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Block-Term Tensor Decomposition Model Selection
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Abstract—The so-called block-term decomposition (BTD) ten-
sor model, especially in its rank-(Lr, Lr, 1) version, has been
recently receiving increasing attention due to its enhanced ability
of representing systems and signals that are composed of blocks of
rank higher than one, a scenario encountered in numerous and
diverse applications. Uniqueness conditions and fitting methods
have thus been thoroughly studied. Nevertheless, the challenging
problem of estimating the BTD model structure, namely the num-
ber of block terms, R, and their individual ranks, Lr , has only
recently started to attract significant attention, mainly through
regularization-based approaches which entail the need to tune
the regularization parameter(s). In this work, we build on ideas
of sparse Bayesian learning (SBL) and put forward a fully auto-
mated Bayesian approach. Through a suitably crafted multi-level
hierarchical probabilistic model, which gives rise to heavy-tailed
prior distributions for the BTD factors, structured sparsity is
jointly imposed. Ranks are then estimated from the numbers of
blocks (R) and columns (Lr) of non-negligible energy. Approx-
imate posterior inference is implemented, within the variational
inference framework. The resulting iterative algorithm completely
avoids hyperparameter tuning, which is a significant defect of
regularization-based methods. Alternative probabilistic models are
also explored and the connections with their regularization-based
counterparts are brought to light with the aid of the associated
maximum a-posteriori (MAP) estimators. We report simulation
results with both synthetic and real-word data, which demonstrate
the merits of the proposed method in terms of both rank estimation
and model fitting as compared to state-of-the-art relevant methods.

Index Terms—Automatic relevance determination (ARD),
Bayesian inference, block-term decomposition (BTD), hierarchical
iterative reweighted least squares (HIRLS), rank, sparse Bayesian
learning (SBL), tensor, variational inference (VI).
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I. INTRODUCTION

B LOCK-TERM Decomposition (BTD) was introduced
in [1] as a tensor model that combines the Canonical

Polyadic Decomposition (CPD) and the Tucker decomposition
(TD) [2], in the sense that it decomposes a tensor in a sum
of tensors (block terms) that have low multilinear rank (not
necessarily of rank one as in CPD). Hence a BTD can be seen as a
constrained TD, with its core tensor being block diagonal (see [1,
Fig. 2.3]). It can also be seen as a constrained CPD having factors
with (some) collinear columns [1]. In a way, BTD lies between
the two extremes (in terms of core tensor structure), CPD and
TD, and it is useful to recall here the related remark made in [1],
namely that “the rank of a higher-order tensor is actually a
combination of the two aspects: one should specify the number
of blocks and their size”. Accurately and efficiently estimating
these numbers for a given tensor, via a probabilistic approach
that relaxes the requirement for hyperparameters tuning, is the
main subject of this paper.

Although [1] introduced BTD as a sum of R rank-
(Lr,Mr, Nr) terms (r = 1, 2, . . . , R) in general, the special
case of rank-(Lr, Lr, 1) BTD has attracted a lot more of at-
tention, because of both its more frequent occurrence in a wide
range of applications and the existence of more concrete and
easier to check uniqueness conditions (cf. [3] for an extensive
review). This special yet very popular BTD model is at the focus
of the present work. Consider a 3rd-order tensor,X ∈ C

I×J×K .
Then its rank-(Lr, Lr, 1) decomposition is written as

X =

R∑
r=1

Er ◦ cr, (1)

where Er is an I × J matrix of rank Lr, cr is a nonzero column
K-vector and ◦ denotes outer product. Clearly,Er can be written
as a matrix product ArB

T
r with the matrices Ar ∈ C

I×Lr and
Br ∈ C

J×Lr being of full column rank, Lr. (1) can thus be
re-written as

X =

R∑
r=1

(
ArB

T
r

) ◦ cr. (2)

A schematic representation of the rank-(Lr, Lr, 1)BTD is given
in Fig. 1. The rth term of this decomposition is a tensor whose
frontal slices are all scalar multiples (with the entries of cr) of the
low-rank matrixArB

T
r . It should be apparent from (2) and Fig. 1

that CPD results as a special case with all Lr, r = 1, 2, . . . , R
equal to 1.
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Fig. 1. Rank-(Lr, Lr, 1) block-term decomposition.

In general, R and Lr, r = 1, 2, . . . , R are assumed a-priori
known (and it is commonly assumed that all Lr are all equal
to L, for simplicity). However, unless external information is
given (such as in a telecommunications [4] or a hyperspectral
image unmixing application with given or estimated ground
truth [5]), there is no way to know these values beforehand.
Although overestimation of the ranksLrs of the block terms has
been observed not to be harmful in some blind source separation
applications (e.g., [4]), this is not the case in general [3]. Besides,
in addition to increasing the computational complexity, setting
Lr too high may hinder interpretation of the results through
letting noise/artifact sources interfere with the desired sources.
This holds for R as well, whose choice is known to be more
crucial to the obtained performance as it represents the number
of “factors” that generate the data and its over/under-estimation
will lead to over/under-fitting, with undesired consequences for
the interpretability of the results (cf. [3] for related references).

A. Prior art

It is known that computing the number of rank-1 terms in a
CPD model (i.e. the tensor rank) is NP-hard [6]. Model selection
for BTD is clearly even more challenging than in CPD and TD
models and has only recently started to be studied (cf. [3] for
an extensive review of heuristic approaches and techniques).
The most recent contribution of this kind can be found in our
work [3], where the latent factors of BTD are recovered by
solving a regularized minimization problem, namely,

min
A,B,C

1

2

∥∥∥∥Y −
∑R

r=1
ArB

T
r ◦ cr

∥∥∥∥
2

F

+

λ

R∑
r=1

√∑L

l=1

√
‖ar,l‖22 + ‖br,l‖22 + η2 + ‖cr‖22 + η2, (3)

where R,L are over-estimates of the rank and block ranks of
the sought BTD model, ar,l,br,l, l = 1, 2, . . . , L are the lth
columns of Ar,Br, respectively and η2 is a small constant used
to ensure smoothness at zero. Note that (3) is composed of the
squared Frobenius norm of the error between the data and its
BTD representation and an appropriately chosen regularization
term whose minimization promotes structured sparsity over the
latent factors of the model. The rank,R, and the block ranks,Lr,
are then taken as the number of crs of non-negligible magnitude
and the numbers of non-negligible columns of the correspond-
ing blocks, respectively. Structured sparsity is favored by the
regularizer in a hierarchical, two-level manner, which is tailored
to the form of the BTD model. Indeed, the inner sum of square
roots is (excluding the smoothing constant) the sum of the �2
norms of the columns of [AT

r BT
r ]T, for r = 1, 2, . . . , R. The

well-known column sparsity-promoting effect of this �1,2 norm

leads the superfluous columns of both matrices to be driven
jointly to zero, thus providing a “relaxed” way of penalizing
the block ranks of the BTD model. In an analogous manner,
the outer sum of the regularizer penalizes jointly the number
of nonzero columns of C along with the corresponding blocks
ArB

�
r , which coincides with the number of block terms in the

model. The hierarchical alternating iterative reweighted least
squares algorithm, called BTD-HIRLS, proposed in [3] to solve
the above problem has demonstrated its competence in revealing
the true ranks and accurately computing the model parameters,
while enjoying computational efficiency and fast convergence.

