2

F , (4)

where W is the symmetric weight matrix

W =
(
XT X

)p/2−1
. (5)

It should be noted that reweighted Frobenious norm schemes are
iterative and, in each iteration the weight matrix W is computed
from the estimate of X obtained in the previous iteration.

More recently, low-rank matrix estimation has also been ad-
dressed by using weighted and reweighted versions of the nu-
clear norm, [19]. In this regard the rank minimization problem
is formulated as follows,

min‖X‖∗,w s.t. A(X) = b. (6)

As shown in [19], by suitably selecting the weights wi s in
vector w, (6) offers a generic framework for efficiently tackling
various rank minimization tasks, including the Schatten-p norm
minimization problem defined in (3).

It should be noted that both the reweighted Frobenius and the
(re)weighted nuclear norm based schemes have been shown to
offer significant merits in terms of computational complexity,
estimation performance and rate of convergence.

Recently, low-rank matrix estimation has been effectively
tackled using a matrix factorization approach. The crux of
the relevant methods is that a low-rank matrix can be well
represented by a product of two matrices U (m × r) and
V (n × r) i.e., X = UVT with the inner dimension r of the
involved matrices quite smaller than the outer dimensions i.e.,
r � min(m,n). Needless to say that those ideas offer signifi-
cant advantages when it comes to the processing of large scale
and high-dimensional datasets (where both m and n are huge)
by reducing the size of the involved variables, thus decreasing
both the storage space required from O(mn) to O ((m + n)r)
as well as the computational complexity of the algorithms used.
However, a downside of this approach is that an additional vari-
able is brought up i.e., the inner dimension r of the factorization.
The task of finding the actual r (which coincides with the rank
of matrix X) is relevant to the rank minimization problem and is
referred in the literature also as dimensionality reduction, model
order selection, etc.

The latter has given rise to methods that select r based on the
minimization of various criteria such as the Akaike informa-
tion criterion (AIC), the Bayesian information criterion (BIC),
the minimum distance length (MDL), [24], etc. However, these
methods can be computationally expensive especially in large
scale datasets, since they require multiple runs using differ-
ent values for r. Modern approaches termed low-rank matrix
factorization (LRMF) techniques, [15], hinge on the following
philosophy: a) overstate the rank r of the product with d ≥ r
and then b) impose low-rankness thereof by utilizing appropri-
ate norms. This rationale has given rise to LRMF techniques
that solve the following,

min
[
rank(UVT )

]
s.t. A(UVT ) = b. (7)

Problem (7) has been addressed by different ways in the liter-
ature. Among other approaches, the tight upper-bound of the
nuclear norm defined as

‖X‖∗ = min
U∈Rm×d ,V∈Rn×d ,X=UVT

‖U‖F ‖V‖F

= min
U∈Rm×d ,V∈Rn×d ,X=UVT

1
2
(‖U‖2

F + ‖V‖2
F

)
(8)

is the most popular, [11]. In fact, minimization of (8) favors
low-rankness on U and V by inducing smoothness on these
matrices. In [12] and [25], the authors derive the tight upper-
bounds for all Schatten-p quasinorms with 0 < p ≤ 1, ([25,
Th. 1]) i.e.,

‖X‖p
Sp

= min
U∈Rm×d ,V∈Rn×d ,X=UVT

‖U‖p
S2 p

‖V‖p
S2 p

= min
U∈Rm×d ,V∈Rn×d ,X=UVT

1
2

(
‖U‖2p

S2 p
+ ‖V‖2p

S2 p

)
.

(9)

Common denominator of the afore-mentioned low-rank matrix
factorization approaches is their direct connection with the low-
rank imposing Schatten-p quasinorms, since they provide tight
upper-bounds thereof.

In this work we aspire to apply ideas stemming from itera-
tive reweighting methods for low-rank matrix recovery, to this
challenging low-rank matrix factorization scenario. Therefore,
generalizing the above-described low-rank promoting norm up-
per bounds, we propose to minimize the sum of reweighted
(as in (4)) Frobenious norms of the individual factors U and
V. Hence, the newly introduced low-rank inducing function is
defined as follows,

h(U,V) =
1
2

(
‖UW

1
2
U‖2

F + ‖VW
1
2
V‖2

F

)
(10)

where the weight matrices WU and WV are appropriately se-
lected. The proposed low-rank promoting function defined in
(10) is generic as it includes the previously mentioned MF-
based low-rank promoting terms as special cases. Indeed, ac-
cording to (4), (5) and by settingWU = (UT U)p−1 andWV =
(VT V)p−1 in (10), we get the upper-bound of the Schatten-p
quasinorm given in (9), while for p = 1, i.e., WU = WV = Id ,
we get the variational form of the nuclear norm defined in (8).

In the rest of this paper, we adhere to a special instance of
(10) which arises by setting WU = WV = W with

W = diag
( (‖u1‖2

2 + ‖v1‖2
2
)p/2−1

,
(‖u2‖2

2 + ‖v2‖2
2
)p/2−1

,

. . . ,
(‖ud‖2

2 + ‖vd‖2
2
)p/2−1

)
, (11)

where 0 < p ≤ 1 and ui and vi are the ith columns of U and
V, respectively.1 The selection of the common diagonal weight
matrix of the factors as in (11) is not arbitrary. As we will see
in Sections III and IV, this matrix leads to IRLS schemes for
low-rank matrix factorization, generalizing the IRLS-p family

1If U, V had orthogonal columns, W in (11) would be equal to (UT U +
VT V)p/2−1 , whose resemblance to (5) is evident.
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of algorithms developed in [16] for sparse vector recovery. In
addition by selecting a common W for U and V, matrices U
and V are implicitly coupled w.r.t. their columns. If we now
substitute (11) in (10) yields

h(U,V) =
1
2

d∑

i=1

(‖ui‖2
2 + ‖vi‖2

2)
p/2 . (12)

Surprisingly, the resulting expression coincides with the (scaled
by 1/2) group sparsity inducing �p

p,2 norm (0 < p ≤ 1) of the

concatenated matrix [UV ], which for p = 1 reduces to the com-
monly used �1,2 matrix norm. Intuitively, the low-rank inducing
properties of the proposed in (12) joint column sparsity promot-
ing term can be easily explained as follows. Let us consider the
rank one decomposition of the matrix product UVT ,

UVT =
d∑

i=1

uiv
T
i . (13)

Clearly, due to the subadditivity property of the rank, eliminat-
ing rank one terms of the summation on the right side of (13)
results to a relevant decrease of the rank of the product UVT .
Besides the previous intuitive explanation, a more rigorous the-
oretical justification of the low-rank promoting properties of the
proposed regularizer is provided in the following Proposition.

