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Abstract—In this paper, we study the problem of time-adaptive
group sparse signal estimation from a Bayesian viewpoint. We pro-
pose two online variational Bayes schemes that are specifically de-
signed to estimate and track group sparse signals in time. The pro-
posed schemes address both the cases where the grouping infor-
mation of the signal is either known or not. For the case of known
group sparsity pattern, the proposed scheme builds on a novel hi-
erarchical model for the Bayesian adaptive group lasso. Utilizing
the variational Bayes framework, update equations for all model
parameters are given, for both the batch and time adaptive estima-
tion scenarios. To address the case where the group sparsity pat-
tern is unknown, the hierarchical Bayesian model of the former
scheme is extended by organizing the penalty parameters of the
Bayesian lasso in a conditional autoregressive model. Intrinsic con-
ditional autoregression is exploited to penalize the signal coeffi-
cients in a structured manner and thus obtain group sparse solu-
tions automatically. Again, a robust and computationally efficient
online variational Bayes estimator is developed, capitalizing on the
conjugacy of the proposed hierarchical Bayesian formulation. Ex-
perimental results are reported that corroborate the superior es-
timation performance of the proposed online schemes, when com-
pared with state-of-the-art methods.

Index Terms—Group sparsity, online variational Bayes, condi-
tional autoregressive model, generalized inverse Gaussian distri-
bution.

I. INTRODUCTION

DAPTIVE parameter (or signal) estimation is a research

topic of paramount importance in the area of statistical
signal processing. It entails time recursive parameter estima-
tion techniques that take advantage of the statistical properties
of sequentially observed, streaming data, [1]. Adaptive signal
estimation has a plethora of applications, including array beam-
forming, interference and echo cancellation, system identifica-
tion, channel estimation and equalization in wireless communi-
cations, to name but a few, [2].
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During recent years, advances in the area of compressive
sensing have affected almost every aspect of modern signal pro-
cessing theory, including adaptive signal estimation. The chal-
lenge here is to exploit the attribute of sparsity, a common char-
acteristic found in many signals in nature, in order to develop
more accurate, robust and computationally efficient adaptive es-
timators. A parameter vector is considered sparse if the majority
of its components is zero or almost zero. Hence, to estimate a
sparse signal in a time adaptive environment, we need not only
to track the values of its nonzero coefficients in time, but also
to track its support set that is also subject to changes as time
evolves. To address these challenges, the sparsity imposing £;
norm has been rigorously embedded in widely used adaptive
estimators, such as the recursive least squares (RLS) algorithm,
e.g., [3], [4]. A Bayesian method to solve this problem has also
been described in [5].

More recently, and following developments pertaining to
sparse signal representation, the problem of sparse signal es-
timation has been enhanced by accounting for group sparsity.
Group sparsity differs from the traditional notion of sparsity,
in the sense that the few nonzero coefficients of a group sparse
signal form distinct clusters instead of being randomly po-
sitioned in the signal support. Group sparse signals are also
commonly found in nature, for example, they can be drawn
from applications such as image classification, [6], wireless
channel equalization, [7], speech recognition, [8], and image
denoising and fusion, [9], to name a few. Thus, it is not sur-
prising that, over the last years, a number of signal processing
methods have been specifically tailored to handle group sparse
signals.

To account first for the batch group sparse signal estimation
problem, the group lasso has been proposed in [10], serving as
an extension of the original lasso [11]. As its name suggests,
the group lasso performs variable selection by imposing sparsity
on groups of signal coefficients rather than on individual com-
ponents. In the same manner, the Bayesian counterpart of the
group lasso, [12], expands on the hierarchical Bayesian model
of the Bayesian lasso, [13], by placing multivariate Laplace
priors on separate groups. This formulation is also proposed and
described in [14], where the problem of grouped variable selec-
tion with a prior hierarchical structure is discussed too. In [15],
more generalized sparsity inducing priors are used for repre-
senting group sparse signals and the variational Bayes algorithm
is used to perform Bayesian inference. However, it is worth
pointing out that the aforementioned batch methods assume that
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the signal’s sparsity pattern is known a priori, which, unfortu-
nately, is a setting inherently difficult to encounter in most ap-
plications.

To address situations where the grouping information is en-
tirely unknown, more sophisticated methods for batch group
sparse signal estimation have been developed lately. In [16], a
block sparse Bayesian learning algorithm is presented, where
the strategy of overlapping coefficient groups is introduced. In
[17], an additional regression layer is added to the Bayesian
lasso formulation, with the aim to exploit the correlation be-
tween the sparsity inducing parameters. A Bayesian compres-
sive sensing view of the problem is also proposed in [18], where
a local Beta process is assumed on latent variables that en-
codes the signal’s sparsity structure. Besides, in the framework
of sparse Bayesian learning, covariance associations among ad-
jacent signal coefficients are taken into account in [19].

Although these methods are reliable in recovering block
sparse signals, they do not have the ability to process streaming
data sequentially. To the best of our knowledge, attempts on
time-adaptive estimation of group sparse signals are scarce
and treat exclusively the case of known sparsity pattern. For
example, an RLS type estimator is proposed in [20], where
group sparsity is imposed via the ¢; o, norm. In the same
fashion, [21] utilizes an approximation to the £, o norm, which
is again incorporated in the recursive estimation process of
the RLS algorithm. However, both these methods stem from a
deterministic framework, and, hence, are highly dependent on
the selection of appropriate parameter values.

In this paper, we develop two novel online variational Bayes
schemes that estimate group sparse time-varying signals and ad-
dress both the cases where the sparsity pattern is either known
or not. In the first case, we assume that the sparsity pattern is
known beforehand, and propose a hierarchical formulation of
the Bayesian adaptive group lasso, where independent multi-
variate Laplace distributions are placed over distinct coefficient
groups. An advantage of this formulation is that it uses conju-
gate prior distributions that facilitate the development of an effi-
cient variational Bayes algorithm to perform inference. Hence,
an iterative variational scheme is first presented for the batch es-
timation problem, which is then properly modified for the task
of online inference. In the sequel, we attack the case where the
group sparsity pattern is entirely unknown by proposing a mod-
ification in the last hierarchical level of the Bayesian model of
the former scheme. This level concerns the penalty parameters
of the proposed Bayesian adaptive group lasso, whose role is
to shrink the signal coefficients towards zero. Specifically, we
propose to organize these penalty parameters in a conditional
autoregressive model. In this way, we impose correlation be-
tween adjacent signal coefficients, which shrinks the signal to-
wards zero in a structured manner. Again, the Bayesian formula-
tion has a simple interpretation and an online variational Bayes
scheme is developed in a manner similar to the first case. The
main advantage of the proposed scheme is that group sparse
solutions are automatically obtained with essentially no addi-
tional computational cost. It should be noted that, to the best
of our knowledge, the time-adaptive estimation of group sparse
signals with unknown sparsity pattern has not been dealt with
before in the open signal processing literature. We validate the
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performance of the new schemes in a channel estimation setup,
using both synthetic and a real wireless channel, under var-
ious conditions. Extensive experimental results illustrate that, in
terms of the mean squared estimation error, the proposed online
variational Bayes schemes exhibit superior performance com-
pared to state-of-the-art structure-ignorant sparse time-adaptive
algorithms.