Nevertheless, being a regularization-based method, BTD-
HIRLS faces the same challenge that all such methods have to
address, namely to appropriately tune the regularization param-
eter so as to achieve the best possible performance. Although a
rough guideline for the parameter selection has been given and
utilized in [3] as a reference point for the trial-and-error search,
this is still only a rule of thumb, not completely relieving the
algorithm from the need to spend resources on searching for the
most appropriate regularization parameter value.

B. The Bayesian way

One would thus prefer to be able to automatically (not man-
ually) select the value of the regularization parameter or, more
generally, discover the columns of the factor matrices that should
be kept, in an automatic, completely data-driven manner. Such
a possibility is provided by what is known as sparse Bayesian
leaning (SBL) [7], [8] following the automatic relevance de-
termination (ARD) approach, first conceived for and applied in
sparsifying the weights of a neural network [9]. Through this
Bayesian perspective, the unknown parameters of the problem
are viewed as random quantities and are each associated with
a hyperparameter. Prior distributions suitably assigned to each
hyperparameter are conducive to automatically determining the
relevance of the associated parameters at inference time.

In the so-called ARD prior, the parameters are independent
and zero-mean Gaussian if conditioned on the values of their hy-
perparameters, which are represented by the corresponding stan-
dard deviations. Hence if the hyperparameter is large enough,
the parameter is important whereas for a small enough hyper-
parameter the corresponding parameter should be suppressed,
thus revealing the true complexity (rank) of the model. As stated
in [9], “the posterior distributions of these hyperparameters will
reflect which of these situations is more probable, in light of the
training data.” If a parameter is relevant, this will influence the
associated hyperparameter distribution which in turn will make
the parameter more important, in an alternating update cycle
between the parameter and hyperparameter posteriors.

ARD was first applied in automatic tensor rank learning on
multi-way data modeled via TD in [10]. The hyperparameters
(inverse powers of factor columns, also known as precisions)
were modeled with Gamma priors, giving rise to the so-called
Gauss-Gamma (GG) probabilistic model, where the marginal
posterior of the parameters turns out to be a Laplacian, with
its well-known sparsity-enforcing effect [8]. An analogous GG
model was adopted in [11] for addressing the corresponding
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problem for incomplete tensors obeying a CPD model. A fully
Bayesian inference approach was taken, in contrast to the maxi-
mum a-posteriori (MAP) estimation approach followed in [10].
The method proposed in [11] performs approximate varia-
tional inference (VI) [12], [13], in the sense that the posterior
densities are found as the closest (in the sense of minimum
Kullback-Leibler (KL) divergence) to the true ones that meet
the mean-field assumption of statistical independence of all
parameters and hyperparameters. VI is known to be generally
faster converging than sampling techniques and better suited to
large datasets [13].

The method of [11] was later robustified to cope with incom-
plete tensors with outliers [14]. An online version, for tensors
that may grow in time in all their modes and in any order,
was reported in [15]. Since [11], several works on Bayesian
tensor model selection and computation have been reported for
both CPD (cf. [16] and references therein) and other tensor
decomposition models including TD, tensor trains (TT), tensor
rings (TR), and t-SVD, among others (see, e.g., [17]–[22]).
In [23], a TT decomposition is employed to compress a deep
neural network (DNN) during its training.1 The TT ranks are
automatically determined through a Bayesian GG modeling
approach which models the powers of the slices of the TT cores
by Gamma priors and couples consecutive cores through the
product of their associated hyperparameters.

The GG model is generalized in [17] for Bayesian TD by re-
placing the Gamma hyperprior by an inverse Gamma (IG). This
results in a multivariate Laplace marginal prior for the parame-
ters, which also leads to a generalized inverse Gaussian (GIG) for
the posterior of the sparsity-inducing precision hyperparameters.
Similarly with [23], the core tensor is indirectly coupled with
the matrix factors by using the product of these hyperparameters
and the noise precision in the core’s normal prior. A more recent
generalization of the GG model, this time for CPD rank learning,
is developed in [16] through a Gauss-GIG mixture that leads
to a generalized hyperbolic (GH) marginal prior for the CPD
factors. GH is known to be very flexible, including several other
sparsity-enforcing distributions as special cases [25, Table I].
The value of this generalization is demonstrated by the fact that
the resulting VI method outperforms [11] for high-rank tensors
and/or low signal-to-noise ratio (SNR). It should be noted,
however, that the algorithm in [16] is developed on the basis of
a simplification of the GH distribution (cf. Section IV-C), which
effectively leads again to a (generalized) Laplacian marginal
prior.

C. Our Contribution

In this paper, we also take a Bayesian approach, viewing the
unknowns as random variables and tackling the problem as one
of Bayesian modeling and inference [26]. The idea is again (as

1In fact, the power of deep learning (in the form of a convolutional neural
network trained on (rank,tensor) pairs) was also exploited to learn to estimate
the rank of any given tensor in [24], with results that suggest an improvement
over Bayesian schemes like [11]. Of course, one should also consider, in such
a comparison, the well-known lack of interpretability of a trained deep neural
network vis-à-vis the relatively well-understood principles underlying the purely
Bayesian approach.

in BTD-HIRLS) to impose column sparsity jointly on the factors
in a hierarchical, two-level manner. This is achieved through a
Bayesian hierarchy of priors with sparsity inducing effect, that
realize the coupling of the columns of C and the Ar,Br blocks
at the outer level and that between the columns of corresponding
blocks at the inner level. Our choices of priors fall in the class of
the so-called exponential power distributions with GIG densities
(EP-GIG) [27], which include the GG of [11] and the Gauss-GIG
and GH of [16], [17] as special cases. Inspired by earlier work
of ours [28] and in a manner analogous with the way coupling is
achieved in [17] for TD, we realize the two-level coupling in the
BTD model via appropriately defined products of the associated
hyperparameters and the noise precision in the conditional priors
of the factors. It is shown that, with our choices of priors, conju-
gacy is maintained, which allows the development of a tractable
approximate inference, efficiently performed via VI [12], [13]
and leading to an iterative algorithm that comprises closed-form
updates and is fast converging. Overestimates of R and the Lrs
are decreased in the course of the algorithm. This is in contrast to
the rank incremental or greedy strategies followed in, e.g., [20]
and [29]. Thus,R is estimated as the number of columns of C of
non-negligible energy while the Lr’s are found similarly from
the columns of the Ar,Br blocks. The Bayesian nature of our
approach completely avoids the need for parameter tuning. We
also present alternative Bayesian models that reflect simplified
causal relationships among the latent variables and thus can
be used for lending an insight into the incurred regularization
effect through the lens of the MAP-based optimization prob-
lems. Simulation results with both synthetic and real data are
reported, which demonstrate the effectiveness of the proposed
scheme in terms of both rank estimation and model fitting and
in comparison with BTD-HIRLS. To the best of our knowledge,
the present work is the first of its kind for BTD model selection
and computation. A preliminary version can be found in [30].
In a shorter version, this work was accepted for presentation in
EUSIPCO-2021 [31].

