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equalizer (DFE) stages, each one detecting a single stream. The equalizer filters, as well as the ordering by which the streams are
extracted, are updated based on the minimization of a set of least squares (LS) cost functions in a BLAST-like fashion. To ensure
numerically robust performance of the proposed algorithm, Cholesky factorization of the equalizer input autocorrelation matrix
is applied. Moreover, after showing that the equalization problem possesses an order recursive structure, a computationally ef-
ficient scheme is developed. A variation of the method is also described, which is appropriate for slow time-varying conditions.
Theoretical analysis of the equalization problem reveals an inherent numerical deficiency, thus justifying our choice of employing
a numerically robust algebraic transformation. The performance of the proposed method in terms of convergence, tracking, and
bit error rate (BER) is evaluated through extensive computer simulations for time-varying and wideband channels.
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1. INTRODUCTION

To exploit the potential spectral efficiency of multiple-input
multiple-output (MIMO) wireless communication systems,
sophisticated receiver structures should be designed. Most of
the MIMO receivers described so far deal with narrowband
systems, where the channel is considered flat. Among these
receivers, the BLAST (Bell Labs Layered Space-Time) archi-
tecture [1] is usually employed in high-rate spatial multi-
plexing systems. However, to increase transmission rate, the
symbol period should be made shorter, thus giving rise to
intersymbol interference (ISI). Under these circumstances a
MIMO equalizer should be designed in a proper way to com-
pensate for both intersymbol and interstream interference.

Given that interference evolves in space and time, var-
ious MIMO DFE architectures have been proposed, corre-
sponding to different detection scenarios [2, 3]. A first sce-
nario comprises a parallel architecture, where all transmit-
ted streams are detected simultaneously and hence only de-
cisions on past detected symbols are available at each time
instant. Due to this parallel structure, no detection ordering
of streams is required. A second scenario is to process symbol

streams sequentially in an ordered manner and on a symbol-
by-symbol basis [2]. In such a case, past decisions from all
streams along with current decisions from already detected
streams are used for detecting the current symbol of one of
the remaining streams, and so forth. A third scenario could
be an ordered sequential architecture operating on a packet
basis, where at each stage the whole packet of a stream is ex-
tracted. Hence, future decisions of already detected streams
are also available, when detecting a new stream. In all three
scenarios, the available decisions can be either convolved
with the corresponding channel impulse response and then
subtracted from the received signal, or subtracted from the
output of a feedforward filter after they have been convolved
with a feedback filter. As shown in [4], these two approaches
are mathematically equivalent. (The analysis in [4] is for flat
fading channels. It can, however, be rather easily extended for
frequency-selective channels.)

In [2] a theoretical framework for designing optimum
in the minimum mean square error (MMSE) sense MIMO
DFEs for the first and second detection scenarios was
presented. In [3] the BLAST concept [1] was extended to
frequency-selective channels and a meaningful criterion for
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stream ordering was applied. The authors presented three
equalizer architectures operating in the time domain: a
MIMO DFE for the first scenario, the so-called partially
connected (PC) receiver, and a fully connected (FC) receiver,
both implementing the third detection scheme. For single
carrier systems employing a cyclic prefix (SC-CP), hybrid
schemes of these receivers have been suggested in [5–7],
where feedforward and feedback filtering were performed
in the frequency and time domain, respectively. A MIMO
DFE completely implemented in the frequency domain was
presented in [8], while an approximation for the ordering
process of [3] was described in [9].

All the above equalizer designs assume that the channel
is static and primarily that it is known at the receiver, while
the detection ordering is predetermined and fixed. However,
when the channel impulse response changes within a burst,
adaptive channel estimation should be employed, and detec-
tion ordering needs to be updated quite frequently, thus lead-
ing to an overall prohibitive computational complexity. An
adaptive channel estimation-based MIMO DFE for the first
detection scenario was presented in [10]. Moreover, adaptive
schemes, which perform linear MIMO equalization directly
have been recently developed in [11–13]. An adaptive MIMO
DFE employing the classical recursive least squares (RLS) al-
gorithm has also been described in [14], dealing with the first
detection scenario. Due to their architecture, all these equal-
izers do not take into consideration any ordering of the input
streams, which can be a key factor in improving receiver’s
performance.