The rest of the paper is organized as follows. Section II pro-
vides the mathematical formulation of the time-adaptive
estimation problem. In Section III an online variational Bayes
scheme is developed, based on prior knowledge of the signal’s
group sparsity pattern. To account also for the case where such
knowledge is not available, Section IV presents an online vari-
ational Bayes scheme that automatically detects the positioning
of the grouped nonzero signal coefficients. Section V provides
detailed experimental results and, finally, conclusions are
reported in Section VI.

Notation: Matrices are denoted by bold capital letters, e.g., X,
column vectors are written with bold lowercase letters, e.g., x,
while z;, x; denote the ith entry and ith column of x and X, re-
spectively. Ins is the M x M identity matrix, 1 is the all-ones
vector of length d, 0 is the zero vector, (- )T denotes transposi-
tion, || - || stands for the classical £3 norm, tr(X) is the trace of
the square matrix X, diag(x) is a diagonal matrix whose diag-
onal elements are the entries of x, and diag(X) denotes a diag-
onal matrix formed by the diagonal elements of the square matrix
X. N(x; p, ) denotes the Gaussian distribution with mean g
and covariance matrix . GZG(a; p, a, b) is the one-dimensional
generalized inverse Gaussian distribution defined as

(a/b)P2exp [(p — 1)loga — (ax + 2) /2]
2K, (v/ab)

where 2 > 0,a > 0,b > 0,p is real, and K,(-) denotes
the modified Bessel function of second kind with p degrees of
freedom. The pdf of the Gamma distribution is

G(z;¢,7) = exp [(C —1)logzx — ; —logT(¢) — ClogT} ,

kM

GIG(x;p,a,b) =

where I'( - ) is the gamma function, while
IG(w;¢,7) = exp | ~(C+1)loga — =~ logT(¢) + Clog 7] .
is the inverse Gamma distribution.

II. PROBLEM FORMULATION

Consider a group sparse time-varying weight vector w(n) =
[wy (n), wa(n),...,wn(n)]T € RN, where n is the time index.
We assume that w(n) has £ < N non-zero elements that occur
in blocks rather than being independently distributed in random
positions. Our objective is to estimate the varying vector w{n)
based on a) some known input data stacked on an n x N matrix
X(n) = [x(1),%(2),...,x(n)]", and b) some noisy data ob-
servations, y(n) = [y(1),4(2),...,y(n)]T, up to time n. The
measured data are assumed to be generated by the linear regres-

sion model
y(n) = X(n)w(n) + e(n), (1

where €(n) stands for additive noise.
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After collecting sufficient measurements so that n >
N,w(n) can be estimated by minimizing the following least
squares (LS) cost function,

ZA” My (j)

= HA”Z(n)y(n) -

Tis(n x" (j)w(n)|?

AP )X (n)w(n)?, @)
where A is the well-known forgetting factor, with 0 & A <
1 and A(n) = diag ([A\" 1, A" 2,...,1]T). The forgetting
factor assigns less significance to past data, and w(n) is esti-
mated based primarily on more recent observations. An effi-
cient way to minimize (2) recursively in time is by using the
celebrated RLS algorithm, which, unfortunately, cannot take ad-
vantage of the group sparsity of w(n) to enhance its estimation
performance.

In this paper we study the previously described time-adap-
tive parameter estimation problem from a Bayesian viewpoint
and propose two novel online variational Bayes schemes that
promote group sparse solutions. The first scheme requires that
the group sparsity pattern of w(n) is known a priori. Motivated
by the group lasso, our Bayesian model considers a sparsity-im-
posing multivariate Laplace prior for the coefficient blocks that
are of known number and size. When the sparsity pattern is un-
known (which is a more realistic scenario), we develop a slightly
more complex scheme that automatically identifies the non-zero
groups of w(r). This is achieved by imposing a conditional au-
toregressive model on the penalty parameters of the Laplace dis-
tribution, which induces correlation among the adjacent coeffi-
cients of w(n). Both schemes are designed to perform varia-
tional Bayes inference for the model parameters by processing
streaming data in an online setting.

III. VARIATIONAL SCHEME WITH KNOWN
GROUP SPARSITY PATTERN

In this section we consider the case where the signal’s group
sparsity pattern is known beforehand, i.e., we know the exact
number of groups formed by the signal coefficients, as well
as their sizes. Based on this information, we develop a hier-
archical Bayesian model that imposes group sparsity. A vari-
ational Bayes algorithm is then developed to perform batch and
online inferencel.

A. Hierarchical Bayesian Modeling

Let us start with the description of our group sparsity im-
posing hierarchical Bayesian model, which can be considered as
a block extension of the model presented in [5]. We temporarily
drop the time index n from all model parameters in order to sim-
plify notation. Hence, at first, our analysis applies to the batch
estimation problem, where a single, fixed-size batch of data is
observed. Time indexing is reestablished at Section III.C, where
the time-adaptive variational Bayes algorithm is presented.

A version similar to the proposed variational Bayes scheme has been recently
presented in [22]. However, in contrast to the current work, in [22] groups of
fixed size are considered and a Student-t group sparsity-promoting prior is uti-
lized.
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Fig. 1. A group sparse signal w(n) with floating group size. Non-zero (zero)

blocks are shaded (non-shaded).