D. Organization of the Paper

The rest of this paper is organized as follows. The adopted
notation is described in the following subsection. The problem
is mathematically stated in Section II, where useful expressions
for the tensor unfoldings are also recalled. A Bayesian model
that implements the idea underlying BTD-HIRLS is developed
in Section III. The corresponding approximate inference method
is presented and analyzed in Section IV. Alternative probabilistic
models, that are inspired from deterministic criteria simpler
than (3), are considered in Section V along with the associ-
ated MAP estimators, which clarify the connections with the
regularization-based approach. Section VI reports and discusses
the simulation results. Conclusions are drawn and future work
plans are outlined in Section VII.

E. Notation

Lower- and upper-case bold letters are used to denote vec-
tors and matrices, respectively. We denote matrix rows with
bold italic letters and we use roman letters for the matrix
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columns. Higher-order tensors are denoted by upper-case bold
calligraphic letters. For a tensor X , X(n) stands for its mode-
n unfolding. ∗ stands for the Hadamard product and ⊗ for
the Kronecker product. The Khatri-Rao product is denoted
by � in its general (partition-wise) version and by �c in its
column-wise version. ◦ denotes the outer product. The super-
script T stands for transposition. The identity matrix of order
N and the all ones M ×N matrix are respectively denoted
by IN and 1M×N . 1N stands for 1N×1. diag(x) is the di-
agonal matrix with the vector x on its main diagonal. The
Euclidean vector norm and the Frobenius tensor norm are de-
noted by ‖ · ‖2 and ‖ · ‖F, respectively. tr{·} stands for the trace
operator. N (x|μ,Σ) denotes the normal probability density
function (pdf) for a random vector x with mean μ and co-
variance Σ. x is omitted when it is easily understood from
the context. The generalized inverse Gaussian (GIG) pdf [32]

is given by GIG(x|p, a, b) = (a/b)p/2exp[(p−1) logx−(ax+ b
x )/2]

2Kp(
√
ab)

,

where x > 0, p is real, and Kp(·) is the modified Bessel function
of the second kind with index p. The Gamma pdf with shape
ζ and rate τ results as a special case for b→ 0, p > 0 and
is defined as G(x|ζ, τ) = τζ

Γ(ζ)x
ζ−1e−τx = exp[(ζ − 1) log x−

xτ − log Γ(ζ) + ζ log τ ], where Γ(·) is the Gamma function,
Γ(ζ) =

∫∞
0 xζ−1e−xdx. The inverse (or reciprocal) Gamma

pdf also results from the GIG one as a special case (for a→
0, p < 0) and, in its shape (ζ) and scale (τ ) parametrizar-
ion, is given by IG(x|ζ, τ) = τζ

Γ(ζ)x
−(ζ+1)e−τ/x = exp[−(ζ +

1) log x− τ
x − log Γ(ζ) + ζ log τ ], for x > 0. Sets are denoted

by calligraphic letters. For a set M, |M| is its cardinality. R and
C are the fields of real and complex numbers, respectively.

II. PROBLEM STATEMENT

Given the I × J ×K tensor

Y = X + σN , (4)

where X is given by (2) and N is a I × J ×K noise ten-
sor of zero-mean unit variance i.i.d. Gaussian entries, with
σ being the noise standard deviation, we aim at estimat-
ing R, Lr, r = 1, 2, . . . , R and the factor matrices Ar =
[ar,1 ar,2 · · · ar,Lr ] ∈ C

I×Lr , Br = [br,1 br,2 · · · br,Lr ] ∈
C

J×Lr , C ∈ C
K×R, subject of course to the inherent ambiguity

resulting from the fact that only the product ArB
T
r can be

uniquely identified modulo a scaling (with a counter-scaling
of cr) [1]. In terms of its mode unfoldings X(1) ∈ C

I×JK ,
X(2) ∈ C

J×IK andX(3) ∈ C
K×IJ , the tensorX can be written

as [1]

XT
(1) = (B�C)AT � PAT, (5)

XT
(2) = (C�A)BT � QBT, (6)

XT
(3) =

[
(A1 �c B1)1L1

· · · (AR �c BR)1LR

]
CT

� SCT. (7)

In this paper, we follow a Bayesian approach to address the
above problem, starting from overestimates of R and Lr, r =
1, 2, . . . , R.

III. THE PROPOSED BAYESIAN MODEL

Let R and the Lrs be overestimated to Rini and Lini, respec-
tively. We intend to place heavy-tailed distributions, known for
their sparsity-inducing effect, over the columns of Ars, Brs,
and C in a way that implicitly implements a regularization
analogous to that of the BTD-HIRLS method [3]. Namely, the
number of block terms and the ranks of Ars and Brs are jointly
penalized, while respecting the different role that these matrices
play in the BTD model. This results in the nulling of all but
R columns of C, and the nulling of all but Lr columns of
the corresponding “surviving” Ar,Br blocks. Following the
premise of the ARD framework and building upon ideas of
SBL [7], [26], the priors are assigned via a 3-level hierarchy
of conjugate prior distributions outlined next.

The likelihood function, which encodes the underlying causal
relation between the data and the latent variables, can be writ-
ten in three equivalent forms, with respect to (w.r.t.) the three
unfoldings of Y (cf. (5), (6), (7)), as follows:

p(YT
(1) | A,B,C, β) =

I∏
i=1

p(y(1)i | A,B,C, β)

=

I∏
i=1

N (y(1)i | Pai, β
−1IJK), (8)

p(YT
(2) | A,B,C, β) =

J∏
j=1

p(y(2)i | A,B,C, β)

=

J∏
j=1

N (y(2)j | Qbj , β
−1IIK), (9)

p(YT
(3) | A,B,C, β) =

K∏
k=1

p(y(3)k | A,B,C, β)

=

K∏
k=1

N (y(3)k | Sck, β−1IIJ ), (10)

where β is the noise precision (i.e., the inverse of the noise vari-
ance) and ai, bj , ck and y(1)i,y(2)j ,y(3)k are the ith, jth, kth
rows of A,B,C and Y(1), Y(2), Y(3), respectively, in column
form. The matrices A,B,C are considered as unobserved vari-
ables and are assigned 3-level hierarchical prior distributions. At
the first level of the hierarchy, Gaussian distributions are placed
over A, B, and C, namely,

p(A | t, ζ, β) =
I∏

i=1

N (ai | 0, β−1T−1(Z−1 ⊗ ILini), (11)

p(B | t, ζ, β) =
J∏

j=1

N (bj | 0, β−1T−1(Z−1 ⊗ ILini)), (12)

p(C | ζ, β) =
K∏

k=1

N (ck | 0, β−1Z−1), (13)
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where T = diag(t) with t ∈ RLiniRini×1 and Z = diag(ζ), ζ ∈
RRini×1. Note that the priors of A and B are zero-mean with a
common covariance matrix, which is essentially formed by the
product of the inverses of the diagonal precision matrices Z and
T. This particular selection is critical from an implicit regular-
ization perspective, since it induces identical sparsity patterns
over columns/sub-blocks of A and B. More specifically, the
use of products of precision hyperparameters in (11) and (12)
serves our aim to impose at the same time two types of sparsity
(i.e., block and column sparsity) on the factors A and B.2 In
addition, by assigning the same precision hyperparameters Z to
the columns ofC, we intend to achieve simultaneous elimination
of columns cr’s of C and their corresponding blocks Ar’s
and Br’s. In the next section, we will see how the posterior
covariance matrices of the latent BTD factors will determine
the redundant block terms and columns of Ar,Brs after the
inference process. We can thus claim that, by combining Z and
T as in the proposed priors (11)–(13), we may realize the two
components of the regularizer in (3). Namely, sufficiently large
values of ζr and its respective tr,l’s will lead the rth column
of C (cf. (13)) and the entire set of the redundant Lini columns
of sub-matrices Ar,Br (cf. (11), (12)) to zero, acting like the
outer sum of square roots in (3). Moreover, the superfluous lth
columns of the “surviving” Ar,Br are jointly forced to be zero
when the value of tr,l becomes sufficiently large (cf. (11), (12)).
Hence T plays a role similar to that of the inner sum of square
roots of the regularizer in (3). Interestingly, Z and T are learned
from data, thus providing a compelling way to perform BTD
model selection.

