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Multichannel Fast QRD-LS Adaptive
Filtering: New Technique and Algorithms

Athanasios A. Rontogiannis and Sergios Theodoridis

Abstract—n this paper, a direct, unified approach for deriving schemes, which process all channels simultaneously, were
fast multichannel QR decompostion (QRD) least squares (LS) the first to be derived. These algorithms encompass matrix
adaptive algorithms is introduced. The starting point of the new operations, such as matrix inversions, and numerical problems

methodology is the efficient update of the Cholesky factor of iated with th . I d
the input data correlation matrix. Using the new technique, two asSoclated with those operations are usually encountered.

novel fast multichannel algorithms are developed. Both algo- Multichannel algorithms involving scalar-only operations
rithms comprise scalar operations only and are based exclusively have recently become very popular. In these algorithms, a

on numerica”y robust OrthOgonal Givens rotations. The first proper Channel decompOS|t|0n technlque |S performed, and

algorithm assumes channels of equal orders and processes themmy, ;. channel is processed separately. This results in further
all simultaneously. It is highly modular and provides enhanced

pipelinability, with no increase in computational complexity, feduction Qf Computati'onal complexity 'and improvement of
when compared with other algorithms of the same category. The the numerical properties of the algorithms. The need for
second multichannel algorithm deals with the general case of numerically robust schemes has also led to the development
channels with different number of delay elements and processes o 5 class of algorithms based on the QR decomposition of

each channel separately. A modification of the algorithm leads the input data matrix via the Givens rotations approach
to a scheme that can be implemented on a very regular systolic € Input da € € otations app ’

architecture. Moreover, both schemes offer substantially reduced ~ Following the development of single channel schemes [1],
computational complexity compared not only with the first algo-  [2], [5], multichannel least squares lattice [6]-[14], [18]-[20],

rithm but also with previously derived multichannel fast QRD  and transversal [14]-[17] algorithms were originally derived.
schemes. Experimental results in two specific application SetUps thage jnclude block as well as scalar-type schemes and
as well as simulations in a finite precision environment are also . . .
included. can handle channels with different number of associated

parameters [9], [11], [14]-[20]. Transversal-type algorithms
are of lower complexity and directly provide the channels’
coefficients. Lattice algorithms, on the other hand, are highly
modular and produce the LS estimation error, order recur-
[. INTRODUCTION sively, in a pipelined fashion.

ULTICHANNEL least squares adaptive algorithms Another class of multichannel algorithms springs from the
[1]-[3], [6]-[20], [27]-[29] are becoming increasinegSing|e channel fast QRD schemes [21]-[25], which are known
popular due to their fast converging properties, and they fi@l be numerically well behaved. Both the block- and the
wide applications in diverse areas such as channel equalizati@tannel decomposition-based cases have been treated for chan-
stereophonic echo cancellation, multidimentional sign&els of equal [27]-{28] or unequal [29] orders. Especially in
processing, and Volterra-type nonlinear system identificatid?9], & novel channel decomposition technique is introduced,
to name but a few. Among the various efficiency issue®hich makes possible the manipulation of channels of different
characterizing the performance of an algorithm, those of co@rders. This channel decomposition procedure leads to a
putational complexity, parallelism, and numerical robustnesgaultichannel fast QRD algorithm consistinglafingle channel
are of particular importance, especially in applications whefast QRD algorithms of lengttk, where! is the number of
medium to long filter lengths are required. The general L&annels. Thesksingle-channel algorithms are interdependent
multichannel problem leads to adaptive algorithmsOgf?) and are executed sequentially, one after the other. The resulting
computational complexity, wherk is the sum of the channel algorithm is of O(kl) computational complexity.
orders. However, for the time series case, exploitation of In this paper, a novel, unified approach for deriving multi-
the underlying shift-invariant property results in reductioghannel fast QRD algorithms is introduced. The new technique
of the computational complexity. Block-type multichannels based on the efficient time update of a particular vector
guantity, which provides all the necessary for the LS error
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new technique is that explicit backward steps are essentiallge input—output information can be used to form the data
alleviated. This fact has a twofold advantage. First, derivationsatrix

are simplified, and all existing fast QRD algorithms can yI'(1)  «T(1)
be obtained in a simplified way. Second, it paves the way y'(2) wP(2)
for the derivation of new more efficient algorithms. The U (V) = [Y(IW)|U(N)] = A(N) |~ . : 2

proposed methodology is also direct and insightful in that all T(.N) ’U,T('N)
algorithmic quantities involved have an obvious LS meaning ) ) y
and interpretation. where A(N) = diag[AN~1/2  AN=2/2 ... ],

Two new multichannel algorithms are presented in this According to the projection theorem [1], the solution of the
paper. Both algorithms are based exclusively on numerlcal@ problem requires the minimization of the Frobenius norm
robust orthogonal Givens rotations. The first algorithm #&] of the error matrix £(/V), which is achieved after the
a block-type scheme, which processes all channels joint§/thogonal projectiort”(NV) of the column space of (V)
The channel orders are assumed to be equal. In spite ofdf§0 the column space df(N). C(N) then contains the
block nature, the new algorithm comprises scalar operatiofRefficients of this projection. This is compactly written as
only,. which in conjuction with the use of orthogonal Givens E(N)=Y(N) - Y(N) = Y(N) — U(N)CO(N)
rotations guarantees the numerical robustness of the proposed I
scheme. In contrast with previously derived fast QRD algo- =UT(N) {—O(N)} 3
rithms of the same category [27], [28], the new algorithm is
highly modular and pipelinable and generates the solutions ofif now Q(V) stands for the orthogonal matrix that converts
all lower order problems. The second algorithm deals withi(V) into thek x k upper triangular formR(N), then
the general case of unequal channel lengths. The channel P(N) R(N)
partitioning used in [29], in the context of Volterra filtering, is Q(NYUT(N) = [V(N) O }
also adopted here, and the new algorithm consistssaigle-
channel algorithms of the type of [26], which are excecutaeghere P(N) € R¥>™ and V(N) ¢ RN=k)xm  Gince
sequentially. A slight modification leads to an alternative fom‘hultiplication with an orthogonal matrix is norm preserving,
of the algorithm, which can be implemented on a circulaf is straightforward from (3) and (4) that () is given by
systolic architecture where the single channel algorithms are .
executed in a pipelined fashion. In contrast, the channel R(N)C(N) = P(N). (5)

decomposition-based algorithms of [27]-[29] are strictly se- | 3 time- -varying environment, the time update ]@(N)
quential for each time iteration. Moreover, compared with [294nd p(V) is required, as new information becomes available.
the new algorithms offer reduced computational complexifyturs out that all necessary quantities for the update of these
in terms of both multiplications/divisions and square rootgyatrices can be obtained from the manipulation of a single