An adaptive BLAST DFE for flat fading MIMO chan-
nels has been developed in [15], while a numerically robust
and computationally efficient modification of this algorithm
was suggested in [16]. In this paper,1 we develop an adaptive
BLAST DFE for frequency-selective MIMO channels follow-
ing the second detection scenario. The new algorithm origi-
nates from a recursive minimization of a set of LS cost func-
tions, and thus exhibits a fast convergence behavior. More-
over, the detection ordering is naturally encapsulated in the
LS problem and is efficiently updated at each time instant. By
continuously updating both the DFE filters and the ordering
of streams, the proposed equalizer can effectively track fast
time variations appearing in high mobility applications. In
case of slow fading, the ordering can be kept fixed and a vari-
ation of the proposed algorithm is presented. Note that, as it
will be shown in our analysis, the equalization problem un-
der consideration has, under certain conditions, a potential
numerical deficiency. To compensate for this deficiency, in
our approach the equalizer filters are designed and updated
based on the Cholesky factorization of the equalizer’s input
autocorrelation matrix. This ensures numerically robust per-
formance of the proposed algorithm, as justified intuitively
and verified by simulation results.

To the best of our knowledge, in the limited literature
on adaptive MIMO equalization, the proposed method is
the only adaptive BLAST DFE for wideband systems. The

1 Part of this work has been presented in [17].

application of the idea of [16] in order to develop a compu-
tationally efficient DFE for frequency-selective MIMO chan-
nels requires a suitable formulation of the equalization prob-
lem. Indeed, by properly defining the structure of the DFE fil-
ters, we prove that all significant quantities of the algorithm
can be efficiently order updated. Moreover, when it comes
to wideband channels, the increase in the size of the prob-
lem has several implications in convergence, tracking, and
numerical behavior of the algorithm that are successfully ad-
dressed in this work.

The rest of the paper is organized as follows. In Section 2,
the system model is presented and the problem is formu-
lated, while in Section 3 the new algorithm is derived. In
Section 4, the proposed method is described in detail, and
complexity and robustness issues are discussed. The perfor-
mance of the algorithm is studied through extensive simula-
tions in Section 5, and the work is concluded in Section 6.

Throughout the paper, we use bold lowercase and cap-
ital letters to denote vectors and matrices, respectively. We
represent with In the n × n identity matrix, and with O, 0
the all-zero matrix and vector, respectively. Finally, we utilize
(·)T , (·)∗, and (·)H for matrix transposition, conjugation,
and Hermitian transposition, respectively.

2. SYSTEM MODEL AND PROBLEM FORMULATION

Let us consider a MIMO communication system operating
over a frequency-selective and time-varying wireless chan-
nel. The system employs M transmit and N receive anten-
nas, with M ≤ N , while spatial multiplexing is assumed for
high data rate communication. Assuming perfect carrier re-
covery and downconversion, the received signals are sampled
at the symbol rate and the system can be described via a
discrete-time complex baseband model. The transmitted sig-
nal at time k can be described by the vector

s(k) = 1√
M

[
s1(k) s2(k) · · · sM(k)

]T
, (1)

where sm(k), for m = 1, . . . ,M, are i.i.d. symbols taken from
the same finite alphabet. Note that the total average transmit
power is fixed and independent of M.

The sampled impulse response, including the wireless
channel and the pulse shaping filters, between transmitter
m and receiver n at time k, is denoted by hnm(k; l), for l =
0, . . . ,L. The channel length, (L+1), is considered to be com-
mon for all subchannels. By assembling the lth impulse re-
sponse coefficients from all subchannels into the N×M ma-
trices

H(k; l) =

⎡
⎢⎢⎢⎣

h11(k; l) · · · h1M(k; l)

...
. . .

...

hN1(k; l) · · · hNM(k; l)

⎤
⎥⎥⎥⎦ , l = 0, . . . ,L. (2)

The signal received at the N receive antennas at time k can
be expressed as

x(k) =
[
x1(k) · · · xN (k)

]T =
L∑

l=0

H(k; l)s(k − l) + n(k),

(3)
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Figure 1: Adaptive BLAST MIMO decision feedback equalizer architecture.

where n(k) is a N×1 vector containing additive white Gaus-
sian noise (AWGN) samples of variance σ2

n .
The intersymbol and interstream interference involved

in the system described by (3) can be mitigated through
the equalizer architecture illustrated in Figure 1. The pro-
posed architecture is a structure of M serially connected
stages implementing the second detection scenario described
in Section 1. The DFE of the ith stage equalizes one of the
M symbol streams, according to the assignment oi(k), where
oi(k) ∈ {1, 2, . . . ,M}. The sequence {o1(k), o2(k), . . . , oM(k)}
indicates the ordering at which the streams are extracted at
time k, and is adaptively updated in a BLAST manner. Al-
though the ordering of streams depends on time k, we will
skip this notation for the sake of simplicity. Thus, for the rest
of the paper, oi denotes the stream assigned to the ith stage at
time k, unless otherwise stated.