At the second level of the hierarchy of priors, IG priors are
assigned over t and ζ,

p(t) =

Rini∏
r=1

Lini∏
l=1

IG
(
tr,l

∣∣∣∣I + J + 1

2
,
δr,l
2

)
, (14)

p(ζ) =

Rini∏
r=1

IG
(
ζr

∣∣∣∣ (I + J)Lini +K + 1

2
,
ρr
2

)
, (15)

leading to hierarchical Gaussian-IG priors for A,B and C.3 δr,l
and ρr are the scale parameters of the distributions over tr,l and
ζr, respectively. To be able to also infer these parameters from
the data, we define a third hierarchical level that involves Gamma
prior distributions, namely,

p(δr,l) = G(δr,l | ψ, τ), (16)

p(ρr) = G(ρr | μ, ν), (17)

where ψ, τ, μ, ν take very small positive values rendering the
respective priors non-informative.

2An analogous idea, namely expressing the goal of sparsity enforcement
as product of precision hyperparameters, has also appeared independently in,
e.g., [17] in the context of low-rank Tucker decomposition, and in our earlier
work [28] on low-rank matrix factorization with one factor being sparse.

3Other members of the EP-GIG family (i.e., for other values of q in [27])
might be also considered to serve as the priors of the BTD factors. Such a study,
however, and the possible gains or losses from such choices, are beyond the
scope of this paper and can be included in future related work.

Fig. 2. The proposed Bayesian model.

Note that these priors are conjugate w.r.t. the likelihood func-
tions and w.r.t. each other, which guarantees that the posterior
distributions will belong to the same class of distributions as the
priors [26]. Finally, we assign a Gamma distribution to the noise
precision β as follows:

p(β) = G(β | κ, θ). (18)

Similarly to the hyperparameters of the variables δ and ρ, κ
and θ are being set to small positive values rendering the prior
non-informative, in the sense that the influence of the prior upon
conditioning on the data and the inference process becomes
negligible.

The adopted Bayesian model is depicted in Fig. 2 in the form
of a graphical model (with the meaning of δ,ρ being obvious)
that manifests the causal relationships of the involved random
variables. The proposed 3-level hierarchy of priors leads to a
heavy-tailed distribution over the columns A,B and C, thus al-
lowing for simultaneously learning the latent factors of the BTD
model and revealing their ranks. Note that the joint marginal
pdf of A,B,C resulting from the hierarchical distributions
assigned to the latent factors and their hyperparameters cannot
be analytically obtained due to the complexity of the model.
Namely, the interrelation of the variables A,B,C with both t
and ζ renders the derivation of their joint pdf an infeasible task.
In an effort to provide an insight into the heavy-tailed properties
of the distributions assigned over the columns ofA,B andC, we
give in Section V the analytical expression of the joint marginal
pdf for a similar but slightly “relaxed” hierarchical Bayesian
model. We would like to stress again at this point that the model
described in this section allows us to follow a hyperparameter
tuning-free approach since all involved parameters are treated
as random variables. The way this is done is detailed next.

IV. APPROXIMATE POSTERIOR INFERENCE

Let Θ be the cell array which includes all unobserved vari-
ables, that is, Θ � {A,B,C, t, ζ, β,ρ, δ}. The exact joint pos-
terior of the variables of the adopted Bayesian model is given
by

p(Θ | Y ) =
p(Y ,Θ)∫
p(Y ,Θ)dΘ

. (19)

Due to the complexity of the model, the marginal distribution of
Y in the denominator is computationally intractable. Therefore,
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we follow a variational inference (VI) approach for approximat-
ing (19). The idea is to approximate the posterior by a distribu-
tion which is as close as possible to the exact posterior in terms of
the KL divergence [12]. VI allows for an efficient approximate
inference process even in vastly complicated Bayesian models
that involve high-dimensional variables. It is usually coupled
with mean-field approximation, namely, the assumption that
the posterior distribution can be factorized w.r.t. the involved
variables, implying statistical independence among them. In our
case, the approximate posterior q(Θ) of p(Θ | Y ) is written in
the form

q(Θ) = q(β)

I∏
i=1

q(ai)

J∏
j=1

q(bj)

K∏
k=1

q(ck)

×
Rini∏
r=1

Lini∏
l=1

q(tr,l)q(δr,l)

Rini∏
r=1

q(ζr)q(ρr). (20)

Denoting the individual variables above byθi, the corresponding
VI-based posteriors are known to satisfy [12]

q(θi) =
exp(〈ln(p(Y ,Θ))〉i�=j)∫
exp(〈ln(p(Y ,Θ))〉i�=jdθi

, (21)

where 〈·〉i �=j denotes expectation w.r.t. all q(θj)s but q(θi).
To solve (21) a block coordinate ascent approach is taken,
employing the cyclic update rule, namely solving for q(θi) given
q(θj), j �= i and continuing for all i in a cyclic manner. More
specifically, from (21) and using the expression for the likelihood
which is based on the mode-1 unfolding of Y (cf. (8)) the
posterior distribution of ai turns out to be

q(ai) =N (〈ai〉,Σa), (22)

with4

〈ai〉 = 〈β〉Σa〈P〉Ty(1)i, (23)

Σa = 〈β〉−1(〈PTP〉+ 〈T〉(〈Z〉 ⊗ ILini))
−1, (24)

where 〈·〉 denotes expectation w.r.t the posterior of the involved
variable. Now, by employing (9), the posterior of bj results in
an analogous manner as:

q(bj) =N (〈bj〉,Σb), (25)

with

〈bj〉 = 〈β〉Σb〈Q〉Ty(2)j (26)

Σb = 〈β〉−1(〈QTQ〉+ 〈T〉(〈Z〉 ⊗ ILini))
−1. (27)

Concluding the first level of the hierarchy, the posterior of ck is

q(ck) =N (〈ck〉,Σc), (28)

with

〈ck〉 = 〈β〉Σc〈S〉Ty(3)k (29)

Σc = 〈β〉−1(〈STS〉+ 〈Z〉)−1. (30)

4All ai’s have the same covariance matrix, Σa, and similarly for the bj ’s and
the ck’s.