Proposition 1: Let X = LΣRT be the singular value de-
composition of matrix X ∈ Rm×n , where L ∈ Rm×d , Σ =
diag(σ1 , σ2 , . . . , σd), with σis being the singular values of X
arranged in non-increasing order and R ∈ Rn×d . Let also X =
UVT be an arbitrary decomposition of X, where U ∈ Rm×d

and V ∈ Rn×d . The proposed regularizer defined in (12) is a
tight upper bound of the weighted nuclear norm of X, i.e.,

‖X‖∗,w ≤ 1
2

d∑

i=1

(‖ui‖2
2 + ‖vi‖2

2)
p/2 (14)

where w contains the diagonal elements of W defined in (11)
arranged in a non-decreasing order.

Proof: See Appendix.
Note that by Proposition 1 it becomes clear that the proposed

low-rank promoting term deviates from the previous relevant
regularizers given in (8) and (9), since it introduces a tight
upper bound of the recently proposed weighted and reweighted
variants of the nuclear norm. It should be also noted that the idea
of imposing jointly column sparsity first appeared in [26], albeit
in a Bayesian framework tailored to the NMF problem. In [27],
the emerging via the maximum a posteriori probability (MAP)
approach optimization problem boils down to the minimization
of the column sparsity promoting concave logarithm function.
Hence capitalizing on (12), we are led to LRMF optimization
problems having the form,

min
U∈Rm×d ,V∈Rn×d

d∑

i=1

(‖ui‖2
2 + ‖vi‖2

2)
p/2

s.t. A(UVT ) = b. (15)

Next, the generic problem given in (15) is reformulated and
solved for two important learning tasks namely a) denoising
and b) matrix completion.

A. Denoising

By assuming that a) the linear operator A reduces to a diago-
nal matrix and b) our measurements Y ∈ Rm×n are corrupted
by i.i.d. Gaussian noise, we come up with the following opti-
mization problem,

min
U ,V

d∑

i=1

(‖ui‖2
2 + ‖vi‖2

2)
p/2

s.t. ‖Y − UVT ‖2
F ≤ ε. (16)

where ε is a small positive constant. By Lagrange theorem we
know that (16) can be equivalently written in the following form,

{Û, V̂} = argmin
U ,V

1
2
‖Y − UVT ‖2

F

+ λ

d∑

i=1

(‖ui‖2
2 + ‖vi‖2

2)
p/2 (17)

where λ denotes the Lagrange multiplier.

B. Matrix Completion

Another popular problem that follows the general model de-
scribed by (15) is matrix completion, as it is widely addressed
via low-rank minimization. The main premise here lies in recov-
ering missing entries of a matrix Y assuming high coherence
among its elements, which gives rise to a low-rank structured
matrix X. The problem is thus set up as,

min [rank(X)] s.t. PΩ(Y) = PΩ(X), (18)

where PΩ denotes the sampling operator on the set Ω of in-
dexes of matrix Y where information is present. In the matrix
factorization setting, the incomplete matrix Y is approximated
by a matrix X expressed as X = UVT . As mentioned above,
the rank r of the reconstructed matrix X is generally unknown
and hence it is overstated with d ≥ r. This necessitates the pe-
nalization of the rank of the product UVT , which in our case
takes place with the proposed low-rank promoting term giving
rise to the optimization problem,

min
U ,V

d∑

i=1

(‖ui‖2
2 + ‖vi‖2

2)
p/2 s.t. PΩ(Y) = PΩ(UVT ).

(19)

Considering further the existence of additive i.i.d. Gaussian
noise in Y we get,

{Û, V̂} = argmin
U ,V

1
2
‖PΩ(Y) − PΩ(UVT )‖2

F

+ λ
d∑

i=1

(‖ui‖2
2 + ‖vi‖2

2)
p/2 . (20)
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As it is shown later, the simplicity and tractability of the pro-
posed regularizer facilitates the derivation of new optimization
algorithms, while the adoption of the minimization framework
presented in the next section paves the way for the theoretical
analysis of their convergence behavior.

III. MINIMIZATION ALGORITHMS

Herein, we present two new efficient block coordinate min-
imization (BCM) algorithms for denoising and matrix com-
pletion, respectively. The alternating minimization, w.r.t. the
‘blocks’ U and V, of the proposed low-rank promoting func-
tion defined in (12) lies at the heart of those algorithms.

Remark 1: The proposed low-rank promoting regularizer is
a) non-smooth and b) non-separable w.r.t. U and V.

Both the above-mentioned properties i.e., non-smoothness
and non-separability induce severe difficulties in the optimiza-
tion task that call for appropriate handling. More specifically,
as it has been shown, [28], in BCM schemes the respective al-
gorithms might be led to irregular points i.e., coordinate-wise
minima that are not necessarily stationary points of the mini-
mized objective function. In light of this we follow a simple
smoothing approach by including a small positive constant η2

in the proposed regularizer, which becomes,

ĥ(U,V) =
d∑

i=1

(‖ui‖2
2 + ‖vi‖2

2 + η2)p/2 . (21)

This way we alleviate singular points i.e., points where the gra-
dient is not continuous, and the resulting optimization problems
become smooth. On the other hand, non-separability poses ob-
stacles in getting closed-form expressions for the optimization
variables U and V. For this reason, each of the associative opti-
mization problems is reformulated using appropriate relaxation
schemes. By working in an alternating fashion, each of these
schemes results in closed form expressions. Next, the proposed
algorithms that solve the denoising and matrix completion prob-
lems are analytically described.

A. Denoising

In this section, we present a new algorithm designed for solv-
ing the denoising problem given in (17). To this end, let us first
define the respective objective function as,

f(U,V) =
1
2
‖Y − UVT ‖2

F

+ λ

d∑

i=1

(‖ui‖2
2 + ‖vi‖2

2 + η2)p/2 . (22)

It is obvious that minimizing (22) alternatingly w.r.t. U and
V is infeasible, since exact analytical expressions can not be ob-
tained as a result of the non-separable nature of the regularizing
term. To this end, at each iteration k + 1 we solve two distinct
subproblems i.e. a) given the latest available update Vk of V, we
minimize an approximate cost function w.r.t. U to get Uk+1 and
b) we use Uk+1 in order to minimize another approximate cost
function w.r.t. the second block variable of our problem i.e.,

matrix V. Following the block successive upper-bound mini-
mization (BSUM) philosophy, [22], [29], we minimize at each
iteration local tight upper-bounds of the respective objective
functions. That said, U is updated by minimizing an approx-
imate second-order Taylor expansion of f(U,Vk ) around the
point (Uk ,Vk ). Likewise, an approximate second-order Taylor
expansion of f(Uk+1 ,V) around (Uk+1 ,Vk ) is utilized for
obtaining Vk+1 . To be more specific Uk+1 is computed by

Uk+1 = argmin
U

l(U|Uk ,Vk ), (23)

where,

l(U|Uk ,Vk ) = f(Uk ,Vk ) + tr{(U − Uk )T ∇Uf(Uk ,Vk )}

+
1
2
vec(U − Uk )T H̄Uk

vec(U − Uk )