This fact becomes apparent from the methodology adopigsctor term. Specifically, let us define the vector
and is demonstrated with a specific example that concerns .
R™T(N)u(N +1)

Volterra-type nonlinear filtering. gN+1)=
The paper is organized as follows. An introductory frame- VA

work for general LS adaptive filtering schemes is describeghqd assume that

in Section Il. The new multichannel fast QRD algorithms are . _g(N +1) 0

then presented in Sections Il and IV. Experimental results Q(N—i—l)[ 9 1 } = [6 N4+l } (7

of the use of the channel decomposition-based algorithm in (N+1)

two specific applications are provided in Section V. Somg satisfied Q(N + 1) is a sequence of elementary Givens

numerical simulations are also included. Section VI concludgstations [4], [30] that successively annul the elements of

this work. For clarity of presentation, real-valued signals areg( N + 1) by rotating them against the last element (initially

(4)

(6)

considered throughout the paper. 1), starting from the first element ofg(V + 1) and moving
downwards. It has been shown [1], [30], [31] that tlﬁj@N +
IIl. THE GENERAL LEAST SQUARES PROBLEM 1) also updatesi(N) and P(N) of (5) according to
The standard exponentially weighted least squares (LS) ) AVZR(N)Y  AV2P(N)
problem is that of selecting/ax m coefficients’ matrixC(N) QN +1) |:'U.T(N 1) TN+ 1)}

to satisfy the optimization scheme

_ [R(N +1) 1;(N +1) } ®
T - T P :
2 ZA“ (N Y] yn) — CT (N yu(n)] of EWH
) From (6), (7), and the orthogonality 6§(V + 1), it can be
where shown thats(/V + 1) equals the inverse of the square root of
\ usual forgetting factor with) < A < 1 the angle variable [3]. Therefore, the angle normalized error

u(n) & x 1 input data vector: vector e(N + 1) will be related to thea priori error vector

y(n) m x 1 desired response vector at timen = eIV + 1) as [1], [26]
1,2,---,N. e(N+1)=6(N+1e(N +1). 9)
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The efficient update ok(N + 1) is at the heart of our whereR,(NN —1) is thelp x Ip Cholesky factor o/, (N —1).
problem. It is defined as [1] It is clear from (14) that the time update 9f(/N) requires
_ AT the time update oﬂ?;l(N — 1). The latter is achieved by
eV +1) =y(V +1) - CH(Mu(N + 1). (10) employing (for a proof see Appendix A)
Finally, note that ifA,(/V) stands for the error covariance  _ RZYN) —R;Y(IN)PY(IN)(AL ()~
matrix, it will be given b Ry (N)= " L Ayt
g y rH O (Ap(N))~ 15)

Ay(N)=E"(N)E(N) = EY(N)QT (N)Q(N)E(N
v(V) T( JEN) (M@ (VRNEN) and (16), shown at the bottom of the page, where
=VI(N)V(N). (11) PY(N), A%(N), and P{(N), A/ (N) are quantities related to
The update ofd, (V) is possible by employing [3] the backward and forward problems, respectively (Appendix

A). According to (56) of Appendix A, the orthogonal matrix
Ay(N+1) =24, (N) +e(N+ 1) (N +1).  (12) Qf(N) satisfies the equation

In the following sections, two new multichannel LS fast Of () [A]{(N)} _ [Ag(N)} (17)
adaptive algorithms based on Givens rotations are presented. p P]f N O |

It is shown that each step of these algorithms can be treated ] .

as an LS problem of the type described in this section. SuchMatrix PJ(N) can be split up intgl x I blocks as

an approach unifies the derivation and provides a clear LS Pf(l)(N)

interpretation of all algorithmic quantities involved. r

Pf(P.) (N)
Ill. BLOCK MULTICHANNEL FAST QRD ALGORITHM P

Let us consider a system consisting @fiput channels, each It is clear from the discussion in Appendix A that
of lengthp (k = Ip), and an output channel. The more generil Q{:(Z)(N) is the “part” of Q/(N) that annihilates
case ofm output channels: > 1 essentially corresponds t0 PJ(i)(N),i = p,p—1,---,1, then Qﬁ(i)(N) consists of

single-channel output problems and thus will not be furthg¥ elementary Givens rotation matrices and satisfies
treated. Using input information up to tim®, we can form

¢
the N x Ip matrixt OAi (V) AL (V)
Af( 1(i—1)xl '
[ul (1) QFI(N) Pf((i)(lj)\;() = | Oui-1)xt | - (18)
ul (2) v Oup—iyx
U,(N) =A(N) P_ Oup—i-1)xt
T(: N) Furthermore, it is straightforward thakf}]{(N )y =
U ~ ~ ~
Wl o7 . of 1 (NQIP(N)---QIP().  Combining,  (14)
ulT ol . o (15), and the input vector partitiomerl(N +1) =
=AY | ; . (13) [wf(N+1) uf ] we get
T T T N+1
LUy Uy_y o UN_p g (N+1)= |:gg(1]§)((N + 1))} (19)

where vectoru!l  contains the inputs to the system at time

n,ul = [ui(n) wuz(n) --- w(n)]. Note from (13) that Where the vectog® (N +1) corresponds to the laselements
the prewindowed assumption is adopted for each chanrf@l.g,+1(V + 1) and is expressed as

Using the input data matrix given in (13) and the vector Of(P)(N +1)

the scalar desired responses (up to tivig we can form a LS 9

problem similar to that presented in the previous section. As _ (AZ(N))_T fex_pet — (Rfl(N)Pb(N))Tu (N + 1]
A i4

it has already been explained, the vector quantity of interest is Vv P P
N b —T b
R=T(N = Duy(N) _ (AT (N +1) (20)
g(N) = =~ (14 = A
VA
b . .
1The subscriptg,p + 1,7 or i — 1 used in this section mean that the CIearIy,ep(N—i- 1) IS thepth—orderl x 1 apriori backward

respective quantities correspond to theh, (p + 1)th, ith, or (i — 1)th- error vector, and consequenthf?) (N + 1) can be interpreted
order problem in which all channels hayep + 1./, or i — 1 delay fs thepth-order normalizedh priori backward error vector.

elements, respectively. Any exception to this rule will be explicitly state - . . L
The dimensions of the respective quantities will be also explicitly given L addition, the nesting of vectors in (19) indicates that

will be easily inferred from the text. the (¢ + 1)th I-element block ofg, (N + 1),g(N + 1)
. AF(N)L .
R = |y SO | @7 19)

—RHN - DPI(N)(AJ(N)™H RN - 1)

p
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corresponds to theéth-order normalizeda priori backward The presentation of the new algorithm is completed with
error vector fori = 0,1, -- -, p. From (14), (16), and the input the derivation of an expression fﬂrf(NJrl),i =1,2,---,p.