TABLE I
FIRST- AND SECOND-ORDER STATISTICS REQUIRED IN THE BBTD ALGORITHM

Next, the approximate posteriors of the variables belonging
to the second level of hierarchy are given. Following similar
arguments with [28], the posterior of tr,l turns out to be a GIG
pdf,

q(tr,l) = GIG(
tr,l

∣∣∣∣−1

2
, 〈β〉〈ζr〉(〈aTr,lar,l〉+ 〈bT

r,lbr,l〉), 〈δr,l〉
)
,

(31)

with mean

〈tr,l〉 =
√

〈δr,l〉
〈β〉〈ζr〉(〈aTr,lar,l〉+ 〈bT

r,lbr,l〉) , (32)

where 〈aTr,lar,l〉 and 〈bT
r,lbr,l〉 are the ((r − 1)Lini + l, (r −

1)Lini + l) entries of

〈ATA〉 = 〈A〉T〈A〉+ IΣa (33)

and

〈BTB〉 = 〈B〉T〈B〉+ JΣb, (34)

respectively. Similarly, the approximate posterior of ζr is also
GIG, with 〈ζr〉 given by

〈ζr〉 =
√

〈ρr〉
〈β〉(∑Lini

l=1〈tr,l〉(〈aTr,lar,l〉+ 〈bT
r,lbr,l〉) + 〈cTr cr〉)

(35)

and 〈cTr cr〉 denoting the (r, r) entry of

〈CTC〉 = 〈C〉T〈C〉+KΣc. (36)

In addition, by employing the pdfs of tr,l and ζr, the expectations

〈 1
tr,l

〉 and
〈

1
ζr

〉
, required in the posteriors at the third level of

hierarchy, can be expressed as〈
1

tr,l

〉
=

1

〈δr,l〉 +
1

〈tr,l〉 ,
〈

1

ζr

〉
=

1

〈ρr〉 +
1

〈ζr〉 . (37)

Finally, it can be shown (as in [28]) that, at the third level
of hierarchy, the approximate posteriors of δr,l, ρr and β are
Gamma distributions with 〈δr,l〉, 〈ρr〉 and 〈β〉 given in Algo-
rithm 1, where the resulting Bayesian-BTD (BBTD) algorithm
is summarized.

The rest of the first- and second-order statistics that are
required in the algorithm implementation are computed as in
Table I, based on the assumption of statistically independent
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A,B,C (cf. (20)) and making use of the identities for the
Grammians of Khatri-Rao products proved in [3, Appendix C].
R is estimated as the number of columns of 〈C〉 of non-

negligible energy and similarly for the Lrs and the correspond-
ing blocks of 〈A〉, 〈B〉, as detailed in Algorithm 1. The iterations
stop when a convergence criterion is met (e.g., the relative

difference of the tensor reconstruction errors in two consecutive
iterations becomes less than a user-defined threshold) or the
maximum number of iterations is reached.

The algorithm can be randomly initialized and, as empirically
demonstrated in Section VI, it converges fast and is very robust
to initialization. Moreover, in view of its mean-field VI nature,
the method is guaranteed to converge to a stationary point of the
KL divergence function.

As far as the computational complexity of the algorithm
is concerned, the computational cost of a BBTD iteration
is similar to that of BTD-HIRLS (cf. [3, Appendix C]),
with O((I + J)L2 +K)R2) extra multiplications required to
compute 〈tr,l〉, 〈δr,l〉, 〈ζr〉 and 〈ρr〉. O(IJK + IJKLR+
I(LR)2 + (LR)3 + LR+R) additional multiplications are
needed in the computation of 〈β〉. Therefore, as in BTD-HIRLS,
and for the more realistic case of tensors with dimensions much
larger than R and L, the number of multiplications required per
iteration of BBTD is O(IJKLR), i.e., of the same order as the
computational cost of a BTD-HIRLS iteration [3]. Clearly,R and
L here refer to their overestimates, Rini and Lini, respectively.
The cost can be reduced if pruning of the nulled columns of
〈C〉 and the corresponding blocks of 〈A〉 and 〈B〉 in the course
of the algorithm is included. For the sake of the simplicity of
presentation, this is only performed in Algorithm 1 at the end of
the iterative inference.

V. ALTERNATIVE BAYESIAN MODELS AND THEIR

REGULARIZATION-BASED COUNTERPARTS

In this section, we present two alternative Bayesian models,
which can be viewed as simplified versions of the model in-
troduced in Section III. The main goal here is to manifest the
role that specific aspects of the adopted model (e.g., the number
of the levels in the hierarchy) play in the regularization that is
induced to the latent BTD factors at inference time. Both models
presented next assume the same likelihood function as the more
composite model presented previously. That being said, the main
difference between the two models lies in the priors placed over
A,B,C, as detailed next.

a) Model I: This model consists of a single level of hierarchy,
with Gaussian priors being assigned to the rows of A,B and C:

p(A|t, β) =
I∏

i=1

N (ai | 0, β−1t−1ILiniRini), (38)

p(B|t, β) =
J∏

j=1

N (bj | 0, β−1t−1ILiniRini), (39)

p(C|t, β) =
K∏

k=1

N (ck | 0, β−1t−1IRini), (40)

where t is now a deterministic parameter, intended to play
the role of the regularization parameter in the associated de-
terministic regularization-based problem. The corresponding
graphical model is given in Fig. 3(a). It is obviously a simplified,
single-level version of the 3-level hierarchical model introduced
in Section III.
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Fig. 3. Alternative probabilistic models.

To perform point estimation of A,B and C, the correspond-
ing MAP estimator is derived next. The joint posterior pdf of
A,B,C can be expressed as follows:

p(A,B,C|Y , β) ∝ p(Y |A,B,C, β)p(A,B,C|β). (41)

Due to the Gaussianity of the noise, the likelihood function
p(Y |A,B,C, β) can be written from (4) as

p(Y |A,B,C, β) ∝ exp

⎛
⎝−β

2

∥∥∥∥∥Y −
Rini∑
r=1

ArB
T
r ◦ cr

∥∥∥∥∥
2

F

⎞
⎠ .

(42)
In addition, from (38), (39), and (40), the prior distribution of
A,B and C takes the following form

p(A,B,C|β) ∝ exp

[
−βt

2

Rini∑
r=1

Lini∑
l=1

(‖ar,l‖22 + ‖br,l‖22)
]

× exp

(
−βt

2

Rini∑
r=1

‖cr‖22
)
. (43)

Combining (42) with (43) and taking the logarithm of their
product we end up with the following MAP-type optimization
problem:

min
A,B,C

∥∥∥∥∥Y −
Rini∑
r=1

ArB
T
r ◦ cr

∥∥∥∥∥
2

F

+ t
(‖A‖2F + ‖B‖2F + ‖C‖2F

)
.