(24)

and vec(·) denotes the row vectorization operator. In (24), the
true Hessian HUk

of f(U,Vk ) at Uk has been approximated
by the md × md positive-definite block diagonal matrix H̄Uk

,
which is expressed as

H̄Uk
= Im ⊗ H̃Uk

, (25)

where ⊗ denotes the Kronecker product operation. For reasons
that will be explained later, the d × d diagonal block H̃Uk

is
defined as

H̃Uk
= VT

k Vk + λD(Uk ,Vk ) (26)

with

D(U ,V ) = pdiag
(
(‖u1‖2

2 + ‖v1‖2
2 + η2)p/2−1 ,

(‖u2‖2
2 + ‖v2‖2

2 + η2)p/2−1 , . . . ,

(‖ud‖2
2 + ‖vd‖2

2 + η2)p/2−1
)
. (27)

As it is shown in Section V and the Appendix, due to the form
of H̄Uk

from (25) and (26) and its relation to the exact Hessian
HUk

of f(U,Vk ) at Uk , l(U|Uk ,Vk ) bounds f(U,Vk ) from
above and hence the conditions set by the BSUM framework are
satisfied. Actually, the approximation of the exact Hessian by
using (25) leads to a closed-from expression for updating U and
a dramatic decrease of the required computational complexity,
as it will be further explained below.

Following a similar path as above we come up with appropri-
ate upper-bound functions for updating V i.e,

Vk+1 = argmin
V

g(V|Uk+1 ,Vk ) (28)

with

g(V|Uk+1 ,Vk ) = f(Uk+1 ,Vk )

+ tr{(V − Vk )T ∇Vf(Uk+1 ,Vk )}

+
1
2
vec(V − Vk )T H̄Vk

vec(V − Vk )

(29)
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Algorithm 1: Alternating Iteratively Reweighted Least
Squares (AIRLS) Denoising Algorithm.

Input: Y, λ > 0
Initialize: k = 0,V0 ,U0 ,D(U0 ,V0 )
repeat

Uk+1 = YVk

(
VT

k Vk + λD(Uk ,Vk )
)−1

Vk+1 = YT Uk+1
(
UT

k+1Uk+1 + λD(Uk + 1 ,Vk )
)−1

k = k + 1
until convergence
Output: Û = Uk+1 , V̂ = Vk+1

and H̄Vk
being a block diagonal md × md matrix (similar to

H̄Uk
) whose d × d diagonal blocks H̃Vk

are defined as

H̃Vk
= UT

k+1Uk+1 + λD(Uk + 1 ,Vk ) . (30)

By solving (23) and (28) we obtain analytical expressions for
Uk+1 and Vk+1 that constitute the main steps of the pro-
posed denoising algorithm given in Algorithm 1. As explained
in Section IV, Algorithm 1 is an alternating IRLS (AIRLS)
algorithm for low rank matrix factorization applied to data
denoising.

B. Matrix Completion

Next the matrix completion problem, under the matrix factor-
ization setting stated in (20), is addressed. As mentioned earlier,
matrix factorization offers scalability making the derived algo-
rithms amenable to processing big and high dimensional data.
It should be emphasized that in the proposed formulation of the
problem (20), the impediments arising by the low-rank promot-
ing term (Remark 1) are now complemented by the difficulty
to get computationally efficient matrix-wise updates for U and
V, due to the presence of the sampling operator PΩ in the data
fitting term. That said, the objective function is now modified as

f(U,V) =
1
2
‖PΩ

(
Y − UVT

) ‖2
F

+ λ

d∑

i=1

(‖ui‖2
2 + ‖vi‖2

2 + η2)p/2 . (31)

As in the denoising problem, we minimize quadratic upper-
bound functions based on approximate second-order Taylor ex-
pansions. In this respect, in order to get closed-form analyti-
cal expressions for Uk+1 and Vk+1 that involve exclusively
matrix operations, we select again the upper bound functions
l(U|Uk ,Vk ) and g(V|Uk+1 ,Vk ) defined in (24) and (29),
with H̄Uk

and H̄Vk
as given before, but f(U,V) now defined

as in (31). The resulting efficient matrix-wise update formu-
las are shown in Algorithm 2, where the new AIRLS matrix
completion algorithm (AIRLS-MC) is presented.

Remark 2: For λ > 0, approximation matrices H̄Uk
and

H̄Vk
are always positive definite and hence invertible. In other

words, both l(U|Uk ,Vk ) and g(V|Uk+1 ,Vk ) are strictly con-
vex and hence have unique minimizers. In addition, since ap-
proximations of the exact Hessians are used in the two block

Algorithm 2: AIRLS Matrix Completion (AIRLS-MC)
Algorithm.

Input: Y, λ > 0
Initialize: k = 0,U0 ,V0 ,D(U0 ,V0 )
repeat

Uk+1 = Uk − (PΩ
(
UkVT

k − Y
)
Vk

+λUkD(Uk ,Vk )
) (

VT
k Vk + λD(Uk ,Vk )

)−1

Vk+1 = Vk − (PΩ
(
VkUT

k+1 − YT
)
Uk+1

+λVkD(Uk + 1 ,Vk )
) (

UT
k+1Uk+1 + λD(Uk + 1 ,Vk )

)−1

k = k + 1
until convergence
Output: Û = Uk+1 , V̂ = Vk+1

problems, we end up with quasi-Newton type update formulas
for U and V.

Remark 3: The gain of using matrices H̄Uk
and H̄Vk

in the
approximation of the exact Hessians of f(U,V) (given either
by (22) or (31)) w.r.t. U and V is twofold. Not only (as proven
in the Appendix) we remain in the BSUM framework, which
offers favorable theoretical properties, but also we are able to
update U and V at a very low computational cost. As it can be
noticed in Algorithms 1 and 2, the inversions of H̄Uk

and H̄Vk

involved in the updates of U and V reduce to the inversions of
the d × d matrices H̃Uk

and H̃Vk
thus inducing complexity in

the order of O(d3). Contrary, utilization of the exact Hessians
w.r.t. U and V would have given rise to inversions with much
higher computational complexity i.e., O(max(m,n) × d3).

IV. RELATION TO PRIOR ART

The proposed algorithms belong to the family of iteratively
reweighted least squares minimization algorithms, which date
back to the 1930’s [30]. Recently, the IRLS method has been
adopted for sparse vector recovery in [16], leading to an iterative
algorithm that solves the following minimization problem at the
(k + 1)th iteration

xk+1 = arg min
x

m∑

i=1

wk
i x2

i s.t. A(x) = b, (32)

where the sparse vector x = [x1 , x2 , . . . , xm ]T ∈ Rm×1 and
wk

i = (|xk
i |2 + η2)p/2−1 . Theoretical guarantees for sparse sig-

nal recovery have been provided in [16] for p = 1. To generalize,
the minimization problem in (32) can be extended to promote
structured (group) sparsity as follows

xk+1 = arg min
x

d∑

i=1

wk
i ||xi ||22 s.t. A(x) = b, (33)

where now x = [xT
1 ,xT

2 , . . . ,xT
d ]T is structured in d groups and

wk
i = (||xk

i ||22 + η2)p/2−1 .
More recently, the same idea has been applied for low-rank

matrix recovery in [18]. In this vein the minimization problem
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is properly adjusted as,

Xk+1 = arg min
X

tr(WkXT X) s.t. A(X) = b, (34)

and Wk = (XT
k Xk + η2In )p/2−1 . As explained in Section II

and eq. (4), this problem is equivalent to minimizing the
Schatten-p quasinorm of X, thus promoting low-rank solutions.