vector partitionw”, (N + 1) = [ul, u)(N)], we also Specifically, if we write (12) for theth-order forward predic-
obtain tion problem, we obtain
_ oy TPV +1)
s+ = Q0 7y @D Al ) = Al () + & (N + DE (V4 1)
where or
Tp(N +1) . .
( “']J:(N))—T . ; . (A{(N + 1))TA{(N+ 1)
T e DR ] = (VAR () VAL () + & (N +1).
(AJN) el (N + 1) (@& (N +1)"
= 7 (22)

is thepth-orderl x 1 a priori normalized forward error vector. Frorln tlhe '35t equation, the Cholesky factbf(/V +1) can
If now, in (21), we take into consideration the order-recursie€ calculated as i

form of QZ{(N) and the nesting property @f,(N), g, 1 (N + Ou(N +1) { )\I/QAZf(N) }
1), then it can easily be deduced that mati” (V) has the ‘ @/ (N +1)7
following effect:

- [Ag‘ (D } . (@9

The Givens rotations matrik);(N + 1) successively an-

ri(N +1) rio1i(N +1) nihilates thel elements ofe/ (N + 1) against the diagonal
57 Ou(i—1) Ou(i—1) ~ elements of\}/247 (), retaining the positive definiteness of
QN | i = i=1,2,--,p T, g the p
r gt~ () gD (N +1) the resulting factor.
Oip—i—1) Ou(p—i-1) The algorithm described so far is shown in Table I. The

(23)  quantityQy” (V) is the part of),,(IV) that zeroes-g( =) ()

wherer;(N + 1) is theith order normalizech priori forward With respect to6;_1(N). p,’(N) stands for theith I x 1
error vector. Equations (21) and (19) provide the time upddt@'t of thelp x 1 vector p,(N) (corresponding toP(N)
of g,(V) through the application of a sequence of orthogongf (4) for the single output, equal channel orders case).
Givens rotations(}g(N). The time update o@]{(N) is also Note that the use of equations of the type of (22) for the

possible if (17) [or equivalently (18)] is written at tinfé + 1. calculation ofr;'s have been avoided. Such expressions in-

; - Ive matrix inversions and could be a source of numerical
A , diRG(N + 1) and YOVE M .
j;c Ea\fcor;segue{m_e 1e>;preSS|ons provi Iﬁé( P;_ N) a;] instabilities. Equation (22) has been bypassed by observ-
i ( b+ tZt or (Lj E ) 7-i',p are neceszarytp (f th) ing that Q;(N + 1), which updatesA/(N), also zeroes
can be ovlained by employing a second set of or ogongjn(N + 1)/6:;(IN)) against 1. Indeed, it suffices to notice

Givens rotations. Specifically, this set of rotations correspon%e duality betweerO;(N + 1), A7 (N), (r:(N + 1)/8(N))

to Q, (), which originates from the annuling ofg, (V) with A = :
respect to 1 [see (7)] and is also used in the time update‘r;‘oq‘d @p(N + 1), Bp(N), g, (N + 1). Therefore, the rotation

the scalara priori error (¢,(IV + 1)). Indeed, if we identify Parameters ofQ;(V + 1) obtained from (26) can be also

the general problem presented in the previous section wHﬁed for the calculation of the elements N +1). As

the forward prediction problem considered in Appendix A, wa€Picted in Table I, the new algorithm is based exclusively

conclude [see (4), (8), and (54)] théx,(N) updatesP/(N) ©ON orthogonal Givens rotations. It also involves scalar-only
according[to @), (8) (54)] that, (V) up » (V) operations, although it treats all channels simultaneously.

Therefore, it is expected that the new scheme will exhibit
O,(N) PUQP;{(N)} _ { PI(N+1) } (24) Very nice numerical features and will be implementable on
P Ny (& (N +1)T CORDIC-based architectures.
. . The proposed algorithm is aP(pl®) computational com-
eg(N - 1_) stands for ‘the angle normahzed_fo_rward _erroblexity, which is similar to the( co)mplexity of the other
vector. Since the uppée X_l block Of_gP(N) 90|n0|de§ with block fast QRD multichannel schemes [27], [28]. The main
9;(N),i =1,2,---,p, the firstli rotations of@Q, (V) will be  computational load comes from step 4, which involGg!?)
the rotations of théth-order problem. Th|§, in conjuction with operations. The remaining steps of the algorithm require
the fact that the uppd¥ x I block of P/(N) is equal toP/ (V) O(pl?) operations. The distinct advantage of the new algo-
(ﬁ\ppendlx A), shows that the angle normalized error vectofgpm ~ however, lies on its modularity and pipelinability. It
¢ (N +1),i=1,2,-.-,p are successively computed in (24)is clear from Table | that the new algorithm is pipelinable at
These e;ror vectors are related to thepriori forward error he order level, that is, the throughput offered is constant, re-
vectorse; (N + 1) as gardless of the channels’ length. Furthermore, the new scheme
er(N +1) = 6i(N)éZf(N 1) i=1,2,---.p (25) can t_)e implemented as Fhe interconnection_adxhdependentz
identical modules and simultaneously provides the solutions
where$,(N) is obtained after nullifying—g, (V). of all lower order problems. The above are not characteristics



TABLE |
NEw BLock MULTICHANNEL QRD ALGORITHM

(N+1) =ung;
Update of A_é(N) and calculation of ro(NV + 1).

} AVZAN(NY  —rg(N+1)
QolN +1) =
@ +1))T (N o«

gO(N +1) = ro(N +1);80(N + 1) = L;&(N + 1) = y(N + 1);

AN+ o

fori=1:p

L. Update of pr(i)(N) and calculation of & (N + 1).

" A2pI8 () PO 1 1)

Q' (N) = i
ELv+T || @V T

2. Update of /i{(N) and calculation of r;(NV + 1).

NPAL(N)  —r(N+1) Al(N+1) 0

Q:(N+1) = ;

EW+)T &) o
3. Calculation of g (N + 1).

ri(N+1) rio1(N+1)
N 0yi-1) 0y;—1)

Oy | = ;
g g)(N +1)
0y(p—i-1) Oyp—i-1)

4. Calculation of the rotations of Q,{(i)(N+ 1).

AN+ i

AL N+ 1)

o Oui-1yxt
QYN+ 1) ) =1 Ou—nyxt

PN+

Otp-iyxt

Origp-i-1yxt

5. Calculation of the rotations of Q;”(N +1) and &(N +1).
—gli-1)
i g (N+1) 0
DN +1) =

51 (N +1) &(N+1)
6. Update of p},i)(N) and calculation of &;(N + 1) (filtering part).
" AVp{ () Py (N +1)
Q(N+1) = ;

&_1(N+1) &(N+1)

end;
e (N 1) = 8,(N + )& (N + 1);
Initialization

£(0) = 0, p,(0) = 0, P{(0) = O
51‘(0) =1, A;(0) =pl,i=12,...,p (¢ : small constant)
A =10 =1i=12....p

of the corresponding block fast QRD multichannel algorithms
of [27], [28], which are sequential for each time iteration.
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IV. CHANNEL DECOMPOSITIONBASED
MULTICHANNEL FAST QRD ALGORITHM

The algorithm of the previous section assumes channels of
equal orders and processes them all simultaneously. Such an
assumption, however, may be sometimes restrictive in practice.
In this section, we deal with the general case of channels with
different orders, and we present a new fast QR scheme that
treats each channel individually. The proposed algorithm is of
lower computational complexity compared not only with the
algorithm of the previous section (for equal channel lengths)
but also with the other channel decomposition-based fast QRD
algorithms of the same categoty.