(44)
This implies that the regularizer induced by the single-level
Gaussian priors favors smooth solutions in terms of the latent
factors. This is deduced from the fact that A,B and C can
be updated using an alternating minimization strategy which
gives rise to ridge regression-type subproblems (as it is done in,
e.g., [5]). In the light of this feature, no distinction between the
columns of each of the factor matrices is being made and hence
Model I is expected to have a weaker rank revelation effect than
the one of the main model introduced in Section III.

b) Model II: With the latter observation in mind, we now
introduce the second alternative Bayesian model whose graph-
ical model is depicted in Fig. 3(b). Model II places heavy-
tailed multi-parameter Laplace priors, known for their sparsity-
inducing effect, over the columns of the factor matrices. This is
implemented with the aid of a three-level hierarchy of priors. At
the first level, Gaussian distributions are assigned to the factors,
namely,

p(A|tA, β) =
I∏

i=1

N (ai | 0, β−1T−1
A ), (45)

p(B|tB , β) =
J∏

j=1

N (bj | 0, β−1T−1
B ), (46)

p(C|ζ, β) =
K∏

k=1

N (ck | 0, β−1Z−1), (47)

where TA = diag(tA) and TB = diag(tB) with tA, tB ∈
RLiniRini×1 and Z = diag(ζ), ζ ∈ RRini×1. Note that the key
difference of this model with the one introduced in Section III
and depicted in Fig. 2 is the use of different variables tA, tB for
enforcing column sparsity on A and B. This is in contrast to the
“coupling” of Ar,Br effected in BTD-HIRLS and the model
of Fig. 2. Moreover, the parameters ζ are now involved only in
the prior of C, which again “decouples” the third mode factor
from the rest.

At the second level of the hierarchy, IG priors are placed over
tA, tB and ζ, namely

p(tA) =

Rini∏
r=1

Lini∏
l=1

IG
(
tA;r,l

∣∣∣∣I + 1

2
,
δA;r,l

2

)
, (48)

p(tB) =

Rini∏
r=1

Lini∏
l=1

IG
(
tB;r,l

∣∣∣∣J + 1

2
,
δB;r,l

2

)
, (49)

p(ζ) =

Rini∏
r=1

IG
(
ζr

∣∣∣∣K + 1

2
,
ρr
2

)
, (50)

where δA;r,l, δB;r,l and ρr are the scale parameters of the dis-
tributions over tA;r,l, tB;r,l and ζr, respectively. The third level
involves Gamma priors over these variables, namely,

p(δA;r,l) = G(δA;r,l | ψA, τA), (51)

p(ρA,r) = G(ρA,r | μA, νA), (52)

and similarly for δB;r,l, ρB,r.
This “decoupling” approach allows us to derive the MAP

estimator for A,B,C and thus gain a deeper insight as to
the regularization effect induced by the model. As explained
earlier, a MAP-type problem cannot be derived for the main
model presented in Section III due to the interrelation among
different variables. Yet, the increased complexity of that model
better captures the structure of BTD, as it is also empirically
demonstrated in the experimental results. For Model II, the
joint prior pdf of A,B,C can be computed from the following
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multiple integral

p(A,B,C|β, δA, δB ,ρ)

=

∫
p(A,B,C|β, tA, tB , ζ)

× p(tA|δA)p(tB |δB)p(ζ|ρ)dtAdtBdζ, (53)

where

p(A,B,C|β, tA, tB , ζ) =
Rini∏
r=1

Lini∏
l=1

p(ar,l,br,l|β, tr,l)

×
Rini∏
r=1

p(cr|β, ζr). (54)

After substituting (54) to (53) we get the expression for the joint
prior distribution shown in (55) at the top of the next page.

p(A,B,C|β, δA, δB ,ρ) =

Rini∏
r=1

Lini∏
l=1∫ ∞

0

p(ar,l,br,l|β, tA;r,l, tB;r,l)

p(tA;r,l|δA;r,l)p(tB;r,l|δB;r,l)dtA;r,ldtB;r,l

×
Rini∏
r=1

∫ ∞

0

p(cr|β, ζr)p(ζr|ρr)dζr. (55)

The integrals in (55) can be computed by working as in [28,
Appendix B] whereby the joint prior pdf of A,B,C results as

p(A,B,C|β, δ,ρ) ∝

exp

[
−β 1

2

Rini∑
r=1

Lini∑
l=1

(δ
1
2

A;r,l‖ar,l‖2 + δ
1
2

B;r,l‖br,l‖2)
]

× exp

(
−β 1

2

Rini∑
r=1

ρ
1
2
r ‖cr‖2

)
, (56)

which is a heavy-tailed multi-parameter multivariate Laplace
distribution defined on the columns of A,B and C. From (42)
and (56), the MAP estimator of Model II is obtained from the
solution of the following minimization problem

min
A,B,C

β

2

∥∥∥∥∥Y −
Rini∑
r=1

ArB
T
r ◦ cr

∥∥∥∥∥
2

F

+ β
1
2

(
Rini∑
r=1

Lini∑
l=1

(δ
1
2

A;r,l‖ar,l‖2 + δ
1
2

B;r,l‖br,l‖2) +
Rini∑
r=1

ρ
1
2
r ‖cr‖2

)
.

(57)

Remark: It should be noted that (57) bears a close resemblance
to the deterministic criterion proposed in [33] and can thus
be seen to offer a Bayesian interpretation thereof and suggest
the corresponding Bayesian inference method as a probabilistic
counterpart of the Alternating Group Lasso (AGL) algorithm de-
veloped in [33]. Given the correspondence of the main model, in
Section III, with BTD-HIRLS, the comparison of these Bayesian

Fig. 4. NMSE vs. iterations for the proposed BBTD algorithm (‘BBTD main
model’) and its variants (‘BBTD model I,’ ‘BBTD model II’) at two SNR values.

methods presented in the next section complements in a way
the comparative study of BTD-HIRLS and AGL previously
reported [3].

VI. SIMULATION RESULTS

In this section, we evaluate the effectiveness of the proposed
Algorithm 1 in selecting and computing the appropriate BTD
model for a given tensor, via simulations with both synthetic
and real data. Its deterministic counterpart from [3] and the
corresponding Bayesian inference methods resulting from Mod-
els I, II and referred to henceforth as BBTD model I and
BBTD model II are included, for comparison purposes. In the
last experiment, and in the hyperspectral imaging related exper-
iments, BBTD is also compared with the Bayesian CPD method
that emanates from Model II as a special case with Lr = 1,
r = 1, 2, . . . , R.

A. Synthetic Data Experiments

In this part, we first test the BBTD method stated as Al-
gorithm 1 in comparison to its alternatives. We also demon-
strate its robustness to initialization and compare its ability
to recover the correct ranks of the BTD model against BTD-
HIRLS. The adopted figure of merit is the Normalized Mean
Squared Error (NMSE) over block terms, defined as NMSE =∑R

r=1
‖ArB

T
r ◦cr−ÂrB̂

T
r ◦ĉr‖2F

‖ArBT
r ◦cr‖2F

. As in [3], the Hungarian algorithm

is employed to match the R̂ estimated non-zero block terms with
the true ones.