To place our method in the above described framework, we
rewrite our generic optimization problem, given in (15), as
follows,

min
U ,V

d∑

i=1

(‖ui‖2
2 + ‖vi‖2

2)
p/2−1(‖ui‖2

2 + ‖vi‖2
2)

s.t. A(UVT ) = b. (35)

Then, from (35) we can define the following IRLS minimization
scheme

{Uk+1 ,Vk+1} = argmin
U ,V

d∑

i=1

wk
i (‖ui‖2

2 + ‖vi‖2
2)

s.t. A(UVT ) = b, (36)

where wk
i = (‖uk

i ‖2
2 + ‖vk

i ‖2
2 + η2)p/2−1 . This optimization

task can be solved alternatingly with respect to U and V as
follows,

Uk+1 = argmin
U

d∑

i=1

wk,k
i ‖ui‖2

2 s.t. A(UVT
k ) = b, (37)

Vk+1 = argmin
V

d∑

i=1

wk+1,k
i ‖vi‖2

2 s.t. A(Uk+1VT ) = b,

(38)

where wk,k
i = (‖uk

i ‖2
2 + ‖vk

i ‖2
2 + η2)p/2−1 and wk+1,k

i =
(‖vk

i ‖2
2 + ‖uk+1

i ‖2
2 + η2)p/2−1 . It can be shown that if we con-

sider a LS data fitting term in our objective function, the so-
lution of the IRLS schemes (37) and (38) leads to the same
exact expressions for Uk+1 and Vk+1 as those obtained for
AIRLS in the previous section. Note that (37) and (38) hold
close resemblance with the minimization problem (33) via the
correspondence of the block vectors xi with the column vectors
ui and vi respectively. Hence, as (33) imposes group sparsity on
a vector quantity, (37) and (38) are expected to induce column
sparsity on the matrix [UV ] thus promoting low-rankness in a
matrix factorization framework.

This key feature of the proposed algorithms let us incorporate
a pruning procedure which removes the columns that are zeroed
as the algorithms evolve. By doing so, the per iteration compu-
tational complexity of the algorithms is gradually reduced, and
this reduction may become significant, as is also highlighted in
Section VI, where empirical numerical results are presented.

V. CONVERGENCE ANALYSIS

In this part of the paper we analyze the convergence behavior
of AIRLS and AIRLS-MC as presented in Section III and ignor-
ing the above mentioned pruning procedure which is basically
an algorithmic mechanism to reduce complexity. The analysis

is common for the two algorithms, since, as mentioned above,
both minimize upper bound surrogate functions of the same
form. Towards this, we first prove the following Lemma.

Lemma 1: The surrogate functions l(U|Uk ,Vk ) and
g(V|Uk+1 ,Vk ) minimized at each iteration of AIRLS and
AIRLS-MC are tight upper-bounds of the corresponding
f(U,Vk ) and f(Uk+1 ,V) with f(U,V) defined in eqs. (22)
and (31) for the two algorithms, respectively.

Proof: See Appendix.
Having shown that the proposed surrogate objective functions

are upper bounds of the actual ones, in Proposition 2 given
below the monotonic decrease of the initial objective functions
per iteration of the respective algorithms is established.

Proposition 2: The sequences of {Uk ,Vk} generated by
AIRLS and AIRLS-MC decrease monotonically the respective
objective functions i.e.,

f(Uk+1 ,Vk+1) ≤ f(Uk+1 ,Vk ) ≤ f(Uk ,Vk ). (39)

Proof: See Appendix.
Corollary 1: The sequence f(Uk ,Vk ) converges to f∞ ≥

0, as k → ∞, for both AIRLS and AIRLS-MC.
Proof: Since the objective functions for both algorithms are

monotonically decreasing (Proposition 2) and bounded below
by 0, the claim follows immediately.

A. Convergence to Stationary Points and Rate of Convergence

Having shown that the updates (Uk ,Vk ) generated by
AIRLS and AIRLS-MC monotonically decrease the corre-
sponding objective functions, we herein derive the rates of con-
vergence of the algorithms to stationary points of the functions.
The subsequent analysis is along the lines of the one presented
in [4].

Given any pair (U,V) we define matrices U∗,V∗ arising by
the following minimization problems

U∗ = argmin
U+

l(U+ |U,V) (40)

V∗ = argmin
V+

g(V+ |U∗,V). (41)

Let us now denote as Δ((U,V), (U∗,V∗)) the following mea-
sure of proximity between (U,V) and (U∗,V∗),

Δ((U,V), (U∗,V∗)) =
1
2

(
‖V (U − U∗)

T ‖2
F

+ ‖U∗ (V − V∗)
T ‖2

F

)
+

λ

2

(
‖D 1

2
(U ,V ) (U − U∗)

T ‖2
F

+ ‖D 1
2
(U∗,V ) (V − V∗)

T ‖2
F

)
. (42)

Lemma 2: Successive differences in the objective values of
cost functions f(U,V) corresponding to AIRLS and AIRLS-
MC are bounded below as follows,

f (Uk , Vk ) − f (Uk+1 , Vk+1) ≥ Δ((Uk , Vk ), (Uk+1 , Vk+1)).
(43)

Proof: See Appendix.
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Lemma 3: Δ((U,V), (U∗,V∗)) = 0 if and only if (U,V)
generated by AIRLS (AIRLS-MC) algorithm is a fixed point of
AIRLS (AIRLS-MC).

Proof: See Appendix.
As stated above, Δ((Uk ,Vk ), (Uk+1 ,Vk+1)) is actually

used for quantifying the distance between (Uk ,Vk ) and
(Uk+1 ,Vk+1) generated in successive iterations of the pro-
posed algorithms. Thus, it is obvious that if the algorithms con-
verge this measure will become equal to zero. For ease of nota-
tion, we will next denote this quantity as δk . That said, the main
result of this section is summarized in the following proposition.

Proposition 3: a) Any limit point of the sequences {Uk ,Vk}
generated by AIRLS and AIRLS-MC is a stationary point of the
respective objective function f(U,V), for λ > 0. b) AIRLS and
AIRLS-MC converge sublinearly to stationary points with their
rates of convergence expressed as

min
1≤k≤K

δk ≤ f(U1 ,V1) − f∞

K
. (44)

Proof: See Appendix.
Assumption 1: The eigenvalues of UT

k Uk and VT
k Vk for

k ≥ 1 are uniformly bounded below and above by lL and lU
respectively, i.e.,

lLId  UT
k Uk  lU Id and lLId  VT

k Vk  lU Id . (45)

Using Assumption 1 we can provide more refined information
with regard to the rates of convergence, bringing into play the
curvature characteristics of the cost functions as well as the
regularization parameter λ.