Let us considel input channels of length&,, k-, - -, ki,
respectively, andk = X!_; k,. Without loss of generality,
we assume thak; > ko > --- > k;. A critical point of our
methodology is the selection of an appropriate partitioning of
the input samples that appear in the input data vegidNV ).
Specifically, we choose the; — k2 most recent samples of
the first channel to be the leading elementspfV) followed
by k2 — k3 pairs of samples of the first and second channel,
followed by ks —k4 triples of samples of the first three channels
... followed by k; [-ples of samples of all channels. For
instance, in the three-channel case with= 6, %, = 3, and
ks = 2,ur(N) will have the form shown at the bottom of
the page.

It is now straightforward that the position of the first (most
recent) sample of thé&h channel is given by

i—1

mi:ZT(k?’_kr-l-l)—i_i 121,2771

r=1

Starting from u,(V), we define the input data vectors
uf (N +1) = [wr(V +1) uf (V)] anduf, (N +1) =
[wi(N +1) wi, (N+1)]S; fori =23,..-,1. S;is a
permutation matrix that moves (N + 1) to them;th position
after left shifting the firstn; —1 elements ok, ; | (N+1). It
can be easily verified thaf, ,(N+1) = [uf (N+1) u(N—
ki+1) -+ w(N—k+1)], thatis, the firs& elements of
ui, (N +1) provide the input vector of the next time instant.
The following input data matrices can now be defined:

”{-1-7 (1)

u£+i(2) .

'”'%—i(N)

uwp (N) =[ur(N) u(N—1) u (N —2) yl(N—ZS) uz(N)

-

k1 —ko

M ul(N — 4) UQ(N — 1)

2(ko—ks)

U3(N) ul(N — 5) UQ(N — 2) U3(N — 1) ]

v

3ks
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If Rk+i(N) stands for the Cholesky factor 6%..;(V), the Combining (28), (31), and the input vector partition
corresponding vectorg, ,;(N + 1) can be expressed as  u} (N +1) = [us(N +1) wuf(N)], we get

BT (N)wi(N +1 . )
IV 1) = = )\; S im0 G (N +1) = QL) {721;(7;; 1)} (33)
k
(28)

The g, (N) vector will also be the critical quantity here.Where

From the discussion above and (28), it is not difficult to show (1)( - fun )¢ . ¥ )
that N+1 w(N+1)— (R, " (N -1
(N 1) \/— (1)( ) k

_ | 9V + W anT
g+ = | SO @9 00 ()

e (N+1)

whereg® (N + 1) consists of the lastelements ofy,. , (N + ~ ()

1). The time update of,,(N) can now be realized according to K

(34)

G N) =g 1 (N+1) =g o(N+1)— - =g, (N +1).  and Whereeg)(N + 1) is the obviousa priori error. From

. . ] ) (33), the normalized errors
This procedure involve$ “forward” steps, which will be

described below. It is clear that because of (29), explicit back- e
&) e (N+1) .
ward steps are essentially avoided, and thus, our methodology r; (N+1)= j=0,1,---,k (35)
\/Xd(l) N P ’
only requires forward steps. 5 ()
A. Forward Step 1 are computed, and§1)(N + 1) would appear directly in (33)
From (27), the input data matri,.; (V) can be written as if our initial data matrix consisted of the firgt+ 1 columns
. of Up41(N).
N—-1/2 T
iN_Q/Qzlgg 0 The time update oi);l)(N) is realized according to
1
Up41(N) = : (30)
: Up(N - 1). Q(O)(N) )\1/2p§€1)(N) (1)(N+ 1) (36)
ui (N) C Iy | T [

The last expression defines a (forward) LS problem [see (2)]
whose scalar desired response is the input of the first chanmﬂ’nere(}io)(N) is a sequence df Givens rotations that annul
Proceeding similarly to the forward problem of the previous g, (V) with respect to 1 [see (7) and (8)]. During this pro-
algorithm (Appendix A), we easily deduce cedure, the quantitieéo)(N) j=1,2,---,k are successively
generated. Furthermore, in (36), the “angle-normalized” errors

-
Bia () 1 651)(N+1) are calculated, which are reIateddﬁ)(NJrl) as
® o*
~(1
N
o I : DW= POWEI WD) =12k (@)
RN - 1DpP(N) RYN -1 ’ ’ ’
PRI (V= Dp" (V) B (N -1)
k
A From (12) we also have
QP (31) 42
wherep" (V) is the rotated reference vector, anff’ (V) &51)(1\7-‘1— 1) = \/(\/XEL](»D(N))2 + (égl)(NJr 1))?
is the square root of the minimum squared error (energy) =12k (38)

corresponding to this LS problen@i(l)(N) is a sequence
of k Givens rotations that annihilagj’(V) with respect to  Equations (38) and (36) provide the quannties required in

a(N) as the update of the rotation parameter€xff> (V) [(32) written
at time IV 4 1]. Finally, the annuling ol , (N+ 1) obtained

~(1) ~(1)
fW @ N | fag (V) | 32) from (33)
A0 | = [ 6] 2

Note that after the application of tlie— j)th rotation matrix Q(l) (N) [—ng(N + 1)} — [ (39)

in (32), the first element of the resulting vector will be equal to 1
aM(N),j=k—1,k—2,---,0, wherea{" (IV) is the energy

of the LS problem that corresponds to data matrix consrstmgyxelds the rotation angles @i,?&zl( ) as well asé(l)( N)j=

the firstj+1 columns ofU;..1 (N). This “order-recursiveness” 1,2, ---, k + 1, which are used in the second forward step

leads to the pipelining of the algorithm. described as follows.

10}
8L (IV)
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Fig. 1. Construction of the upper triangular factﬁ@_H(N).