1) Performance Comparison Between the Main Model and
Models i and II: In this experiment, we generate 18× 18× 10
tensors Y as in (4), with R = 3 and the Lrs set as L1 =
8, L2 = 6 and L3 = 4. The entries of Ar,Br and C are i.i.d.,
sampled from the standard Gaussian distribution. The noise
power is set so as to result in a signal-to-noise ratio SNR =
10 log10 ‖X ‖2F/(σ2‖N ‖2F) of 5 and 15 dB. Both R and all
Lrs are overestimated as Rini = Lini = 10. Fig. 4 illustrates the
best run in terms of the NMSE, obtained out of 10 random
initializations of the algorithms. As it can be observed, the main
model described in Section III performs comparably to Model II,
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Fig. 5. Empirical Cumulative Distribution Function (ECDF) of NMSE ob-
tained by BBTD and BTD-HIRLS from 500 independent runs. The ith curve
from bottom to top corresponds to the result of selecting the best out of
i = 1, 2, . . . , 12 different initializations. SNR = 15 dB.

which can be viewed as a relaxed version thereof. Notably,
Algorithm 1 converges somewhat faster. It is worth noting
that the algorithm associated with Model I exhibits a poorer
performance – especially at low SNR – due to its inaptitude in
dealing effectively with the over-parameterized regime when it
comes to the BTD ranks. As opposed to Model I, both the main
model and Model II, which use heavy-tailed priors on the latent
BTD factors, show their efficacy in addressing the challenges
incurred by the unawareness of BTD ranks and successfully
model the tensors at both SNR values examined.

In the following, we focus on Algorithm 1, which better
captures the structure of the BTD model. At the same time it
makes use of fewer latent variables at the second and third level
of hierarchy than those in Model II and hence we consider it as
a more compact version of the latter.

2) Robustness to Initialization: In an effort to see how ro-
bust the proposed BBTD algorithm is to initialization, we
set SNR=15 dB and generate tensors as previously. We run
500 realizations of the experiment. For each, we apply the pro-
posed BBTD and the BTD-HIRLS algorithms with 12 different
random initializations. Fig. 5 shows the Empirical Cumulative
Distribution Function (ECDF) of the obtained NMSE, where the
ith curve from bottom to top corresponds to selecting the best
out of i initializations, for i = 1, 2, . . . , 12. It can be observed
that BBTD is rather insensitive to initialization. Surprisingly,
its performance is affected by random initialization even less
than BTD-HIRLS, whose robustness has also been verified [3].
We thus have empirical evidence that only a small number of
initializations suffices to estimate an accurate BTD model with
the proposed BBTD algorithm.

3) Rank Recovery: Here we use the same generative model
described above for building data tensorsY . Our objective is to
assess the ability of BBTD to select the correct BTD model.
For comparison purposes, we also employ the BTD-HIRLS
algorithm, which has demonstrated high model selection ability
in [3]. Two different scenarios are considered, that differ in the
validity of the well-known sufficient BTD uniqueness condition
of having full column rank A,B matrices and a C matrix with
non-collinear columns [1].

Scenario A: In this scenario, we initially set the size of Y as
30× 30× 30, R = 5 and the true Lrs are set to L1 = 8, L2 =

Fig. 6. Success rates of recovering (a)R and (b)–(f)Lrs for SNR=10 dB with
the aid of the BBTD and BTD-HIRLS algorithms. Scenario A: min(I, J) >∑R

r=1
Lr .

6, L3 = 4, L4 = 5 andL5 = 3. This setting is favorable w.r.t. the
above condition since min(I, J) >

∑R
r=1 Lr. Fig. 6(a) shows

the success rates of the recovery of R for SNR equal to 5, 10,
and 15 dB. BBTD performs slightly better than BTD-HIRLS
at 5 and 10 dB and has similar performance at 15 dB. Note
that BTD-HIRLS required its regularization parameter to be
finely tuned, whereas this is automatically performed in the
BBTD algorithm, in a data-driven way. In Fig. 6(b)–(f), and
restricting attention to those realizations where both algorithms
have succeeded in recovering the true value of R, the success
rates of recovering the block ranks Lr are depicted, at an SNR
value of 10 dB. Observe that there is an almost 100% success
for all R terms. These results provide empirical evidence of the
competence of BBTD in this challenging, yet critical, task of
inferring the correct model structure. The effect of increasing the
tensor size on the rate of successfully recovering R is evaluated
in Fig. 7(a) and (b), where sizes 60× 50× 50 and 80× 50× 60
are considered, respectively. We observe that BBTD is rather
unaffected by the tensor size, when it comes to the algorithm’s
rank estimation capability, again performing comparably to
BTD-HIRLS for the three SNR values considered.

Scenario B: We now focus on tensors of size 30× 30× 30
and choose the following values for the block ranks, L1 =
8, L2 = 6, L3 = 8, L4 = 6 and L5 = 7, for which min(I, J) <∑R

r=1 Lr and hence the sufficient uniqueness condition is no
longer satisfied. This experimental setting is therefore consid-
ered to be even more challenging than Scenario A. As shown in
Fig. 8(a), BBTD performs comparably to the BTD-HIRLS in es-
timatingR, with the latter being somewhat better at SNR=5 dB.
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Fig. 7. Success rates of recovering R for SNR values of 5, 10 and 15 dB and
tensor sizes a) 60× 50× 40 and b) 80× 50× 60.

Fig. 8. Success rates of recovering (a)R and (b)–(f)Lrs for SNR=10 dB with
the aid of the BBTD and BTD-HIRLS algorithms. Scenario B: min(I, J) <∑R

r=1
Lr .

It should, however, be reminded that this is the result of tuning
the regularization parameter, a task that can be far from being
easy in real-world applications. Moreover, a behavior similar to
that in Scenario A is observed when it comes to the success rates
of recovering the Lrs at SNR=10 dB; see Fig. 8(b)–(f). BBTD
is again slightly superior to BTD-HIRLS in carrying out this
intricate task while enjoying the advantage of being completely
automatic. Additional cases, for varying SNR values and ranks,
have been tested and the results were similar to those obtained
above, showing the applicability of Algorithm 1 in a wide range
of scenarios.

B. Real Data Experiments

1) Hyperspectral Image Denoising: Hyperspectral imagery
(HSI) can be represented with the aid of 3-way tensors whose

first two modes correspond to the spatial domain and the third
one to the spectral domain. It is known that there is inherent cor-
relation in both domains, which explains the fact that low-rank
matrix and tensor representations have been widely adopted for
numerous HSI processing tasks such as unmixing [5], [34] and
restoration [35]. It should be emphasized that the very nature of
HSI, accurately described by a linear mixing model [5], points
to BTD as the most suitable choice of a decomposition model
as compared to classical CPD. Indeed, the model structure and
parameters are in a direct correspondence with the HSI con-
stituents: theRmatrices Er can be interpreted as the abundance
maps while C contains the endmember spectral signatures in its
columns.

As an example of the application of our method in this context,
we consider the problem of denoising hyperspectral images,
and compare with the results of BTD-HIRLS and a Bayesian
CPD method resulting from BTD model II as a special case
and referred to here as BCPD. Three different HSI datasets are
tested, namely a) the Washington DC Mall AVIRIS, to which we
artificially add noise, and b) the Salinas Valley and the Indian
Pines images, which are processed as they are.

a) Washington DC Mall AVIRIS: We generate a noisy
version of the Washington DC Mall AVIRIS image captured at
K = 191 contiguous spectral bands in the 0.4 to 2.4 μm region
of the visible infrared spectrum [36].We add i.i.d. Gaussian
noise and choose its power so as to get SNR=5 dB. The size of
the image at each spectral band is 150× 150 pixels and hence
the HSI cube can be seen as a 150× 150× 191 tensor. Our
objective is to suppress the noise by fitting a decomposition
model to this tensor. Of course, the correctR and Lrs must also
be estimated. To this end, they are overestimated as Rini = 50
and Lini = 10. Finally, we initialize the tensor rank of BCPD to
RBCPD,ini = RiniLini = 500.