Corollary 2: Under Assumption 1, we can derive the follow-
ing convergence rate for Algortithms 1 and 2:

min
1≤k≤K

‖Uk+1 − Uk‖2
F + ‖Vk+1 − Vk‖2

F

≤ 4τ

2lLτ + λ

f(U1 ,V1) − f∞

K
, (46)

where τ = max1≤i≤d(‖ui‖2
2 , ‖vi‖2

2).
Proof: It can be easily proved by suitably modifying δk using

the inequalities lL‖Uk − Uk+1‖2
F ≤ ‖Vk (Uk − Uk+1)

T

‖2
F ≤ lU ‖Uk − Uk+1‖2

F and lL‖Vk − Vk+1‖2
F ≤ ‖Uk+1

(Vk − Vk+1)
T ‖2

F ≤ lU ‖Vk − Vk+1‖2
F .

VI. EXPERIMENTS

Next simulated and real data experiments are provided for
illustrating the key features of the proposed AIRLS and AIRLS-
MC algorithms. It has been empirically observed that parameter
p does not seem to play a crucial role in the performance of
the algorithms. Therefore, in all experiments provided next, the
parameter p is set to 1. For comparison purposes, an alternating
regularized least squares (noted here as ALS) algorithm corre-
sponding to the full-observation version of the softImpute-ALS
proposed in [4] is utilized in the denoising type problems. In
matrix completion experiments the softImpute-ALS algorithm,
[4], and the iterative reweighted nuclear norm (IRNN) algo-
rithm of [31] are employed. It should be noted that IRNN goes
beyond the traditional nuclear norm minimization by imposing

various sparsity imposing priors on the vector of singular val-
ues. This scheme gives rise to weighted nonconvex analogues
of the traditional nuclear norm. In the sequel, we restrict our
attention to IRNN which arises by applying the �1/2 quasinorm
on the vector of singular values. Note that IRNN, unlike AIRLS
and softImpute-ALS, is not an MF-based approach and thus
involves computationally demanding singular value decompo-
sition (SVD) operations at each iteration. It should be noted that
for the two proposed algorithms a column pruning mechanism
is applied. That is, when a column of the matrix factors has
been (approximately) zeroed, it is removed, thus reducing the
column size of the factors. As a result, the per iteration com-
plexity is being reduced during the execution of the algorithms.
All experiments were conducted on an Intel Core i7-4790 CPU
3.60GHz x 8 CPU with 16GB RAM.

A. Simulated Data Experiments

Herein we highlight the benefits of the proposed AIRLS and
AIRLS-MC algorithms on simulated data. To this end, the al-
gorithms are tested on two different experimental setups i.e. a)
for checking the performance of AIRLS in the presence of noise
and b) for testing the capacity of AIRLS-MC in dealing with
different percentages of missing data.

1) AIRLS: In order to validate the performance of AIRLS
in the presence of noise a matrix X0 ∈ Rm×n with m = 1000,
n = 1000 and varying rank r ∈ {5, 10} is randomly generated.
Concretely, matrix X0 is produced by the product of two matri-
ces i.e., U0 ∈ Rm×r and VT

0 ∈ Rr×n having zero-mean Gaus-
sian entries of variance 1. Additive Gaussian i.i.d. noise of dif-
ferent signal to noise ratio (SNR) i.e., SNR ∈ {10, 20} corrupts
X0 , thus resulting to the data matrix Y, which is then provided
as input to the tested algorithms. AIRLS is compared to the
ALS algorithm, as mentioned before. As a quantitative metric
we utilize the normalized reconstruction error (NRE) defined

as NRE = ‖X0 −ÛV̂T ‖F

‖X0 ‖F
. Since we are interested in the recovery

performance of the algorithms, the low-rank promoting param-
eter λ of the algorithms is selected from a set of values {0.1,
1, 5, 10, 50, 80, 100, 200} via fine tuning in terms of the low-
est achieved NRE. The algorithms stop when either the relative
decrease of the reconstructed data between two successive iter-

ations i.e.,
‖Ûk V̂T

k −Ûk + 1 V̂T
k + 1 ‖F

‖Ûk V̂T
k ‖F

, becomes less than 10−5 or 500

iterations are reached. 100 independent runs are performed for
each algorithm and the average values of the various quantities
(elapsed time, NRE, iterations executed and estimated rank) are
calculated. The initial rank is set to d = 25.

In Table I, the results of AIRLS and ALS are given. Therein, it
is shown that AIRLS offers better estimation performance than
ALS in all experiments. Interestingly, in most cases, this happens
in less time than that spent by ALS within fewer iterations.

Next we aim at illustrating the competence of AIRLS in es-
timating the actual rank of X0 as well as showing the gains
obtained by using the column pruning mechanism, which is
adopted for the proposed algorithms. To this end, the same ex-
perimental setting described above is used. Again, the initial
rank d is set to 25, and the low-rank regularization parameter
λ is fine-tuned with respect to the minimum achieved NRE.
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TABLE I
RESULTS OBTAINED BY ALS AND AIRLS ON THE SIMULATED DENOISING EXPERIMENT

TABLE II
RESULTS OBTAINED BY ALS, AIRLS AND AIRLS WITH NO COLUMN PRUNING MECHANISM (AIRLS-(NO CP)) ON A SIMULATED DENOISING EXPERIMENT FOR

DIFFERENT VALUES OF THE RANK

The SNR is kept fixed to 15 dB and 5 different values of the
true rank, i.e., r ∈ {5, 10, 15, 20} are considered. For compari-
son purposes, ALS and a variant of AIRLS having the column
pruning mechanism deactivated are utilized. As it can be seen
in Table II, contrary to ALS, AIRLS estimates the actual rank
in less running time regardless of the use of the column prun-
ing mechanism. Notably, in the case that the column pruning
mechanism is deactivated, the number of the nonzero columns
of the estimated matrix factors after convergence coincides with
the true rank. This key observation verifies the column-sparsity
promoting characteristic of the proposed low-rank regulariza-
tion term. As it can be also seen, the two AIRLS versions
converge to the same NRE. It is thus evident from Table II
that the effect of the incorporation of the column pruning is
merely to decrease the running time of the algorithms, as a
consequence of the gradual reduction of the size of the matrix
factors.