B. Forward Step for¢ = 2,---,1 latter is valid in our case, which means that the final factor
The input data matrix/;.:(IV) is related tolj.._ (N) as €aqualsEi4i(IV), that is
AN-1/24,(1) Riys(N) = STQIY_ (V)
AN— 2/2 2 a(z) N h
Upti(V) = : 2 Si. (40) ' L@T DN }5 (43)
: Upyi—1(N) it (V) Rigim1(N)

u;(N) Equation (43) establishes the connection between
o ) - Riti—1(N) and Ryy;(N). Combining (28), the inverted
The derivation of an expression betweét;(N) and form of the matrix in (43), and the input vector partition

Ryt 1(N) is again necessary. Indeed, i 1(V) ul (N+1)=[u(N+1) wui,,_,(N+1)]S; we obtain
stands for the orthogonal factor in the QR decomposition

(8)
of Usrin1(N), we have sV 4 ) = STQL 0 [T D | ey
gk-l—z 1( + 1)
1 o” o” )
0 Qupii(N) | |Upgi(IN) From the definitions ofS; and Qk; 1 (), we conclude
0 o that the firstm; — 1 elements oy, ;(N +1),9;,;,_ (N +1)
i 5 are identical. Furthermore, the application of the rotations
= PEH).Z (V) Rygi1(N) | S;. (41) #(0) ) . pp .
5] of QHZ (V) in (44) successively produces the normalized
”k+7,—1(N) 0

errorsd}ﬂ NV + 1)t =1,2,--- (k4 4) —m;. If our
After annuling ,,Hz (N) against the first element of initial data matrix coincided W|th the firgk +¢) — ¢ columns
the matrix with an appropriate orthogonal factor, the upp@ Ui+i(N), then rili_1_(N + 1) would appear directly
(k +1) x (k +1) part of the resulting matrix, say;.,(N), in an equation of the type of (44). In such an equation, the
will have the form correspondlnng(Z) factor would be identical to the product
R ) (V) o of the last(k 4 ¢) — m, — ¢ rotation matrices OQ{E; 1 (V)
Rypi(N) = Léf)ﬂ L . S;.  (42) and the corresponding-vectors would be equal to the upper
o1 (V) Bigica(N) (k+i—t)x1and(k+i—1—t)x 1 blocks ofg,_,(N+1) and
Note that the existence & in (42) prevents the application 9x+i—1 (¥ + 1), respectively. Especially for = (k + 1) — mi,
of the usual technique, that is, the zeroing Iéﬁ—ifl (N) the orthogonal facto€)’ ") degenerates to the identity matrix,
) and the action ob7" indicates that _1(N+ 1) is them;th

(@) B
againsta;y; (). The procedure that transforntg;(N wélement ongZ(N +1).Ina S|m|lar way, we conclude that

into an upper triangular factor is illustrated in Fig. 1. (i)
initially premultiply &x.:(IV) with a sequence o +i) —m, the lower order energies,\, ; .t =1,2,---,(k+1) —
elementary Givens rotanon@H) 1( ), which nullify the are successively produced in (43) through the appllcatlon of

i)
last (k + i) — m; elements 0fpk+7 1 (V) with respect to the rotation matrices OQ’“” 1 ().

~§3ﬂ ((N) in a bottom-up procedure. This step does not The time update qﬁk“ 1(N)s acc(c;mphshed according to

affect the upper triangular structure Bf,.;_,(N) and creates OG-V )[Al/ngJ)ﬂ 1(N)} [pkﬂ LN+ 1)} 45)
(k+1)—m;+1 nonzero elements at the end of the first row of “¥+i—1 u; (N + 1) & (N+1) ]

the resulting matrix. The new matrix is then premultiplied by . 0

a permutation factor that moves its first row to the position N the last equation, except f@), (N + 1), all lower
after upshifting its nextn; — 1 rows. Clearly, this permutation order angle normalized errors are calculated as well. The
factor coincides withST. It is not difficult to verify that the rotations required in the next forward step are now computed
above procedure Ieads to(A+¢) x (k +¢) upper tnangular from

positive definite factor under the condition thaf, QU (N +1) |:_gk+i(1N+ 1)} [ 0 )} (46)

(@)
and the diagonal elements @, 1(N) are posmve The 4 (N
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It has been stated, however, that the first— 1 elements TABLE I
of g;.,;(N + 1) coincide with the corresponding elements of NEW CHANNEL DECOMPOSITIONBASED QRD ALGORITHM
9141 (N +1). Therefore, the firstn; — 1 rotation parameters
of the th forward step have already been calculated in the s vy = 1;e,(v + 1) = y(v + 1);
previous forward steps. Such an observation can lead to g ,_, .,
significant reduction of the computational complexity of the
proposed algorithm, depending on the channel orders, and will
be revisited later on. Especially the rotations produced at the
lth forward step pass to the filtering part of the algorithm as
well as to the first forward step of the next time instant. Note & (¥ + 1) = cos[#{™ (W)}, (N 4 1) = A/ 2sin[al ™ (V)]p (V)
from (29) that only the firsk (out of k1) rotation parameters, end;
which are produced in (46) far= [, are essentially necessary. {9 +1)= A%#
As a consequence, in all forward steps, we can deal with the otk L (Ste 2)

. J i P

upperk x 1 blocks of the corresponding vectogs Based on 1)

O N1 — oo SO 1) sinfol) .
this observation, the initial angle normalized error in (44) will SN 1) = eosfg NN 1) = sinfo N D 1)
g}”(wl)—fsm[o; (N nr}”(NHHcosw,”( Nl v +1);

BN + 1) = w (N +1);
forj=1:k, (Step 1)
POV 4 1) = A2 cos80 (W) pO(V) + sin 80V (v 4 1),

be given by
end;
7 1—1 :
r(i)(N +1) = g )(N + 1)6( '(av) o N+ )=l (V4 1)
k A : - .
VA () a1y = (VAD (V)2 4 (@D 4 1))

forj=4k:—1:m,, (Step 3)
L 1) =@+ 60+ )%

while the update oﬁgf)(N) is obtained as

S(3

. - - () v s (V)

A (N +1) = (VA (V)2 + (60 + 1))2 ol = e

" o sinfg V(N 4 1)] = 2

The new channel decomposition based algorithm is shown ey LV

in Table Il. In Table 1,6~V (N),j = 1,2,-.- K stand for ~ *¥
the first k rotation angles ofi};:il_)l(N), whereas¢§z)(N +

1,5 = m;,m; +1,---,k are the lastt — m; + 1 rotation 5}”@) . \/(5](3}) z\’\'v)))”(af”l(\ %
angles on{ifZ 1(N + 1). (Z)(N) is the jth element of cosld] (V)] = O

i @) PRy
P, (), and ¢'” (N + 1) denotes thejth element of sm[eg.)m)]:ﬁ%%”;