Considering the linear model in (1), it is typical that our
data likelihood is determined by the additive noise distribu-
tion. To establish a connection, under maximum likelihood
arguments, between the likelihood function and the cost func-
tion in (2), we assume that the additive noise is distributed
as € ~ N (/0,3 1A 1). This gives rise to the likelihood
function,
p(ylw, B) = N(Xw, 37A71). (3)
Notice that minimizing (2) is equivalent to maximizing (3) with
respect to w. Having defined our likelihood function, we pro-
ceed to define appropriate prior distributions for the model pa-
rameters w and 3. For the precision parameter 5 we assume a
nonnegative Gamma distribution,

p(Bip,8) = G(B;p,1/6), 4)

which is conjugate with respect to the likelihood in (3). The hy-
perparameters p and & in (4) are set to values close to zero, so as
to define a non-informative prior, [23]. Furthermore, we assume
that the weight coefficients w;’s are organized in M groups, i.e.,
Wi T, where w; is the d; x 1 weight com-
ponent correspondlng to the ith block of w,and N = 3.~ M
Many of these groups are zero, while the remaining ones are
nonzero, as shown in Fig. 1. Our objective is to place an inde-
pendent Laplace distribution over each coefficient block w;, so
as to form the Bayesian analogue of the adaptive group lasso,
[24]. However, since the Laplace distribution is not conjugate
with respect to the Gaussian likelihood in (3), we utilize, in-
stead, its equivalent hierarchical representation, [25]. At the first
hierarchical level, each coefficient group w;,i = 1,..., M, is
assigned a zero-mean multivariate Gaussian distribution with a
diagonal covariance matrix, i.e.,

_ T T
w = [W17W27

M
H/\[ (W”O,ﬁ—la;l]:di) .

i=1

p(wle, ) =

)

Notice that the noise variance 5! scales the covariance ma-
trix of w in order for the conditional posterior p(w, 3|y) to be
unimodal, as explained in [13]. Also, in (5), only a single pre-
cision parameter ¢; parameterizes the covariance matrix of the
ith group w;. As it will be shown later, during the inference
procedure, some of the a;’s obtain high values, which drive the
corresponding w;’s to values very close to zero. These precision
parameters & = [ag, a2, ..., ¢ M]T are assigned a multivariate
inverse Gamma distribution in the second level of hierarchy,

plafb) = HIQ< & H, l;)

with scale parameters b = [by, by, ..., bas]T . In Appendix A it
is proven that by utilizing (5) and (6) and by integrating out

(6)
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«, a multivariate Laplace-type prior is established over w, as
given in (66). In Appendix A it is also shown that under a max-
imum a posteriori (MAP) context, the group sparsity promoting
multivariate Laplace-type prior in (66) can be considered as the
Bayesian group analogue of the adaptive lasso, [26]. Moreover,
it can be shown that the scale parameters b;’s in (67) are anal-
ogous to the £;-norm regularizing parameters of the adaptive
group lasso, [26], [27]. To directly infer these parameters from
the data, we assign a conjugate Gamma prior over b, [13],

M
p(b;e,n) =[] G(bis0,1/m), @)
i=1

where ¢ and 7 are shape and rate hyperparameters that are set to
values close to zero.

B. Variational Bayesian Inference

Bayesian methods rely on the joint posterior distribution to
perform inference on the model parameters. Unfortunately, the
complexity of the model proposed in Section III.A does not
allow for the exact computation of the posterior p(w, 3, &, b|y)
using Bayes law. In an attempt to overcome this difficulty,
Markov chain Monte Carlo (MCMC) sampling can be utilized
to approximate our model’s posterior distribution. However,
this would lead to an estimator unable to operate within the
strict time constraints of the time-adaptive estimation scenario
under consideration, although sequential MCMC methods
have also been recently proposed, [28]. Hence, in this paper
we resort to the deterministic framework associated with the
variational Bayes algorithm by approximating p(w, 3, @, b|y)
with a simpler distribution, g{w, 8, e, b).

To obtain an analytically tractable approximation, the varia-
tional Bayes methodology dictates that the approximating dis-
tribution takes on a simple, factorized form. For our purposes,
we factorize g(w, 8, a, b) according to the partitioning of the
weight vector, i.e.,

M M M
a(w, B,0,b) = ¢(8) [ T atwi) [T alai) [T o). ®
i=1 i=1 i=1
The variational Bayes algorithm iteratively minimizes

the Kullback-Leibler distance between the true poste-
rior p(w,8,a,bly) and ¢(w,3,a,b) in (8), [29], [30].
This operation is equivalent to maximizing a lower
bound of the marginal data likelihood with respect to
the approximating distribution ¢(w,3,a,b), [31]. Let
0 = {Wf,...,W{J,ﬁ,al,...,on,bl,...,bM} be the set
of all model variables and 8; its ith element. Then the closed
form solution for each posterior factor ¢(6;) is expressed as,
[29], [30],

__ exp(Ejzi[logp(y, ©)))
J exp (Ejz; [log p(y, ©)]) db;’

where E;;[-] denotes expectation w.r.t. all ¢(8,)’s except for
q(8;). Applying (9) for the noise precision variable /3, we get a
Gamma posterior approximating distribution, [22],

a(B) = G(8: 5,1/95),

q(6;)

(€))

(10)
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+p (1)

i 1 ) . 2 1 M

F=a g (ary—aixw] )+ 53 @) hwl). 02
i=1

where (-) denotes expectation with respect to the corre-
sponding posterior factor g(-). Next, for each weight block
w;,t = 1,..., M, we get

q(wi) = N(wis p;, 25), (13)

where
S = (8) 7 (XTAX; + (a)Ly,) (14)
pi = (B)SXTA(y — Xoup ). (15)

Matrix X; € R™*% is formed by the d; columns of X cor-
responding to the 7th group, while matrix X_; € R**(V-4i) jg
formed by the remaining NV — d; columns of X. In addition, g,
is derived from vector g = [uf, T ;1,71\}] T after excluding
;. The approximating distribution for e;,2 = 1,..., M, is

ia) = 076 (=5, (8) (I} 0 ), 16)

while for the parameters b;’s we get,

d; +1 1/1\\ !
q(bi) = g <bi;b+ B 5 <T)+ 5 <O._’Z>> > . (17)

Notice that all approximating distributions in (10), (13), (16)
and (17) come in standard exponential forms, thanks to the
conjugacy of our Bayesian model. Notice also the interdepen-
dency among the parameters of the approximate distributions.
The variational Bayes algorithm is essentially a coordinate
ascent type algorithm, which updates the parameters of the
approximate posteriors in (10), (13), (16) and (17) in a cyclic
manner. At each step of the optimization procedure a single
parameter gets updated while the remaining are kept fixed to
their latest values. The required first and second order moments
of the parameters are computed as,

(B) = po, (18)
(Iwill) = pf oy + tx(2s), (19)
5 M 2
<HA%yA%XwH >— Ary —AFY X,
u =1
+ ) w(%XTAX), (20
=1
(bs)
P Sy e ) — 21
@ B ) D
1 1 1
<a_,»> ~ oo T 2)
and
d;+1
(b = 2 (23)
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Using these moments, the proposed batch variational Bayes
scheme converges to a group sparse estimate, g, for the un-
known signal vector w in a few iterations. In the next section
we properly adjust the proposed group sparse variational Bayes
scheme to operate in a time-adaptive setting, where data are
sequentially received.