We compare the performance of the three methods both
visually and in terms of the Structural Similarity Index Mea-
sure (SSIM), a popular perceptual metric of the degradation
of an image as perceived change in structural information.
SSIM is defined for two image windows x, y as SSIM(x, y) =
(2μxμy+c1)(2σxy+c2)

(μ2
x+μ2

y+c1)(σ2
x+σ2

y+c2)
, where μx, μy, σ

2
x, σ

2
y are their mean av-

erages and variances, respectively and σxy is their covariance.
c1, c2 are small constants that are used for averting division by
zero. BTD-HIRLS is again used for comparison purposes, with
its regularization parameter being finely tuned in accordance
with SSIM. As it can be seen in Fig. 9, the BBTD algorithm out-
performs BTD-HIRLS, exhibiting higher or similar SSIM values
over a wide range of spectral bands. The CPD model, resulting
from the BCPD method, does not capture the low-rank structure
of the HSI tensor equally well. The superior performance of
the BTD-based algorithms as compared to the CPD one can
be explained by the estimated ranks in each case. Specifically,
R̂ is for both BBTD and BTD-HIRLS equal to 9. Based on
the compelling interpretation that the BTD model offers when it
comes to HSI decomposition [5], R̂ corresponds to the number of
endmembers (distinct materials) that exist in the depicted scene.
That said, R̂ = 9 turns out to be in a good agreement with what
is known in the HSI literature for the number of endmembers
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Fig. 9. SSIM of the hyperspectral images recovered by BBTD, BTD-HIRLS
and BCPD.

existing in the scene depicted by the Washington DC Mall
AVIRIS HSI [36]. On the other hand, the BCPD estimate of the
CPD rank is R̂BCPD = 32, that is, it largely overestimates the
number of endmembers in the scene. It should not be surprising
that the CPD model is not able to provide an accurate tensor
representation of the image, manifesting the limitations of the
CPD representation in capturing the inherent structure of HSI.

For a visual comparison of the results of the three algorithms,
Fig. 10(a) and (b) depict false color images of the true and the
noisy image, respectively, while the BTD-HIRLS, BCPD and
BBTD reconstruction results are respectively given in parts (c),
(d) and (e) of the figure. The comparable performance of the
two BTD methods observed in Fig. 9 is confirmed here by vi-
sual inspection. Moreover, as expected, BCPD provides clearly
poorer results, with a blurring effect being clearly visible in the
corresponding false color image.

b) Salinas Valley and Indian Pines: The Salinas Valley im-
age is captured at512× 217pixels and 224 spectral bands and its
spatial resolution is 3.7 m. The scene depicts an agricultural area
with different vegetation species. Fig. 11 shows two bands of the
original image, namely bands 1 (top) and 190 (bottom), and the
corresponding bands of the HSI reconstructed via the BCPD
and BBTD algorithms. The superior denoising performance of
BBTD is apparent, especially for band 1, which is much noisier
than band 190. Though initialized with overestimatesRini = 50
and Lini = 10, BBTD converges to a model with only R̂ = 25
block terms. This should be expected in view of the rich structure
found in this image. BCPD is initialized with RBCPD,ini = 500
and yields a CPD model of rank 84.

The Indian Pines HSI is captured at 145× 145 pixels and 224
spectral reflectance bands in the wavelength range 0.4–2.5 μm.
The scene contains agriculture, forest, as well as vegetation
areas, highways, etc. Similarly to the Salinas Valley, a few bands
of the original image are noisy and are usually removed in a
pre-processing step before performing downstream tasks such
as classification, clustering, etc. In this experiment, the rank

Fig. 10. False color RGB images (made from bands 34, 64, and 135) of the
Washington DC Mall AVIRIS hyperspectral image. (a) Original; (b) noisy; de-
noised with (c) BTD-HIRLS, (d) BCPD, and (e) the proposed BBTD algorithm.

Fig. 11. Bands no. 1 (top) and no. 190 (bottom) of the Salinas Valley hyper-
spectral image, reconstructed via the BCPD and BBTD algorithms.
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Fig. 12. Bands no. 1 (top) and no. 10 (bottom) of the Indian Pines hyperspectral
image, reconstructed via the BCPD and BBTD algorithms.

Fig. 13. Lobby video frame no. 100: (a) original, (b) noisy, and (c) recon-
structed via the BBTD algorithm.

overestimates for the two algorithms are as previously, namely
Rini = 50 and Lini = 10 for BBTD, and RBCPD,ini = 500 for
BCPD. Again, both algorithms eliminate redundant components
of the respective overestimated tensor models. Namely, BBTD
finds a BTD model of the image cube with only R̂ = 20 block
terms while BCPD converges to a CPD of R̂BCPD = 80 rank-1
terms. Two bands, no. 1 and 10, and their denoised versions are
shown in Fig. 12. Clearly, BBTD performs significantly better
than BCPD, confirming again the superiority of the BTD over
the CPD model in capturing the rich structure of HSI.

2) Video Modeling and Denoising: The aim of this experi-
ment is to evaluate the modeling ability of rank-(Lr, Lr, 1)BTD
for relatively static video sequences and the effectiveness of
the BBTD algorithm in reconstructing such tensors from their
noisy measurements. To this end, the first hundred 128× 160
frames of the well-known Lobby video dataset are corrupted
by Gaussian i.i.d noise having σ = 15, which corresponds to
SNR=18 dB. The resulting 128× 160× 100 noisy video cube
is processed by BBTD with Rini = 10 and Lini = 15 and the
result for the 100th frame is shown in Fig. 13. We observe that
the algorithm reconstructs the original image with very high
fidelity. In addition, in an attempt to capture the underlying
low-rank structure of the noiseless video cube, it reduces the
number of block terms from 10 to 6 and only keeps 80 columns of
A and B. This experiment confirms that, besides HSI, the BTD
model and the proposed Bayesian algorithm are also appropriate
for accurately and parsimoniously modeling relatively static
(low-rank) video data.

VII. CONCLUSION

As a follow-up to our earlier work on BTD model selection
and computation based on �1,2 norm-based regularization, we

developed for the first time in this paper a Bayesian method
for the same problem, which completely relieves its user
from having to tune a regularization parameter. The proposed
fully-automatic variational inference scheme originates from
a Bayesian probabilistic model designed to match perfectly
with the BTD model structure and promote model selection
through heavy-tailed prior distributions assigned to the BTD
factors in the spirit of ARD and SBL. Two alternative simplified
Bayesian models were also presented and their model selection
properties were investigated by way of their individual joint
posterior distribution maximization tasks. Extensive empirical
results showed that the proposed algorithm is extremely robust
to initialization, converges fast and its model selection ability is
comparable to that of its regularization-based counterpart, which
however requires parameter fine-tuning. The appropriateness
of the BTD model in approximating hyperspectral imaging
data was demonstrated in HSI denoising experiments, where
the proposed algorithm was favorably compared to a Bayesian
rank-revealing CPD algorithm emanating from one of the
simplified models mentioned above. Its ability to model and
denoise low-rank video data was also exhibited.

Future work will focus on the development of constrained
(e.g., to ensure nonnegativity) and online variants of the pro-
posed method.
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