91i(N + 1). p;(IV) stands for thejth element of thet x 1
vector p, (V) [corresponding taP(N) of (4) for the single o

output, different channel orders case]. In order to maintain &% { 7°°}
unified notation, the following conventions are adopted for 1/ = 1% (Step 5)

the ith forward step:6”)(N) = #O(N + 1),50(N) = PN+ = Wl () A7 (N 1 0] (N4 1)
5N — (0) i (N _ sin[6@¢; AN
SO +1) andg?, (V) = 9, (N + 1.5 = L2+ ] G 410X )
end;
C. Alternative Form of the Algorithm (N 4 1) = 50 (N + (N + 1);

f Initialization

We observe that the prediction section of the algorithm o
Table 1 consists of similar distinct parts, which correspond P(0) =9, 9,7(0) = 0, coslo(0)] = 1,5 = 1,2 k
to thel input channels. Thé 4 1)th part is excecuted after the »{’(0) =0, cos[s{)(0)] =1, i=1,2,...., i =1,2,...,m,
completion of the procedure for théh channel, from which sy =1, a0 =y, i =1,2,... .1
the necessary quantiti#$”, 67, and ¢ are collected. This
sequential procedure can be avoided if a slightly different
approach is adopted for the excecution of steps 2 and 3 of
Table II. This approach is based on an alternative computatié$i¢ “ascending” excecution of steps 2 and 3 of Table Il is

of the quant|t|e9]( )(N +1) and a]( )(N + 1). Indeed, if we achieved. In this way, we are led to the algorithm shown
use the relations in Table Ill. The main feature of this algorithm is that the

) (1) [ forward steps can be excecuted in a pipelined fashion: a fact
7)§i)(N 1) = ¢ (N + 16" (M) i=1,2,- 1 that favors its systolic implementation. A systolic architecture

\/X@](i)(N) o for the implementation of the algorithm of Table IIl is shown
j=mg, -k (47) in Fig. 2. The architecture comprisdsidentical sections,

) and each section consists &f blocks. Theith section is
and excited from theith channel and essentially implements the
@) D) NG ith forward step. The blo‘cks of th&h section transfer the
a; (N +1) :\/(\/Xaj (N))?+(e;” (N +1))? necessary values aof”,8(® and §* to the corresponding

t=1,2,---,1 j=m;, -,k (48) blocks of the(i + 1)th section. The lastlih) section passes
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TABLE 111
ALTERNATIVE FORM OF THE ALGORITHM OF TABLE Il

SUN) = Leo(N + 1) = y(N + 1);

Wy 1) = ad+y
!Jo( ) 7—%
(N 4 1) = (VAT (V)2 (V4 1))

fori=1:1,

N+ 1) = wi (V1)
forj=1:k,

PN + 1) = A2 cosf0l (V)] 4 sin[00 D (V) e (V + 1)
(N +1) = cos[8 (V)] (V 4 1) - A 2sin[6 D ()P (v);
15> m—1,

DN+ 1) = (VAP ()2 + EN + 1))
MV =

a

(vl T vy
V3 ()

Ifj=m;—1,

gV + =P 4y

Ify5>m;—1,
9N 4 1) = —sin[oP NIV £ 1)+ cos[p!? (N9 N + 1);
sl (¥ + 1)] =
1

) (N+1)’
DIENS

Oy (N+1)

sinlgf (V1)) =
7—1

JED 2+ (g (N + 1))

5—

end; { j-loop }
end; { #-loop }
forj=1:k,
PN + 1) = M2 cos[8 (N + 1)]p; (V) + sin[07(N + 1)]&;_1 (N +1);
&GN +1) = cosl8” (N + 1))éj-1(N + 1) — AY2sinf6! (¥ + 1)]p; (V);
end;

(N4 1) = 5OV 4 eV + 1)

Initialization
px(0) = 0, g{7(0) = 0, cos[0 ()] = 1, 87 (0) = L, j = 1,2,k
A0 =0, cosle’ (O] =1, i=1,2. L j=12. . m
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Fig. 2. Systolic architecture for the implementation of the algorithm of
Table IIl.

D. Remarks

It can be shown that the channel decomposition based
algorithm of [29] can be obtained if we adopt the vector

(V) = B T (N)ur(N)

in place ofg,. Then, a similar methodology can also be fol-
lowed for the derivation of this algorithAln other words, our
technique provides a unified framework for the development
of multichannel fast QRD algorithms. The proposed technique
is simple, direct, and insightful with respect to the internal
algorithmic quantities, which have a specific LS meaning and
interpretation. Moreover, explicit backward steps are avoided
[(19) and (29)], and our methodology essentialy comprises
forward steps. This is in contrast to other methodologies,
where the coexistence of forward and backward steps increases
the complexity of the derivation procedure.

The multichannel algorithms of Tables Il and Il are based
exclusively on orthogonal Givens rotations. As a result, their
numerical performance is expected to be favorable. For chan-
nels of equal order§k = Ip), the new schemes are 6f(pl?)
computational complexity, which is lower by an order of
magnitude compared with the complexity of the algorithm

. . ) ._.of Section Il and is similar to that of other known channel
these quantities to the first channel, leading to a circul

implementation. It also sends the angHéQ to the filtering
section of the architecture (not shown in Fig. 2).

a{ecomposition—based fast QRD schemes [27], [28]. In the
general case of different channel orders, however, the pro-
posed algorithms are of lower computational complexity if

The proposed architecture is pipelinable at the order levehmnared with the fast QRD scheme of [29] (which also treats
that is, the throughput provided is constant and independepfaqal channel lengths). This concemns not only the number

of k. This is achieved if we let thé inputs to be applied in
a skewed manner from top-to-bottom, i.e;( N + 1) is first
applied, thenuy (N 41), etc. Thusu; (N 4 2) excites the first
section! “clock cycles” after the application af; (N +1). This
is so because fof > my, the rotation39§0)(N + 1) required
in the first forward step are produced in thhk section at the

of multiplications/divisions but also, and more importantly,
the number of square roots, as shown in Table IV. The
complexity reduction is due to the fact that thevectors of
different forward problems have common blocks. Therefore,
some rotation parameters o?(i)’s—produced in a forward
manner—are also common among the different channels and

previous time instan. The skewing of the inputs ensures thgyeed to be computed only once. There does not exist such a
synhronization of the different building blocks of the circular

architecture, which provides the output error evériclock
cycles.”