C. Time-Adaptive Group Sparse Variational Bayes

Let us now restore time indexing, remove {-), and extend the
variational Bayes scheme in a time-adaptive setting, where the
weight vector w(n) is now time-varying. To enable online pro-
cessing, we define the following quantities, whose size does not
change over time as new data become available,

R(n) = XT(n)A(n)X(n) + A(n — 1), (24)
z(n) = X" (n)A(n)y(n), (25)
d(n) = y" (M) A(n)y(n), (26)
where A(n) = diag([af (n),af(n),...,aT;(n)]T) and
a;(n) = a;(n)ly,i = 1,2,...,M. It is easily observed

that (a) R(n) is the sample auto-correlation matrix of x(n)
regularized by the diagonal matrix A(n — 1), (b) z(n) is the
sample cross-correlation vector between x(n) and y(n), and
(c) d(n) is the energy of the observation vector y(n). These
quantities can be expressed recursively in time, as,

R(n) = AR(n — 1) + x(n)x' (n) — AA(n — 2) + A(n — 1)

27)
z(n) = Az(n — 1) + x(n)y(n), (28)
d(n) = M(n — 1) + y*(n) (29)

Substituting (14) in (15) and utilizing (24) and (25), we deduce
that the adaptive weight estimates W; (n)(= p;(n)) can be effi-
ciently computed as?
~Rii(n)Wi(n),  (30)
fori = 1,2,...,M. In (30), z; is the ith d; x 1 block of
z,R;(n) is the ith d; x d; diagonal block of R(n), R; ;(n) is
the d; x (N — d;) matrix resulting from the ith row block of
R (n) after removing its ith group of d; columns, and W _;(n) =
- . . . T
(Wi (n),...,wE (n), Wl (n—1),...,Wa(n—1)]".
Moreover, it can be shown that noise precision estimate is
efficiently computed as follows, [5], [22],

B8(n)

= ((l ~A) TP+ N+ 2p>/ (26 + d(n) — 2" (n)W(n — 1)
+ Ztr[Ei(n - l)Ri(n)]) ; (31)

21t can be shown that (30) represents a block coordinate descent updating rule,
[32].
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with w(n) = p(n) and Z;(n — 1) = ~1(n — DR ' (n — 1)
according to (14). Based on (18) and (19), let us also define
the time-varying auxiliary quantity 1;(n) = B(n)||W;(n)||? +
tr(R; ' (n)). The precision parameters o;(n),i = 1,..., M,
are then updated as?

(32)

1
a;(n)

while, their first inverse moments, < > = &;(n), are com-

puted according to (22) as,

1 1
bi(n — l)

i (n) (33)

Finally, the penalty parameters b;(n),i = 1,..., M, are up-
dated as

_ 20+d; +1

) = S ety Gy

The resulting algorithm, termed adaptive group sparse varia-
tional Bayes based on a multivariate Laplace prior (AGSVB-L),
is summarized in Table I. The proposed variational scheme con-
verges to a group sparse solution as verified in the experimental
results section. To get an insight on the sparsity inducing mech-
anism of AGSVB-L, as the algorithm executes some «;(n)’s
tend to very large values and shrink the corresponding w;(n)’s
to zero. More specifically, according to (24) the corresponding
diagonal blocks R;(n)’s of R(n) will tend to diagonal matrices
with very large diagonal entries, which by their inversion in
(30) will impose the annihilation of w; (1) ’s. The computational
complexity of AGSVB-L is dominated by the update opera-
tion of R{n) in (27) and the matrix inversion operation in (30),
and, hence, is of the order O (N? + (max{d;})?) per iteration.
Nonetheless, in practice it is expected that max{d;} < N, that
is, the maximum group length is much lower than the signal
length. Specifically, it is easily seen that if max{d;} < v/N the
computational complexity of AGSVB-L reduces to O(N?) per
time iteration. Originating from a Bayesian framework, the pro-
posed AGSVB-L algorithm has the advantages of being fully
automatic (with no need for parameter fine-tuning) and pro-
viding a set of approximating posterior distributions for each
model parameter, instead of single point estimates.

IV. VARIATIONAL SCHEME WITH UNKNOWN
GROUP SPARSITY PATTERN

We now consider the case where there is no prior informa-
tion on the group sparsity pattern of the time-varying signal
w(n). This is a more challenging setting, where we need to
concurrently recover the signal’s clustered support and track
its nonzero coefficients in time. In what follows, we utilize the
Bayesian model presented in Section III.A and the main idea is
to modify its third hierarchical level in order to capture possible

3The different time indexing of the parameters involved in each of the (32)
and (33) is due to the ordering of the update equations adopted in the proposed
algorithm.



THEMELIS et al.: VARIATIONAL BAYES GROUP SPARSE TIME-ADAPTIVE PARAMETER ESTIMATION

TABLE I
THE AGSVB-L ALGORITHM

Initialize 3(0), w(0), A(—1), A(0), R(0),z(0), d(0)
Set p, d,t,n to very small values
forn=1,2,...

R(n) = AR(n — 1) + x(n)xT(n)

A (n—-2)+A(n—-1)

z(n) = Az(n — 1) + x(n)y(n)

d(n) = Md(n — 1) +y%(n)

Bln) = (1 —=XN)""+N+2p)/(25 + d(n)

—aT (m)win— 1)+ XM, 2 CTUR ()
fori=1,2,...,.M
Wi(n) = R (n) (2:(n) -

7

R;—i(n)W—;(n))

$i(n) = B(n)||Wi ()| + tr(R;* (n))
ai(n) = |/ )
&i(n) = Fm bmi—l)
bi(n) = (2t +d; +1)/(2n + d;i(n))
end for
end for

sparsity patterns4. As before, we resort to the variational Bayes
algorithm to develop an online group sparsity-cognizant infer-
ence scheme.

A. Hierarchical Bayesian Model

This section provides a detailed description of the proposed
clustered sparsity imposing hierarchical Bayesian model.
Again, for notational expediency, we drop the dependency of
the model parameters on the time index n. We re-introduce time
indexing in Section IV.C, where the corresponding time-adap-
tive variational Bayesian scheme is presented.