As shown in Figure 1, each DFE consists of a multiple-
input single-output (MISO) feedforward filter, fi(k), with
NKf taps. The input of the feedforward filters is common
for all DFEs, and is described by the NKf×1 vector

x(k) =
[

xT
(
k − Kf + 1

) · · · xT(k)
]T

. (4)

The MISO feedback filter at stage i, bi(k), has a total of
(MKb + i−1) taps. Its input consists of MKb postcursor deci-
sions from all streams, as well as the current decisions made
for the streams already acquired at the previous (i−1) stages.

If d̃i(k) is the output of the DFE assigned to the ith stream

and di(k) = f {d̃i(k)} is the corresponding decision device
output, that is, the hard decision for the ith stream, then we
define the M × 1 vector with the default ordering as

d(k) =
[
d1(k) · · · dM(k)

]T
. (5)

Hence, the input of the feedback filter at the ith stage is de-
scribed by the (MKb + i− 1)×1 vector

di(k)=
[

dT(k−Kb
) · · · dT(k−1) do1 (k) · · · doi−1 (k)

]T
,

(6)

where doi(k) is the decision made at the ith DFE for the oith
stream. As mentioned above, the decision vector di(k) con-
sists of two parts. The first MKb elements correspond to pre-
vious decisions placed at the default ordering. The remain-
ing part consists of the (i − 1) current decisions made at the
previous stages, which are stored according to the current or-
dering.

By using the above definitions, the output of the ith DFE
can be compactly expressed as

d̃oi(k) = wH
i (k)yi(k), (7)

where

wi(k) =
[

fTi (k) bT
i (k)

]T
,

yi(k) =
[

xT(k) dT
i (k)

]T
,

i = 1, . . . ,M, (8)

and, thus, the input of the ith DFE, yi(k), is a Ki × 1 vector
with Ki = NKf + MKb + (i− 1).

To completely describe the proposed equalizer architec-
ture, we need to specify how the detection ordering is deter-
mined. To eliminate error propagation effects, we adopt the
idea of BLAST [1] as in [3], that is, the streams achieving
lower mean squared detection error are extracted at earlier
stages. These streams are characterized by higher post detec-
tion SNR and since they are taken from the same constella-
tion, they achieve lower bit error rate (BER). By feeding those
more reliable decisions into the feedback filters of the next
stages, weaker streams can be detected more reliably as well.
Obviously, under fast fading conditions not only the equal-
izer filters, but also the detection ordering should be adapted
at each time instant. Next, we follow an LS approach to sat-
isfy both requirements. More specifically, let us assume that
the equalizer of the ith stage should be computed, provided
that the DFEs of the previous stages have been determined
and symbol decisions have been extracted according to the
ordering {o1, . . . , oi−1}. The remaining streams form the set
Si(k) = {1, . . . ,M}\{o1, . . . , oi−1}. To find out which of these
streams achieves the lowest squared error and should be de-
tected at the current stage, all the respective equalizers must
be updated first. The equalizer wi, j(k), corresponding to the
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ith stage and the jth stream, is the one minimizing the fol-
lowing LS cost function:

Ei, j(k) =
k∑

l=1

λk−l
∣∣dj(l)−wH

i, j(k)yi(l)
∣∣2

, j∈Si(k), (9)

where 0 < λ ≤ 1 is the usual forgetting factor. After having
updated all tentative equalizers, wi, j(k) for j∈Si(k), the one
achieving the lowest squared error is finally applied at the
current stage. In other words, we set

oi = arg min
j∈Si(k)

Ei, j(k),

wi(k) = wi,oi(k),

Ei(k) = Ei,oi(k).

(10)

The procedure continues until the last stage is reached. Dur-
ing the next time instant, the NM subchannels may have
been changed significantly, and thus, a new ordering is
needed.

Based on the minimization problems defined in (10), we
derive an adaptive LS MIMO DFE algorithm, with stream or-
dering being incorporated in the equalization process. The
proposed receiver performs direct equalization of MIMO
frequency-selective channels.