2The same holds for the block and channel decomposition based algorithms

of [27] and [28], which are obtained if we follow the analysis of Sections Il
and IV.
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TABLE IV
COMPARISON OF COMPLEXITIES OF CHANNEL DECOMPOSITIONBASED MULTICHANNEL FAST QRD ALGORITHMS
Algorithm Mults/Divs Square roots
Algorithm of Table II 17kl — 1250 m; + 12145k | 2k — 2%l m, + 21
Algorithm of Table Il 18kl — 135! m; + 13145k | 2kl — 2% m, + 2!
Algorithm of [29] 18kl — 8% m, + 81+ 5k 2kl — St m; + 21
TABLE V
COMPARISON OF COMPLEXITIES FOR SECOND-ORDER VOLTERRA FILTERING
Algorithm Mults/Divs Square roots
Algorithm of Table I 6.5L% 4 21.5L% + O(L) 213 +1.502 + O(L)
Algorithm of Table Il 6.83L3 +22.5L2 4+ O(L) 213+ 1502 + O(L)
Algorithm of [29] 7.66L3 + 38.5L2 + O(L) 2L3 +2.75L2 + O(L)

possibility for the algorithm of [29] because the correspondirig accomplished by considering= L + 1 channels, whose
rotation parameters are produced from tpe&ectors in a inputs at timen are expressed as

backward manner. As shown in Table IV, the reduction in

complexity, which is offered by the new algorithms, depends oy Ju(n), =1

on the channel lengths. A specific example is presented in i(n) = {u(n)u(n —i+2), i=2,---,L+1

the next section. From Table IV, we also observe that the

computational complexity of the algorithm of Table Ill isand their orders are

slightly higher if compared with the algorithm of Table II.

This is due to the use of (19) and (29) for the computation e — {L7 . 1=1,2

of #{(N +1) anda{” (W + 1), respectively. However, the L—i+2, =3, L+1

algorithm of Table Ill is pipelinable at the order level and

is implementable on a very regular systolic architecture. In Clearly, the output of the nonlinear model (49) can be
contrast, the algorithm of Table II, as well as the fast chanrdlaptively estimated in the LS sense if a multichannel LS
decomposition-based QRD algorithms of [27]-[29], are strict§ldorithm that is capable of processing different channel

sequential for each time iteration. lengths is employed. _ _
The computational requirements of the algorithms described

in Section IV for the above \olterra-type problem are shown
in Table V. Table V also includes the number of operations
In this section, two specific applications, which accept @r the corresponding scheme of [29], which is the only
multichannel formulation, are discussed: Volterra-type nonligmown to the authors multichannel fast QRD algorithm treating
ear adaptive filtering and decision feedback adaptive changgkrrent channel ordefsWe observe that the new algorithms
equalization. Computer simulations demonstrate the validigffer significant computational savings in terms of both the
of the proposed channel decomposition based algorithms whgfinber of multiplications/divisions (15% and 11% less) and
they are used as the necessary adaptive tool. Experiments {Rdnumber of square roots (20% less). This improvement can

V. APPLICATIONS EXPERIMENTAL RESULTS

limited precision environment are also provided. be even greater for a different application (in the higher order
o \olterra case, for instance).
A. Second-Order Volterra Filtering We have implemented the algorithm of Table Il for a

We assume that the input-output relation of our referenggcond-order Volterra system with= 5. The input and noise
model is described by the second-order triangular Voltert@ms are zero mean white Gaussian signals. The variance

representation [29], [32], [33] of the input was taken equal to 1, and the forgetting factor
A = 0.98. The squared error resulting from the application of

B = N L= the new multichannel scheme is depicted in Fig. 3. The curves

y(n) = Z Cny (N)u(n —n1) Z Z €y na (N of Fig. 3 are the average of 20 independent realizations of the

n1=0 n1=0ngs=n1

algorithm and correspond to noise varianaés? and 10~2,
“u(n = nyju(n —nz) +n(n) (49) respectively. The fast convergence rate that characterizes the

where ¢, (N), cn, .y (V) stand for the linear and quadraticRE-S type algorithms is clear from Fig. 3.

coefficients of the system at tim&/, and n(n) represents

a noise term. The nonlinear fllterlng problem of (49) Can SIn [29, Tab. Ill], the number of multiplications/divisions and the number
square roots are calculated a&?® + (69L%/2) + (57L/2) — 1 and

be transformed to an equivalent linear multichannel fllterlngs + (TL2/2) + (TL/2), respectively. We believe, however, that careful

problem with channels of unequal orders [29], [32], [33]. Thiseasuring leads to the figures of Table V.
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Fig. 3. Initial convergence curves of the \olterra filtering problem.

M(n)
u(n) e -
—>{  Channel FF adaptive filter o | FB adaptive filter

Fig. 4. Full decision feedback channel equalizer.

B. Decision Feedback Adaptive Channel Equalization phase transfer function

The basic decision feedback channel equalization problemgr(z) =0.3627 +0.103027% — 0.7396272 4 0.38592 3
[1] is illustrated in Fig. 4. An input sequence(n) taking 0.40245—4 .
values from a binary alphabét-1) excites a communication
channel with nonminimum phase characteristics. The channellhe channel coefficients are properly chosen to assure that
introduces both time dispersion in the form of intersymbdhe variance of the output signal equals 1. The noise term is
interference and additive noise(f) in the figure). The a zero mean white Gaussian process of variarce’, and
reconstruction of the initial input sequence from the channéle forgetting factor\ = 0.98. The lengths of the FF and
output samples is at the heart of the channel equalizatif’t FB sections are taken equal to 5 and 2, respectively,
problem. whereas a delay equal to 1 is sufficient. Fig. 5 shows the
A full decision feedback equalizer structure consists of gdualizer output error with the equalizer operating in the initial
feedforward (FF) adaptive filter and a feedback (FB) adaptifeining period. The curve of Fig. 5 is the average of 40
filter [1]. The FF filter, which introduces a delay into thdndependent realizations. We observe that the new algorithm
equalizer, removes the precursor part of the channel’s impufmbines fast initial convergence with low complexity and
response while the FB filter cancels the part following thBUmerical robustness, which are highly desirable in a channel
main peak of the channel's impulse response. Therefore, eitfdHalization application.
two seperate single channel adaptive algorithms can be used . ] )
or, following a multichannel interpretation, a multichannef- Numerical Simulations
algorithm with! = 2 can be applied. In order to compare the numerical behavior of channel
We have implemented a decision feedback equalizer usidgcomposition-based fast QRD algorithms, experiments have
the algorithm of Table 11l for a channel with the nonminimunbeen performed in a finite precision environment. Specifically,
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Fig. 5. Average output error of the equalizer in the training period.

the mantissa in the single precision floating-point representdgorithm of [29] is slightly better for mantissa lengths 7, 8,
tion is truncated in a specified position, whereas the exponamd 9. In contrast, for mantissa lengths greater than 9, the mean
remains unaffected. The outcome of each arithmetic operatigguared error of the algorithm of Table Il is slightly lower. In
of the algorithms under study is immediately adjusted to thgeneral, the numerical accuracy of both algorithms seems to
predifined mantissa length. In the following experiments, wee similar: a fact that has also been verified for a variety of
consider that the desired signg{n) obeys to a three-input initial models and specifications. It is obvious from Fig. 6 that
channel model of the form for mantissa lengths 12 and 13, the mean squared error of
both algorithms is very close to the valge10~2), which is
expected for IEEE single precision floating-point arithmetic

The orders o, , e, , e, are 6, 4, and 3, respectively, ano(23—bit manFissa). It must b(_a notgd that the aIgori'Fhms were
their elements are chosen randomly. The noise tefn) is run for_ a high mumber of |terat|0n$}1000000) with no

. . . : 2 : indication of round-off error accumulation, even for very small

a white Gaussian sequence with variande “. The input

signals are autoregressive sequences of orders 3, 2, ancﬁg?r;ﬁzsseﬁnglth;itﬁg'('J?r_rr:t‘;l';elrl'lcal results are also obtained
respectively, i.e., g .