As we have already pointed out, we base the development of
this section’s hierarchical Bayesian model on the one presented
in Section III.A. Specifically, we adopt exactly the same priors
reported for the first two levels of hierarchy in Section IIL.A,
as expressed by (4), (5), and (6). Notably, owing to the lack of
prior knowledge on the grouping information, we now explicitly
assume thatd;, = 1,7 =1,..., N, ie., all w;’s are deemed to be
independently distributed. Under this assumption, the Laplace
prior in (66) imposes no structure and matches the one used in
[5]. In the sequel, and to take into account the occurrence of the
parameter vector’s sparsity in groups of coefficients, we revise
and refine the prior on the scale parameters b;’s of the Laplace
distribution.

As shown in [34], the scale parameters b;’s can be interpreted
as the penalty parameters in an adaptive lasso formulation. Their
role is to adaptively shrink the signal coefficients w;’s towards
zero, in the sense that nonzero coefficients are assigned rela-
tively lower penalty values than zero coefficients. An interesting
idea, recently coined in [17], is that the grouping information
can be properly embedded in the prior distributions of b;’s, in
order to shrink the original signal w towards zero in a structured
manner. However, in [17], an additional group-membership ma-
trix is required that provides information on the grouping struc-
ture of the signal coefficients. In this paper, group sparsity is
induced by imposing correlation among adjacent signal coeffi-
cients. This is achieved by organizing their corresponding scale

4A preliminary version of the proposed variational Bayes scheme has been
recently presented in [33].
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parameters b;’s in a conditional autoregressive model, as de-
scribed below.

Conditional autoregressive models date back to the pio-
neering work of [35], and, since then, they have been widely
used in data analysis to capture spatial correlations, e.g., [36].
As their name suggests, they are defined via conditional prob-
ability distributions over mutually dependent parameters. In
our modeling, the “spatial” dependency of the scale parameters
is depicted in the undirected graph of Fig. 2. Each node in
the graph corresponds to a scale parameter &;, while the edges
between adjacent nodes encode the dependency between them.
Next, we assume that the conditional probabilities of the scale
parameters b;’s are expressed as,

p(bilb; 1) = G(bi|k,vb; 1), i=1,...,N, (35)

where £ > 0 and ¥ > 0 are hyperparameters. Using the condi-
tional pdf in (35) and Bayes law, the complete conditional for

each scale parameter b;,i = 1,..., N — 1, is computed as
2 20
p(bilb-;) = GIG <bi§07 ; +1> ; (36)
Vbi,1 v

where it is easily observed that each b; depends only on its direct
neighbors b;_; and b, ;. Equation (36) defines a conditional au-
toregressive model based on the GIG distribution. According to
Brook’s expansion, [37], the joint probability distribution p(b)
can be determined through the set of conditional distributions
in (36). In that case, and with respect to the undirected graph
in Fig. 2., b would form a Markov chain, [35], [38]. Unfor-
tunately though, the form of the assumed GIG distribution in
(36) is too complex to deduce the joint probability from the set
of conditional distributions directly. Despite that, this distribu-
tion is conjugate with respect to the prior (6) in the second level
of our Bayesian model. This allows us to utilize the variational
Bayes framework for the development of a computationally ef-
ficient inference scheme.

In summary, the proposed hierarchical Bayesian model en-
compasses the following likelihood and priors

p(ylw, 8) = N(Xw, 3714 1), (37

p(B;p,6) = (6;0, 8), (3%)

plwla, 5) HN w;|0,8 ;) (39)
=1

plalb) = HIQ (a1, b;/2), (40)

pbilbi—1,bi1) = GIG <bi§07 ub?,l’ bejl). (41)
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B. Variational Bayesian Inference

Working as in Section II1.B, we assume that ¢(/3, w, a, b) is
now factorized as

N N N

q(yﬁ,W,aJ)) = Q(/j) HQ(wi) HQ(ai) H Q(bi)7

=1 i=1 i=1

(42)

and use the closed form expression (9) to compute each approx-
imating factor in (42). For the model parameters 3, w, and a
in the two first levels of hierarchy, we get the same distribu-
tions as in Section I11.B, although in their univariate form, since
d; = 1,Vi. For the sake of completeness, we restate them below,
ie.,

a(B) = 6(8:5,1/5),

with g and ) given in (11) and (12), after replacing A by N and
(Iwi]l?) by (w?),

(43)

q(w;) :./\/'(w,-;,ui,aiz), 1=1,2,..., N, (44)

with
o2 = (B) L (xFAx; + (ai) (45)
i = (Byoix] Aly — Xoip_;), (46)

and
gla;) = GZG (a; —1/2, (B (w}), (b;)) . (47)

Note that, now, in (45), (46), x; is the ¢th column of X and
X_,; results from X after removing x;. Finally, as shown in the
Appendix B, the penalty parameters b;,: = 1,2,..., N —1, are
inferred via the GIG approximating distribution

q(bs) = GZG (b3 1, 05, w;) ,

1 2/ 1
v

(21

where g; = < bi—1> and w; = 2{bjy1)/v.i =
1,...,N — 1. For the Nth node of the chain the posterior in
(48) simplifies to

(48)

q(bn) =G (bn;k +1,2/0N) - (49)

As previously, our variational Bayes scheme iteratively opti-
mizes the parameters of the approximating factors given in (43),
(44), (47), (48), and (49). The mean of the noise precision is
given in (18), while the additional moments involved in the pre-
vious equations are computed as

(wi) = (37 %5 + (o)) 7' (y — Xg{w—y)), (50)
()  J1\N_, 1 1
@) =\ By <m>‘l @ Py OV
_ fwi Ka(ywiei) 02
(b)) = o Ki(voa)| (bn) =( +1)QN. (52)
and,
1 g 0i KO(\/WLQi)
<E> _bl w_zKl( wzQz) (53)

It should be noted that {«;) an
from (21) and (22) by setting d;

in (51) are easily obtained

o
I
|>~
[

&7}

, while the expressions for
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{(b;} and < bi> in (52) and (53) are derived in the Appendix. The
resulting batch variational Bayes scheme updates, in its core, the
expectations (w;), {3), (a;), and (b;), fori = 1,2,..., N, and
converges in a few iterations. In the next section, we show how
the proposed variational Bayes algorithm can operate online for
handling streaming data.

C. Adaptive Group Sparse Variational Bayes

We now reestablish time indexing for all model parameters
in order to develop the time-adaptive version of the batch varia-
tional algorithm presented in Section IV.B. To achieve this, we
utilize again the recursive (27), (28), and (29), and map batch
iterations to time iterations.