2) AIRLS-MC: To evaluate the performance of AIRLS-MC
in different scenarios, we classify the experimental settings
of this subsection according to the degrees of freedom ratio
(FR), [18], defined as FR = r(2n − r)/card(Ω). Recovery be-
comes harsher as FR is close to 1, whereas easier problems
arise when it takes values close to 0. AIRLS-MC is compared
to softImpute-ALS and IRNN for FR equal to 0.4 and 0.6.
In both cases a low-rank matrix X0 ∈ Rm×n with m = 1500,
n = 1500 and rank r = 20 is generated following the same
setting as in the case of the denoising experiment described
above. The NRE is used as the performance metric. For all
algorithms, the parameter λ which is related to low-rank im-
position, is fine tuned and the initial rank of the MF-based
methods is set to 35. The algorithms run for 20 instances of
each experiment and the mean values of iterations, NRE and
time to converge are given in Table III. Moreover, the same
stopping criteria mentioned previously are utilized. As is shown
in Table III, AIRLS-MC offers significantly higher accuracy
than softImpute-ALS in both experiments. On the other hand,
IRNN performs similarly to AIRLS in terms of NRE, at the
cost of a much higher runtime. This shortcoming of IRNN is
due to the computationally demanding SVDs executed at each
iteration.

TABLE III
RESULTS OF AIRLS-MC, SOFTIMPUTE-ALS AND IRNN ON THE SIMULATED

MATRIX COMPLETION EXPERIMENT

B. Real Data Experiments

In this section we validate the performance of the proposed
algorithms in two different real data experiments. The AIRL
algorithm is evaluated in denoising a real hyperspectral image
(HSI) and a collaborative filtering application is used for testing
the performance of AIRLS-MC algorithm.

1) Hyperspectral Image Denoising: In this experiment we
utilize the Washigton DC Mall AVIRIS HSI captured at m =
210 contiguous spectral bands in the 0.4 to 2.4 μm region
of the visible and infrared spectrum. The HSI consists of
n = 22500 (150 × 150) pixels. As is widely known, [32], hy-
perspectral data are highly coherent both in the spectral and
the spatial domains. Therefore, by organizing the tested image
in a matrix, whereby each column corresponds to the spectral
bands and each row to the pixels, it turns out that this matrix
can be well approximated by a low-rank one. This fact moti-
vates us to exploit the low-rank structure of the HSI under study
for efficiently denoising a highly corrupted version thereof by
Gaussian i.i.d. noise of SNR = 6 dB.

In Fig. 1, false RGB images of the recovered HSIs by the
proposed AIRLS algorithm and ALS are provided. In both algo-
rithms, the number of columns of the initial factors U0 and V0 is
overstated to d = 100 and the algorithms terminate when the rel-
ative decrease of the reconstructed HSI between two successive
iterations reaches a value less than 10−4 . Moreover, their low-
rank promoting parameter λ is selected so as to lead to solution
matrices Û and V̂ of the same rank r = 4. As it can be noticed in
Fig. 1, AIRLS reconstructs the HSI in a significantly improved
accuracy as compared to ALS. This can be easily verified both
by visually inspecting Figs. 1(a)–1(d) and quantitatively in terms
of the estimated NRE (Fig. 1(e)). Notably, AIRLS converges in
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Fig. 1. Evaluation of AIRLS and ALS on the Washigton DC AVIRIS dataset.

less iterations than those required by ALS (Fig. 1(e)), while at
the same time less time per iteration is consumed, on average.
The latter is achieved by virtue of the column pruning mech-
anism of AIRLS, which gradually reduces the size of matrix
factors from m × 100 and n × 100 to m × 4 and n × 4, respec-
tively. This way, after only a few initial iterations, when the rank
starts to decrease, the per iteration time complexity of AIRLS
becomes much smaller than that required in its early iterations,
as well as the one of ALS.

2) MC on Movielens 100K and 1M datasets: Herein, we
focus on testing the performance of AIRLS-MC algorithm on
a popular collaborative filtering application i.e. a movie rec-
ommender system. To this end, we utilize two well-studied in
literature large datasets: the Movielens 100K and the Movielens
1M datasets. Both datasets contain ratings by users collected
over various periods of time, with integer values ranging from
1–5. Since most of the entries are missing, matrix completion
algorithms can be utilized for predicting them. By assuming
that there exists a high degree of correlation amongst the rat-
ing of different users, a low-rank structure can be meaningfully

Fig. 2. NMAE and relative objective vs time evolution (up to 100 secs) of
AIRLS-MC, softImpute-ALS and IRNN on the Movielens 100K validation
dataset.

adopted for these datasets. For the case of the 100K dataset
the “ub.base”2 file which contains ≈90% of the total ratings
was splitted into two disjoint sets i.e., a training set (consist-
ing of ≈65% of the total per user ratings) and a validation set
(≈25%). The “ub.test” file which contains ≈10% of the ratings
was utilized as the test set. For the case of the 1M Movielens
dataset, the “ratings.dat” file was splitted into 3 disjoint sets,
that is, a training set consisting of ≈50% of the total ratings
per user, a validation set ≈25% and a test set (≈25%). Note
that the 100K dataset contains 100000 ratings of 943 users on
1682 movies with each user having rated at least 20 movies.
That said, we need to address a quite challenging matrix com-
pletion problem, since 93% of the elements are missing. The
situation is even harsher for the 1M dataset, which includes
1 million ratings from 6040 users on 3900 movies and 96%
missing data. Finally, the normalized mean absolute value error

(NMAE) defined as NMAE =
∑

( i , j )∈Ω |[UVT ]i j −[Y ]i j |
4card(Ω) is used

as a performance metric.
First, we aim at illustrating the behavior of the proposed

AIRLS-MC algorithm when it comes to the estimation perfor-
mance and the speed of convergence. In this regard, for the case
of the 100K dataset, the state-of-the-art IRNN and softImpute-
ALS algorithms are utilized for comparison purposes. The low-
rank promoting parameter λ of all competing algorithms is se-
lected according to two different scenarios: A) we choose λ that
achieves the minimum NMAE on the validation set after con-
vergence and B) we select λ so that the estimated matrices by
both the tested algorithms are of the same rank, equal to 10. It
should be noted that the same stopping criterion used in the pre-
vious experiment is adopted also here. As it can be seen in Fig. 2
and Table IV, the softImpute-ALS algorithm requires in general

2Movielens 100K and 1M datasets can be downloaded from
https://grouplens.org/datasets/movielens/
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TABLE IV
RESULTS OBTAINED BY AIRLS-MC AND SOFTIMPUTE-ALS ON

MOVIELENS 100K DATASET

less iterations to converge than both AIRLS-MC and IRNN.
However, the average per-iteration time complexity of AIRLS-
MC is significantly less compared to its rivals. As is mentioned
above, this is attributed to the column pruning scheme which
decreases to a large degree the computational burden of the
algorithm. This favorable property, results to a faster conver-
gence of AIRLS-MC in both scenarios A and B as compared to
both softImpute-ALS and IRNN in terms of time. Among the
three algorithms tested, IRNN is clearly the most demanding
one in terms of average per-iteration time complexity as it can
be observed from Fig. 2. As mentioned above, this is ascribed
to the fact that IRNN entails “expensive” SVD operations, in
sharp contrast to the other two MF-based algorithms. It should
be noted that in scenario A, the estimated by AIRLS-MC and
IRNN matrices Û and V̂ have rank equal to 6. On the other
hand, in softImpute-ALS the solution matrices have rank equal
to the one used at the initialization stage i.e., 100.