However, the algorithm of [29] appears to have numerical
u1(n) =0.9u1(n — 1) 4+ 0.64u1 (n — 2) — 0.576u1 (n — 3) problems in the case of nonstationarities of the input signal
401887 (n) statistics [13]. Indeed, in Fig. 7, the algorithms are compared
when the input signakq(n) is disturbed as
us(n) = —0.478Tuz(n — 1) + 0.8uz(n — 2) + 0.2512(n)
ug(n) =0.5uz(n — 1) — 0.9uz(n — 2) + 0.42n3(n). u2(n) =—0.4787uz(n — 1) + 0.8ua(n — 2) + 40m2(n)
for n = 400.

y(n) = e, wr, (n) + €, (n) + e, up, () +1(n).

The termsy; (n), 72(n), n3(n) are white Gaussian sequences
of variance 1, and the coefficients of the above AR equatioBsen for 7 bits in the mantissa representation, the mean
were chosen so that the input signal variances are also equaldoared error of the new algorithm converges to its expected
1. In our experiments, the forgetting factdrequals 0.99. The value (from Fig. 6) following a sudden increase, which is due
a priori mean squared error of two-channel decompositiots the above nonstationarity. In contrast, for mantissa lengths
based fast QRD algorithms for different mantissa lengths lsss than 14 bits, at least one of the 50 realizations of the
shown in Fig. 6. For a specific number of mantissa bits, Sgorithm of [29] stops at the point of the disturbance. This
different realizations of the algorithms were run, each of 30Q@oblem relates to a numerically not well-behaved hyberbolic
iterations. The last 1000 samples of #heriori mean squared rotation step that is included in the body of the algorithm
error are then used for the evaluation of a time average valo&.[29]. Specifically, due to the low arithmetic precision, the
Following this procedure, the value of each point in Fig. élgorithm calls for the calculation of the square root of a
is specified. We observe that the numerical accuracy of thegative number, which halts the algorithmic procedure. Note
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Fig. 6. Mean squared error of two multichannel fast QRD algorithms for different mantissa lengths.

10*

Output MSE

Algorithm of table 2 (7 bits)

Algorithm of [29] (14 bits)

107
10_3 1 1 i 1 1
0 500 1000 1500 2000 2500 3000
Number of iterations
Fig. 7.

Mean squared error of two multichannel fast QRD algorithms under a strong nonstationarity.

that the proposed algorithms do not include hyperbolic steghje to their numerically robust performance. In this paper,
resulting in superior numerical behavior. following a novel technique, new multichannel fast QRD
algorithms were developed. The new technique is direct and
VI. CONCLUDING REMARKS insightful and can easily be applied for the derivation of other,
Least squares adaptive algorithms based on the QR diready existing multichannel fast QRD schemes. Besides their

composition of the input data matrix are very promisingood numerical properties, the proposed algorithms exhibit
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some other nice features, such as fast convergence, Mere flg(N) stands for thel x { Cholesky factor of the
complexity, and enhanced parallelism and pipelinability. A®rward error covariance matrix. After isolating the upper
a consequence, the new algorithms are amenable to effici&pt+ 1) x I(p + 1) block of the matrix in the right-hand side
implementations on systolic array architectures with shasf (55), we easily obtain

wordlengths and fixed-point arithmetic. As the number of
applications that accept a multichannel formulation increases,
schemes of the type presented in this paper appear to be
appropriate algorithmic tools.

AJ(N) O

UM pHN) RN - 1)

Rp-l-l(N) =%p

(56)
where QI{(N) is a sequence of orthogonal Givens rotations
that annihilateP/ () with respect toA/ (V). Specifically,
each row ofPI{(N) is zeroed against the diagonal elements
of the [ x [ upper triangular factor [initiaIIyAZ{(N)]. The

procedure starts from the last row Bf (NV), moves upwards,

From (13), the input data matrix,1, (V) can be written as
and guarantees the upper triangular structure and the positive-
(50) definiteness of the resulting factor. It is now straightforward

Upr1(N) =[Up(N) Y (N)]
)\N_I/Q’U,T
- [ Y (W) 1>} itenes
P that inversion of (53) and (56) leads to (15) and (16).
whereY?(V), Y./ (IV) consist of the obvious desired responses Note that if instead oft/,11(V) we initially considered
of the backward and forward problems, respectively. From th&(N) in (50) for i = 1,2,---,p, then A{_I(N),Pif_l(N),
definition of R,,(V) and (4), it is easy to see that and @/ (V) would appear in (56), wherg/ | (V) is identical
Ry(N) PI‘;(N) to the L!ppet('.i —Dixl bl.ock of P/(N). This observgtion, in
O VN | (51) conjuction with the nesting property of the factors in (53),
p

APPENDIX A

OT
Up,(N —

Qp(N)Upar(N) = [

justify the order recursiveness of the derived algorithm.
If now Q% (V) is an orthogonal matrix that convert§ (V)
into an! x [ upper triangular form with positive diagonal

elements, then (51) gives o

h o Ry(N) BU)
& onlemumm= 0" W] @
b o 0 i
(52) [3]

From (11) and the norm preserving property@ﬁ(N), it 4]
is clear thatA;’,(N) is the Cholesky factor of the backward (5]
error covariance matrix. The relation betwe#p, (V) and
R,(N) is readily established from (52) as

Ry (N) in’(N)}
O AYN) o
By using the second equation in (50), the connection be-

tween R, 1(N) and R,(N — 1) can also be established.

Indeed, after noticing thak,., ; (V) is also the Cholesky factor
of any matrix of the form[Upff( N)], we get

(6]

(7]

Ry (V) = [ (53)

|:Il O } |:O(l—1)><l(p+1):| 1ol

O V-] V() o
PI(N)  Ry(N-1) S
VI(N) O

An orthogonal matrix9/ (V) can now be found that trans- 13l
forms the matrix in (54) in the form

[14]
¥ I O Oa-1)xip+1)
QP(N) [O QP(N - 1)} [ Up+1(N) } [15]
A(N) O
= |PI(N) R,(N—-1) (55) 16
O O
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