3. DERIVATION OF THE ALGORITHM

The aim of this work is the efficient solution of the double
minimization problem defined in (10), (9). It is well known
that minimization of Ei, j(k) with respect to wi, j(k) yields the
equalizer vector as the solution of the so-called normal equa-
tions [18], that is,

wi, j(k) = Φ−1
i (k)zi, j(k), (11)

where Φi(k) stands for the Ki×Ki exponentially time-
averaged input autocorrelation matrix, and zi, j(k) for the
Ki×1 crosscorrelation vector, which are defined as

Φi(k) =
k∑

l=1

λk−lyi(l)yH
i (l), (12)

zi, j(k) =
k∑

l=1

λk−lyi(l)d∗j (l). (13)

As it can be seen from (11) and (13), to compute the tentative
equalizers wi, j(k) at stage i, current decisions from all streams
must be known. To overcome this causality problem during
the decision-directed mode, we assume as in [15], that the
decisions at time k are extracted using the optimum equaliz-
ers and detection ordering found at time (k − 1), that is,

d̃oi(k) = wH
i (k − 1)yi(k),

doi(k) = f
{
d̃oi(k)

}
,

(14)

where oi here refers to the detection ordering at time (k− 1).
The system in (11) can be solved recursively by applying

directly the conventional RLS algorithm. Two are the main

drawbacks of the approach. First, due to the high number
(M(M + 1)/2) of LS problems involved, the computational
requirements become prohibitive. Second, as it will be ex-
plained in more detail in Section 4, the equalization prob-
lem at hand is prone to numerical instabilities, rendering the
conventional RLS algorithm rather inappropriate. In order
to ensure numerical robustness, a square-root LS algorithm
is developed, which stems from the Cholesky factorization of
the input autocorrelation matrix [19]. Moreover, to reduce
complexity we take advantage of the order recursive struc-
ture of the problem, as described in the following analysis.

3.1. Square-root transformations

In the proposed method, all quantities of the original prob-
lem are properly modified based on a square-root transfor-
mation. More specifically, let Ri(k) denote the upper trian-
gular Cholesky factor of Φi(k), that is, Φi(k) = RH

i (k)Ri(k).
Then (11) is rewritten as

wi, j(k) = R−1
i (k)pi, j(k), (15)

where the transformed equalizer coefficients vector pi, j(k) is
defined as

pi, j(k) = R−Hi (k)zi, j(k). (16)

By using (11)–(16) in (9), the minimum LS error energy with
respect to wi, j(k) can be expressed as

Ei, j(k) =
( k∑

l=1

λk−l
∣∣dj(l)

∣∣2
)
− ∥∥pi, j(k)

∥∥2
, (17)

where ‖ · ‖ denotes the Euclidean norm.
Moreover, by defining the M×M matrix

Q(k) =
k∑

l=1

λk−ld(l)dH(l) = λQ(k − 1) + d(k)dH(k), (18)

it is straightforward to show that

Ei, j(k) = qj, j(k)− ∥∥pi, j(k)
∥∥2

, (19)

where qj, j(k) stands for the ( j, j)th entry of Q(k).
Finally, using the transformations imposed by the

Cholesky factorization of the input autocorrelation matrix,

(14), which provides the output of the ith equalizer, d̃oi(k), is
rewritten as

d̃oi(k) = pH
i (k − 1)gi(k), (20)

doi(k) = f
{
d̃oi(k)

}
. (21)

The vector gi(k) appearing in (20) can be considered as the
transformed input vector, that is,

gi(k) = R−Hi (k − 1)yi(k), (22)

while the optimal transformed equalizer pi(k − 1) is related
to wi(k − 1) via an expression similar to (15).
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3.2. Order-update recursions

As already mentioned, in order to reduce complexity, we can
take advantage of the special structure of the problem at
hand. Indeed, by exploiting the order increasing nature of
the input vectors between successive stages, that is,

yi(k) =
[

yT
i−1(k) doi−1 (k)

]T
, (23)

it can be shown that the ith order Cholesky factor is given by
the following expression [20]:

Ri(k) =
⎡
⎣Ri−1(k) pi−1(k)

0T
√
Ei−1(k)

⎤
⎦ . (24)

Furthermore, similarly to [15], it is easily derived from (13)
and (18) that

zi, j(k) =
[

zTi−1, j(k) qoi−1, j(k)
]T

. (25)

Thus, by using (16), (24), and (25), we get

pi, j(k) =

⎡
⎢⎢⎣

R−Hi−1 (k) 0

−pH
i−1(k)R−Hi−1 (k)√

Ei−1(k)
1√

Ei−1(k)

⎤
⎥⎥⎦

⎡
⎣zi−1, j(k)

qoi−1, j(k)

⎤
⎦

=

⎡
⎢⎢⎣

pi−1, j(k)

qoi−1, j(k)− pH
i−1(k)pi−1, j(k)√

Ei−1(k)

⎤
⎥⎥⎦ .