To begin with the parameter updates, 3 and w are time up-
dated in the same fashion as in Section III.C. Setting d; = 1,
(30) and (31) become

1

Wi(n) = ) (zi(n) — rl;(n)W-i(n)), (54)
and
_ (1-N"T"+N+2
B = S rdm) = s =D e e 1) )
According to (51), e;’s and &;’s are time updated as
N b(n—1)

(Mm_¢MMMMH4fWY 0
and . .

ai(n) = a;(n) + bi(n— 1) (57)

Also, let o;(n) = &;(n) + 2b;_1(n — 1)/v and w;(n) =
2b;1(n — 1)/v. Then, the time updates of the scale parameters
bi,1 =1,2,...,N — 1, are expressed as,

wi(n) Ka(y/wi(n)ei(n)) (58)
0i(n) Ky (y/wi(n)oi(n))’
while for the last chain node we have that by(n) =
1)/on(n). Finally, according to (53), bi’s are updated as
bi(n) = o 20 Bolvemedn)) 1y,
wi(n) Kyi(y/wi(n)oi(n))

The proposed algorithm, termed adaptive group sparse varia-
tional Bayes using conditional auto-regression (AGSVB-CAR),
is summarized in Table II. AGSVB-CAR converges in a few
iterations and successfully detects any sparsity pattern, as also
verified experimentally in the next section. The algorithm auto-
matically infers all model parameters, after setting the hyperpa-
rameters p, d, k, and v to fixed values. Note that p and § are set
to values close to zero in order to get non-informative priors,
while an extra maximization step could be employed over the
hyperparameters « and v. However, due to the complexity of the
maximization step and the fact that x and » have less effect on
inference, since they are deep in the Bayesian model hierarchy,
[39], we have adopted fixed values for x and v. This choice
is also supported by experimental results which show that the
AGSVB-CAR algorithm is quite robust to the selection of these
parameters (it is sensitive only to their order of magnitude) and,

2(k +

(59)
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TABLE II
THE PROPOSED AGSVB-CAR ALGORITHM

Tnitialize A, w(0), A(—1), A(0), R(0), 2(0), d(0), &(0), b(0)
Set p=6=10"6,k=10"3,v = 10°
forn=1,2,...

R(n) = AR(n — 1) + x(n)xT (n)
“AA(n—2)+A(n—1)

Xa(n — 1) + x(n)y(n)

N(n 1) +y2(n)
(n) = 25+d(n>7zJTV(i§i;(2)f1)13‘%@)0@71)
n) = 1/(B(nyris(n)

)= ri_l(n) (zi(n) — L (n)W-;(n))

) = \/bi(n — 1)/ (Bn)d2(n) +7; * (n))

& (n) = 1/a;(n) + 1/bj(n — 1)

N-1
wi(n) = 2b;41(n - 1)/v
0i(n) = &(n) +2bj_1(n—1)/v

) _ Jwi(n) K2(y/wi(n)ei(n))
bi(n) =\ 2itn) Ky (Ve mas (o))
s ) Kolywimein)
bi(n) =/ 510 K (o (s ()

end for

by (n) = (5 +1)/(&n (n)/2+ bn—1(n) /v)
end for

hence, these are set to the values k = 1073 and v = 102, re-
spectively (i.e., < and 1 /v take also small values). The proposed
algorithm is numerically robust, while its computational com-
plexity is O(N?) per iteration, similar to that of the classical
RLS and other competing time-adaptive sparsity promoting al-
gorithms. Moreover, due to its Bayesian nature, the proposed
algorithm gives not only single point estimates, but also ap-
proximate posterior distributions. To the best of our knowledge,
AGSVB-CAR is the first time-adaptive parameter estimation al-
gorithm that promotes group sparsity without a priori knowl-
edge of the signal’s group sparsity pattern.

V. EXPERIMENTAL RESULTS

A. Experiments on Synthetic Data

In this section we use simulated data to experimentally
examine the estimation performance of the proposed online
variational schemes’ described in the previous sections. In
our experiments, we consider the standard time-adaptive fil-
tering setup, where our goal is to track a Rayleigh fading,
group-sparse, wireless channel. The proposed schemes are
compared with four sparsity-imposing time-adaptive algo-
rithms, namely, a) the EM-RLS algorithm proposed in [4],
b) the time and norm weighted lasso (TNWL) algorithm,
[3], c) the time-adaptive group sparse variational method
AGSVB-S which is based on a Student-t prior, [22], and d) the
time-adaptive sparse variational Bayes method ASVB-mpL
recently reported in [5]. Moreover, we compare the proposed
AGSVB-L algorithm with the author’s implementation of
the state-of-the-art deterministic online group RLS algorithm
£y.2-RLS proposed in [21]. In all experiments, we use as a
benchmark an RLS algorithm, termed the “genie-aided” RLS

5To make our research reproducible, a Matlab implementation of the proposed
online group sparse variational Bayes schemes is available online at http://mem-
bers.noa.gr/themelis/lib/exe/fetch.php?media=code:agsvb-car_demo_code.zip.
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Fig.3. Comparison of group sparse time-adaptive algorithms with known spar-
sity pattern.

(GARLS), which knows the signal’s support set beforehand and
operates only on the nonzero signal coefficients. The estimation
performance is evaluated using the normalized mean squared
error, which is defined as

E [llw — w|]

NMSE = — 1=~ 1
E [[|w]?]

(60)
where W is the estimate of the true signal vector w. All per-
formance curves are ensemble averages of 200 transmission
packets, channels, and noise realizations.

In the first experiment, we consider the case where the spar-
sity pattern is known beforehand and compare the proposed
AGSVB-L algorithm with the deterministic group ¢, »-RLS al-
gorithm of [21]¢ and the recently proposed variational Bayes
AGSVB-S method based on a Student-t prior, [22]. To this end,
we have adopted the experimental settings of [21], for the reason
that the £y »-RLS algorithm has been fine-tuned for these set-
tings and it has been shown to perform best in comparison to
other schemes proposed in [21]. Specifically, the estimation task
considers a time-invariant channel of 64 coefficients generated
by the standard normal distribution, and having one non-zero
group of 4 coefficients. The forgetting factor is set to A = 0.995
and the channel input is i.i.d. Gaussian of zero mean and unit
variance. Gaussian noise has been also added to the channel
output to account for an SNR level of approximately 9 dB.
The resulting NMSE curves of our comparison are displayed
in Fig. 3. It is observed that both the AGSVB-S and the pro-
posed AGSVB-L algorithm outperform the £, 5-RLS algorithm,
since they reach a lower error floor, closer to that of the bench-
mark GARLS algorithm. Moreover, there is a notable differ-
ence in the convergence speed of the deterministic and the vari-
ational Bayes schemes, with the Bayesian methods achieving
faster convergence. Notably, as also shown in Fig. 3, there is
no evident difference in the performance of the two Bayesian
schemes based on the sparsity-imposing Student-t (AGSVB-S)

%Note that apart from the sparsity pattern, £o,»-RLS also needs to know the
number of non-zero groups.
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and multivariate Laplace priors (AGSVB-L), since their NMSE
curves almost coincide. Notice, however, that it is the utiliza-
tion of the Laplace prior that facilitates the development of the
conditional autoregressive model described in Section IV.