When it comes to the generalization performance of the pro-
posed algorithm, from Table IV it can be observed that, in
both scenarios A and B, AIRLS-MC achieved lower NMAE
on the unseen test set than its MF counterpart softImpute-ALS
and slightly lower NMAE than IRNN. This actually shows that
the reduced computational complexity of AIRLS-MC does not
come at a price of inferior performance in terms of the accuracy
of the estimated matrices. Lastly, from Fig. 2 it can be noticed
that the relative objective of AIRLS-MC presents abrupt in-
creases at some iterations. It was experimentally verified that
those changes (which imply large decreases of the successive
values of the objective function) take place at iterations that
coincide with zeroings of the columns of the matrix factors.
This fact advocates that larger gains are obtained at iterations
where the rank is reduced, as we are approaching at the low-rank
solution matrices.

Fig. 3 and Table V show the performance of AIRLS-MC and
softImpute-ALS on the 1M Movielens dataset.3 The parameter
λ of AIRLS-MC and softImpute-ALS is fined tuned, in the
same way as in the 100K experiment, based on the best NMAE
attained by the algorithms on the validation set. The rank is again
initialized to d = 100 for both algorithms. Interestingly, AIRLS-
MC reaches a more accurate solution in terms of the NMAE (as
evaluated on the test set) in almost 40% of the time required by
softImpute-ALS. Again, AIRLS-MC requires more iterations to
converge as compared to its competitor. Nevertheless, as it can
be also seen in Fig. 3, the column pruning mechanism which

3IRNN has not been included in this experiment owing to its higher compu-
tational requirements as compared to both the MF-based algorithms.

Fig. 3. Evaluation of AIRLS-MC and softImpute-ALS on 1M Movielens
dataset.

TABLE V
RESULTS OBTAINED BY AIRLS-MC AND SOFTIMPUTE-ALS ON

MOVIELENS 1M DATASET

is activated in the initial iterations of AIRLS-MC results to a
significant reduction of the average time spent per iteration.

VII. CONCLUSION

This paper presents a novel generic formulation of the
low-rank matrix factorization problem. Borrowing ideas from
iteratively reweighted approaches for rank minimization, a
reweighted version of the sum of the squared Frobenious norms
of the matrix factors i.e., a non-convex variational characteriza-
tion of the nuclear norm, is defined. The proposed framework
encapsulates other state-of-the-art approaches for low-rank im-
position on the matrix factorization setting. By focusing on a
specific instance of this scheme we define a joint-column spar-
sity inducing regularizer that couples the columns of the matrix
factors. As is mathematically shown, the resulting low-rank reg-
ularization term is a tight-upper bound of a specific version of
the recently proposed weighted nuclear norm. The ubiquity of
the proposed approach is demonstrated in the problems of de-
noising and matrix completion. To this end, under the block suc-
cessive upper bound minimization framework, alternating IRLS
type algorithms are devised for addressing the afore-mentioned
problems. The efficiency of the proposed algorithms in handling
big and high-dimensional data as compared to other state-of-
the-art algorithms is illustrated in a wealth of simulated and real
data experiments.

APPENDIX

A. Proof of Proposition 1

The upper bound expression given in (14) can be easily estab-
lished starting from (10) with WU = WV = W, and W given
by (11), following the lines of [33, Lemma 7] and assuming,
without loss of generality, that the columns of the concatenated
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matrix [UV ] are arranged in non-increasing order with respect to
their �2 norms.

B. Proof of Lemma 1

The surrogate functions l(U|Uk ,Vk ) and g(V|Uk+1 ,Vk )
given in eqs. (24) and (29), are twice continuously differen-
tiable and constitute approximations of the second order Tay-
lor expansions of the initial cost functions around (Uk ,Vk )
and (Uk+1 ,Vk ) respectively. In (24), the true Hessian HUk

of f(U,Vk ) at Uk has been approximated by the md × md
positive-definite block diagonal matrix H̄Uk

defined in (25).
H̄Vk

is similarly defined. Our analysis is next focused on
l(U|Uk ,Vk ). It can be easily shown that similar derivations
can be made for g(V|Uk+1 ,Vk ). As it can be seen by eq. (24),
l(U|Uk ,Vk ) equals f(U,Vk ) at (Uk ,Vk ). In order to show
that it majorizes f(U,Vk ) for all other points closeby, it suffices
to show that matrix A = H̄Uk

− HUk
is positive semi-definite

[29]. Next we prove that for each of the two problems examined,
the above-mentioned property holds for A.

In denoising H̃Uk
= VT

k Vk + λD(Uk ,Vk ) , whereD(Uk ,Vk )
is defined in eq. (27). Moreover it can be shown that for the exact
Hessian HUk

at Uk we get

HUk
= Im ⊗ (VT

k Vk ) + λK, (47)

where K = [Kij ], i, j = 1, 2, . . . ,m consists of d × d blocks
Kij defined in (48) shown at the bottom of this page. Hence
matrix A = [Aij ] is expressed as follows

A = Im ⊗ D(Uk ,Vk ) − λK. (49)

Elaborating on A we get from (49), (48) and (27),

Aij = λp(2 − p)diag

(
uk

i1u
k
j1

(‖uk
1‖2

2 + ‖vk
1‖2

2 + η2
)2−p/2 , . . . ,

uk
idu

k
jd

(‖uk
d‖2

2 + ‖vk
d‖2

2 + η2
)2−p/2

)

.

(50)

Notice that for

Bi =
√

λp(2 − p)diag

(
uk

i1
(‖uk

1‖2
2 + ‖vk

1‖2
2 + η2

)1−p/4 , . . . ,

uk
id

(‖uk
d‖2

2 + ‖vk
d‖2

2 + η2
)1−p/4

)

(51)

Aij = BT
i Bj . So by defining B = [B1 , . . . ,Bm ], it is straight-

forward that A = BT B, that is A is positive semi-definite.

In matrix completion, the exact HessianHUk
differs from that

given in (47) in the diagonal blocks only. More specifically, the
ith diagonal block of HUk

takes now the form VT ΦiV + Kii ,
where Φi is a n × n diagonal matrix containing ones on indexes
included in the set Ω and related to the ith row of Y and zeros
elsewhere. Since VT V − (VT ΦiV) � 0, we can use the same
arguments as above for proving the semi-definiteness of the
respective matrix A.