We next proceed to alter the experimental settings setup, and
consider also the case where the sparsity structure is unknown.
We now consider a time-varying wireless channel of length NV
= 270. The channel coefficients are generated according to
Jake’s model, [40], and follow a Rayleigh distribution with nor-
malized Doppler frequency f3Ts = 5 x 10 2. The channel
sparsity pattern varies in each experiment, and it may consist of
groups of uniform or arbitrary lengths. The channel input is bi-
nary, consisting of =1 BPSK symbols and the forgetting factor
is set to A = 0.99. We assume that the symbols are transmitted
in packets of length 2000. Gaussian noise is added to the channel
output, while the SNR level is set to 12 dB by adjusting the ad-
ditive noise variance accordingly.

In the second experiment, we examine the ability of the pro-
posed variational schemes to converge to a group sparse solu-
tion. For this experiment we simulate a Rayleigh fading channel
having a random sparsity pattern. Specifically, the nonzero co-
efficients are randomly organized in groups of length 3 to 5,
while the total number of groups in each channel realization
varies randomly from 2 to 4. To simulate an abrupt change on
the channel coefficients, an extra nonzero group is added to the
channel at the n = 1000 time mark. Fig. 4 displays the re-
sulting NMSE curves for the benchmark GARLS algorithm, the
ASVB-mpL algorithm, the AGSVB-S algorithm with known
sparsity structured, the proposed AGSVB-CAR algorithm, and
two instances of the proposed AGSVB-L algorithm, one (v1)
where the exact knowledge of the signal’s group sparsity pattern
is provided, and another (v2) where inexact knowledge is used.
It is easily observed that the proposed schemes are able to ex-
ploit the group sparsity of the parameter vector, since they out-
perform the ASVB-mpL algorithm, which can be considered as
their structure-ignorant analogue. The proposed schemes con-
verge relatively fast to an error floor that is lower than that of the
ASVB-mpL algorithm. Especially the AGSVB-CAR algorithm
offers a 1 dB improvement over the estimation performance of
the ASVB-mpL algorithm, and this improvement comes at neg-
ligible additional computational cost. Notice also the impact that
the prior knowledge of the sparsity pattern has on the perfor-
mance of the AGSVB-L algorithm. If the AGSVB-L algorithm
knows exactly the signal’s group sparsity pattern, it achieves
an almost identical steady-state error performance to that of the
GARLS algorithm. On the other hand, as expected, if we erro-
neously inform the AGSVB-L algorithm that the signal is com-
posed of uniform groups of length d; = 5,4 = 1,..., M, its
performance automatically degrades and becomes worse than
that of ASVB-mpL. Again, the estimation performance of the
Student-t based scheme (AGSVB-S), proposed in [22], and the
proposed multivariate Laplace based scheme AGSVB-L is al-
most identical, as shown in Fig. 4.

In the third experiment, we investigate how the performance
of the proposed variational schemes compares to that of existing
state-of-the-art methods. To this end, we simulate a wireless
channel with groups of fixed length d; = 3,i = 1,..., M,
while 2 to 4 nonzero groups are randomly activated in each
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TABLE III
DETECTION RATES OF THE ALGORITHMS TNWL,
ASVB-MPL AND AGSVB-CAR

false pos. | false neg. | true pos. | true neg.
TNWL 0.011 0.125 0.989 0.874
ASVB-mpL 0.01 0.089 0.989 0.91
AGSVB-CAR 0.007 0.055 0.992 0.944

channel realization. As in the previous experiment, an extra
nonzero group is generated at the thousandth time iteration.
Fig. 5 displays the NMSE curves for all comparing algo-
rithms versus time iterations. Notice again that the proposed
AGSVB-CAR algorithm has the steady state error that reaches
closest to the lower bound set by the GARLS. At this point, we
should notice that extra experiments have been conducted so as
to fine-tune the parameters of the deterministic EM-RLS and
TNWL algorithms. In contrast, Bayesian methods nullify such
computational costs, since, all their parameters are directly
inferred from the data.

Furthermore, to elaborate on the capability of the competing
algorithms to correctly identify the zero and nonzero coeffi-
cients, Table III provides the relevant detection rates for the
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Fig. 6. NMSE curves under fast fading and a sudden channel change.

algorithms TNWL, ASVB-mpL and AGSVB-CAR. Specif-
ically, in each table row, the false positive, the true positive,
the false negative and the true negative rates are given for each
algorithm, with positive and negative referring to the existence
of nonzero and zero coefficients respectively. These rates are
computed based on the algorithms’ final estimate at the last time
iteration of each experimental realization. A brief inspection
of these rates reveals that the true positive and true negative
rates are much higher that their false counterparts, so that we
may say that all algorithms are vastly successful in detecting the
signal’s sparsity. However, as shown in Table III, the proposed
AGSVB-CAR provides the best detection rates, which is an indi-
cation that the proposed algorithm is able to identify the signal’s
clustered sparsity structure more accurately than its competitors.