C. Proof of Proposition 2

From Lemma 1 we have,

l(U|Uk ,Vk ) ≥ f(U,Vk ) (52)

Since Uk+1 = argmin
U

l(U|Uk ,Vk ) we get

l(Uk+1 |Uk ,Vk ) ≤ l(Uk |Uk ,Vk ) ≡ f(Uk ,Vk ) (53)

and l(Uk+1 |Uk ,Vk ) ≥ f(Uk+1 ,Vk ) which leads to

f(Uk+1 ,Vk ) ≤ f(Uk ,Vk ). (54)

Following the same reasoning, and since Vk+1 =
argminV g(V|Uk+1 ,Vk ) we get

g(Vk |Uk+1 ,Vk ) ≡ f(Uk+1 ,Vk ) ≥
g(Vk+1 |Uk+1 ,Vk ) ≥ f(Uk+1 ,Vk+1) (55)

Combining (54) and (55) we get (39).

D. Proof of Lemma 2

Using Lemma 1, we have,

f(Uk ,Vk ) − f(Uk+1 ,Vk )

≥ l(Uk |Uk ,Vk ) − l(Uk+1 |Uk ,Vk ) and (56)

f(Uk+1 ,Vk ) − f(Uk+1 ,Vk+1)

≥ g(Vk |Uk+1 ,Vk ) − g(Vk+1 |Uk+1 ,Vk ) (57)

Adding (56) and (57) we reach to the following inequality

f(Uk ,Vk ) − f(Uk+1 ,Vk+1)

≥ l(Uk |Uk ,Vk ) − l(Uk+1 |Uk ,Vk )

+ g(Vk |Uk+1 ,Vk ) − g(Vk+1 |Uk+1 ,Vk ) (58)

Since Uk+1 and Vk+1 are stationary points of l(U|Uk ,Vk )
and g(V|Uk+1 ,Vk ) respectively

(∇U l(Uk+1 |Uk ,Vk ) = 0 and ∇Vg(Vk+1 |Uk+1 ,Vk ) =
0) and by their second order Taylor expansions around

Kij =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

pdiag
(

‖uk
1 ‖2

2 +‖vk
1 ‖2

2 −(2−p)(uk
i 1 )2 +η 2

(‖uk
1 ‖2

2 +‖vk
1 ‖2

2 +η 2 )2−p / 2 , . . . ,
‖uk

d ‖2
2 +‖vk

d ‖2
2 −(2−p)(uk

i d )2 +η 2

(‖uk
d ‖2

2 +‖vk
d ‖2

2 +η 2 )2−p / 2

)

, if i = j

p(2 − p)diag
(

−uk
i 1 uk

j 1

(‖uk
1 ‖2

2 +‖vk
1 ‖2

2 +η 2 )2−p / 2 , . . . ,
−uk

i d uk
j d

(‖uk
d ‖2

2 +‖vk
d ‖2

2 +η 2 )2−p / 2

)

, if i �= j

(48)
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(Uk+1 ,Vk ) and (Uk+1 ,Vk+1) we have

l(Uk |Uk ,Vk ) − l(Uk+1 |Uk ,Vk )

=
1
2
tr{(Uk − Uk+1)

(
VT

k Vk

+ λD(Uk ,Vk )
)
(Uk − Uk+1)

T } (59)

=
1
2
‖Vk (Uk − Uk+1)

T ‖2
F

+
λ

2
‖D 1

2
(Uk ,Vk ) (Uk − Uk+1)

T ‖2
F (60)

and

g(Vk |Uk+1 ,Vk ) − g(Vk+1 |Uk+1 ,Vk )

=
1
2
tr{(Vk − Vk+1)

(
UT

k+1Uk+1

+ λD(Uk + 1 ,Vk )
)
(Vk+1 − Vk )T } (61)

=
1
2
‖Uk+1 (Vk − Vk+1)

T ‖2
F

+
λ

2
‖D 1

2
(Uk + 1 ,Vk ) (Vk − Vk+1)

T ‖2
F (62)

Combining (60), (62) and (58) we get inequality (43).

E. Proof of Lemma 3

If (U,V) is a fixed point, i.e. U = U∗ and V = V∗,
then it is easily shown that Δ((U,V), (U∗,V∗)) = 0. Con-
versely, using (60) and (62) and since all the summands
of Δ((U,V), (U∗,V∗)) are non-negative, we have that if
Δ((U,V), (U∗,V∗)) = 0 then

l(U|U,V) − l(U∗|U,V) = 0 and (63)

g(V|U∗,V) − g(V∗|U∗,V) = 0. (64)

Since both l(U|U,V) and g(V|U∗,V) are strictly convex func-
tions, U∗ and V∗ are uniquely acquired. Hence the above equal-
ities hold only if (U,V) = (U∗,V∗), that is (U,V) is a fixed
point of AIRLS (AIRLS-MC).

F. Proof of Proposition 3

a) We say that (U∗,V∗) is a first order stationary point of
f(U,V) given either in (22) or (31) if the following holds

∇Uf(U∗,V∗) = 0, ∇Vf(U∗,V∗) = 0. (65)

Due to the adopted upper bound minimization approach, it is
easily shown that (65) can be equivalently restated as [4],

U∗ = arg min
U

l(U|U∗,V∗), V∗ = arg min
V

g(V|U∗,V∗)

(66)

i.e. (U∗,V∗) is a fixed-point of AIRLS (AIRLS-MC).
Now, for λ > 0, the sequence {Uk ,Vk} generated by AIRLS

(AIRLS-MC) remains bounded since f(Uk ,Vk ) is coercive
(i.e., f(Uk ,Vk ) → +∞ iff ‖U‖F → +∞ or ‖V‖F → +∞)
and thus contains convergent subsequences. Let (U∗,V∗) be a
limit point of AIRLS (AIRLS-MC). That said, there will be

a subsequence {Uk ,Vk} that converges to (U∗,V∗) hence
Δ((Uk ,Vk ), (U∗,V∗)) → 0. From Lemma 3, we know that
Δ((Uk ,Vk ), (U∗,V∗)) = 0 iff (U∗,V∗) is a fixed point of the
algorithms. Hence, due to the equivalence of (65) and (66), it
can be easily conjectured that (U∗,V∗) will be also a stationary
point of the minimized cost function.

b) Recall that δk = Δ((Uk ,Vk ), (Uk+1 ,Vk+1)). Then from
(43) by adding K successive terms we get,

K∑

k=1

δk ≤ f(U1 ,V1) − f(UK ,VK ) ≤ f(U1 ,V1) − f∞<∞.

(67)

Note that all the terms of the sequence δk take nonnegative
values. Let us now assume that there exists a subsequence of
δk that converges to a positive number. In such a case the sum∑K

k=1 δk would not be bounded as K → ∞, which contradicts
(67). Therefore, all subsequences of δk converge to zero, i.e.
the sequence δk also converges to zero. From Lemma 3, the
zero limit point of δk is in fact a fixed point of AIRLS (AIRLS-
MC) which as said above, is a stationary point of the respective
objective function f(U,V).

By substituting the first part of inequality (67) by
Kmin1≤k≤K δk ≤∑K

k=1 δk and solving for min1≤k≤K δk we
get (44), which establishes a sublinear convergence rate for the
proposed algorithms [4].
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