In the next experiments, we test the performance of the com-
paring algorithms in the cases of a) a fast fading channel, b) cor-
related input, c) different SNR levels, and d) different sparsity
levels. First, to simulate a fast fading channel, we increase the
normalized Doppler frequency to f4T, = 5 x 10~%. The experi-
mental settings of the second experiment is used, with the differ-
ence that the forgetting factor is now set at A = 0.98. Fig. 6 dis-
plays the resulting NMSE curves that are in accordance with the
previous experiment, apart from the fact that we observe a rea-
sonable increase on all error floors. Moreover, by utilizing the
settings of the second experiment, a correlated symbol sequence
(generated by a second order autoregressive model with param-
eters ¢; = 0.7 and ¢2 = 0.1 and white Gaussian noise variance
equal to 10™%) is used for the channel input, and the resulting
NMSE curves are displayed in Fig. 7. Again, we observe that
the proposed AGSVB-CAR algorithm achieves the best perfor-
mance. Next, we investigate the estimation performance of the
proposed online schemes for various SNR levels. Fig. 8 plots
the computed NMSE for all algorithms. It is easily observed
that the closeness of the performance of AGSVB-CAR to that of
GARLS is consistent in all SNR levels. Finally, to demonstrate
the performance of the proposed method in terms of sparsity, in
our last experiment we utilize again the settings of the second
experiment, with the difference that the channel length is now
set at N = 570. By generating random channel and noise re-
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Fig. 9. NMSE curves for different levels of sparsity.

alizations, the NMSE curves of Fig. 9 are retrieved. A simple
inspection of Fig. 9 reveals that the proposed AGSVB-CAR al-
gorithm performs better in the high sparsity region, where it
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nearly reaches the performance of GARLS. However, when the
number of nonzero coefficients in the signal exceeds a certain
ratio (80/570 in this experiment), then it is the structure-igno-
rant ASVB-L that offers slightly better estimation performance.

B. Experiments on a Real Wireless Channel

In this experiment, we consider the same adaptive filtering
setup as in Section V.A, and we now proceed to estimate
a measured multipath terrestrial HDTV channel, [7]. The
real part of the channel has N = 293 coefficients and is
displayed in Fig. 10. As shown in the figure, the channel’s
impulse response can be characterized as group sparse owning
to the clustered positioning of its nonzero coefficients. For
this experiment we use again a binary input sequence of +1
symbols, organized in packets of length 2000. Zero-mean
Gaussian noise is added at the channel output with an SNR
level of 18 dB. Considering no prior knowledge on the channel
group sparsity pattern, we compare in this experiment a) the
classical RLS, b) the ASVB-mpL, and c) the AGSVB-CAR
algorithms. Fig. 11 displays the resulting NMSE curves. It is
observed that a burn-in period of almost 250 time moments
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algorithm.

is required for the channel input to convolve with the channel
nonzero coefficients. After this burn-in period, the algorithms
converge to an error floor within about 200 time iterations for
ASVB-mpL and AGSVB-CAR and 400 iterations for RLS.
We observe in Fig. 11 that AGSVB-CAR exploits the group
sparse nature of the channel to converge faster and outperform
ASVB-mpL for about 1 dB. As expected, the performance
of the sparsity-ignorant RLS algorithm is inferior enough to
compare with the remaining sparsity-cognizant schemes. Fi-
nally, Fig. 12 verifies that the proposed AGSVB-CAR scheme
estimates very accurately the channel coefficients.

VI. CONCLUSION

Two novel online variational Bayes schemes have been pro-
posed in this paper, that recursively estimate group sparse time-
varying signals, for both cases of known and unknown group
sparsity pattern. The first one places a multivariate Laplace prior
over separate coefficient groups defined by the sparsity pattern
and the variational Bayes framework is exploited to perform on-
line inference. The problem becomes much more challenging
when under time-varying conditions the sparsity pattern is un-
known, and it has been, thus far, not addressed by existing signal
processing methods. The second scheme tackles this problem by
modifying the Bayesian model of the first scheme so as to orga-
nize the scale parameters of the Laplace distribution in a con-
ditional autoregressive model. In this way, correlation among
individual parameters shrinks the signal towards zero in a struc-
tured manner, and, hence, group sparse solutions are promoted.
Experiments on simulated and real data show that the proposed
schemes exploit successfully the signal group sparsity and yield
improved estimation performance, when compared to state-of-
the-art algorithms.

APPENDIX A

In this Appendix we analytically derive the multivariate
Laplace-type distribution that is placed over w in the hierar-
chical Bayesian model of Section III and show that in a MAP
estimation setting, this prior is equivalent to utilizing the group
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sparsity promoting ¢; »-norm. First, from (5) and (6) we may

write,
H p(w;| 8, ;)
Then, each factor p(w;|3, b;) can be computed as

p(w,»|,3,bi):/0“ (w318, ) p(cui bi)des

a4 ds d;+1
2

p(w|g,b) (61)

The integral at the right hand side of (62) can be thought of as the
inverse of the normalizing constant of a GIG distribution over
a;, with parameters —1/2, 8||w;||? and b;. Hence, we easily get

(2m) ¥ 8% (”—) (v Bbi[|wil[*)
F(di“"l) 2 ’

p(wz‘/in) = 1.1
> (Bllwill*)~=b]
(63)
Then, exploiting the identity
[
K_y,3(2) = Zexp[—z] (64)
yields
Q‘d”w T b, /371
p(wil3,bi) = F(d,_ﬂ) exp [~ v/biBllwill|, (69)
2
and (61) becomes
M bdiﬂg
ptwis,) = Il g e [~ VoiBliwil ] - (66)

Equation (66) is a multivariate Laplace—type distribution. In a
MAP estimation scenario, maximizing the posterior of w with
respect to the Laplace-type distribution in (66), leads to the fol-
lowing optimization problem,

max {p(y|w, 5)p(w|f, b)}, (67)
which utilizing (3) and (66) becomes
(81 . , M
min ¢ = [|Aty - Xw)|["+ D ViiBlwil (68)
i=1

The regularizing term in (68) is the weighted £; » norm of w,
which is known to promote group sparsity, [10].

APPENDIX B

In this Appendix we derive the posterior approximating dis-
tribution for the scale parameter vector b in (48). Utilizing (9),
(40) and (41), we compute

log q(b;) oc (log p(a;|b;) + log p(b;))

x <210gai —
1 1 biy11
[0 <—bi (le -+ Vb 1 ) b_z> =
1
q(bi) o exp |:bi (5 < >

b; 1 b;
- —&-log—flog
2 &;
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and since (69) has to 1ntegrate to one, q(b ) is a GIG distribution
with parameters g; = + = <
The mean of the GIG pdf is computed as

/0 0N\1/2 s
(bi) = eife) 7 / biexp {—1 (Qibi +ml>} db;
2K (yow:) Jo 2 b;
Qi 1/2 2 Wi 2/2
<;> S T — <—> K (Veiw:)

and w; = 2{b;11)/v.

w; 2K (yowi) \ e
-~ <Wi>1/2 K; (Voiw;) 20
A\ Ky (/o) 70

from which (52) follows. In a similar way, the inverse moment

1 .
E> is computed as

(8- [ b4 o)
1/2 NG
- (5_> 2K (Zgiwi) <?> Fo (veiw)
| —g (71)

and (53) follows.
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