(26)

Having computed matrix Q(k) from (18), vectors pi, j(k) for
j∈Si(k) are order updated through (26). Then, the LS error
energies Ei, j(k) given by (19) can be efficiently order-updated
as well via

Ei, j(k) = Ei−1, j(k)− ∣∣[pi, j(k)
]
Ki

∣∣2
, (27)

where [pi, j(k)]Ki is the last element of pi, j(k). The minimum
of these energies is denoted as Ei(k), and the corresponding
vector as pi(k). Note from (27) that computation of Ei, j(k),
for all j ∈ Si(k), requires only O(1) operations.

Furthermore, an efficient order-update formula can be
obtained for the transformed input vector gi(k). By substi-
tuting the inverse Cholesky factor R−Hi (k) in (22) in the same
way as in (26), and using the property of (23), it is easily
shown that

gi(k) =

⎡
⎢⎢⎣

gi−1(k)

doi−1 (k)− d̃oi−1 (k)√
Ei−1(k − 1)

⎤
⎥⎥⎦ . (28)

Up to now, order-update expressions have been derived for
all algorithmic quantities. To complete the proposed method
the initial first-order (i.e., for i = 1) terms must be computed
at each time instant k.

3.3. Initial time-update recursions

First-order quantities required at the beginning of the algo-
rithm include g1(k), R−1

1 (k) and p1, j(k) for j = 1, . . . ,M.
Assuming that R−1

1 (k − 1) has already been computed, the
transformed input vector for the first stage is given by

g1(k) = R−H1 (k − 1)y1(k). (29)

Next, we produce a sequence of K1 elementary complex
Givens rotation matrices, whose product is denoted by T1(k),
according to the following expression:

T1(k)

[−λ−1/2g1(k)

1

]
=
[

0

α1(k)

]
, (30)

where α1(k) is the last element of the vector in the right-hand
side of (30), and the (K1 + 1)× (K1 + 1) matrix T1(k) can be
expressed as

T1(k) = T(K1)
1 (k)T(K1−1)

1 (k) · · ·T(1)
1 (k), (31)

and each elementary matrix is of the form

T(l)
1 (k) =

⎡
⎢⎢⎢⎢⎢⎣

Il−1 0 O 0

0T cl(k) 0T −s∗l (k)

O 0 IK1−l−1 0

0T sl(k) 0T cl(k)

⎤
⎥⎥⎥⎥⎥⎦
. (32)

The lth elementary matrix T(l)
1 (k) annihilates the lth element

of −λ−1/2g1(k) with respect to the last element of the whole
vector, which initially equals 1.2

It can be shown (see [20, 21]) that the same rotation ma-
trices can be used for time updating the inverse Cholesky fac-
tor as

T1(k)

⎡
⎣λ

−1/2R−H1 (k − 1)

0T

⎤
⎦ =

⎡
⎣R−H1 (k)

�

⎤
⎦ , (33)

where � denotes “do not care” elements. Moreover, and
more importantly, T1(k) can be also applied for the time-
update of p1, j(k), j = 1, . . . ,M, that is, [20]

T1(k)

⎡
⎣λ

1/2p1, j(k − 1)

d∗j (k)

⎤
⎦ =

⎡
⎣p1, j(k)

�

⎤
⎦ . (34)

Obviously, it is not necessary to compute matrix T1(k) ex-
plicitly. Instead, the pairs of rotation parameters, (cl(k), sl(k))
for l = 1, . . . ,K1, are evaluated from (30) and are then used
in rotations (33) and (34).

2 In a vector rotation [ c −s∗s c ][ ba ] = [ 0
d ], the rotation parameters are evalu-

ated as c = |a|/√|a|2 + |b|2 and s = (b∗/
√|a|2 + |b|2)(a/|a|).
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Initialization: For i = 1, . . . ,M, oi(0) = i, pi(0) = 0, Ei(0) = 0. For

j = 1, . . . ,M, p1, j(0) = 0. Q(0) = O. R−1(0) = δ−1/2I where δ is a small

positive constant.

(1) Compute g1(k) from (29), and do1 (k) from (20)-(21).

(2) Find rotation parameters from (30).

(3) Time-update the inverse Cholesky factor from (33).

(4) For i = 2, . . . ,M

(a) Order-update gi(k) from (28).

(b) Compute decisions doi (k) from (20)-(21).

(5) Time-update matrix Q(k) by using (18).

(6) For j = 1, . . . ,M

(a) Time-update p1, j(k) by rotation (34).

(b) Evaluate E1, j(k) from (19).

(7) Set as E1(k) the minimum, and as p1(k) the corresponding p1, j(k).

(8) For i = 2, . . . ,M

(a) For j ∈ Si(k)

(i) Order-update pi, j(k) from (26).

(ii) Evaluate Ei, j(k) from (27).

(b) Set as Ei(k) the minimum, and as pi(k) the corresponding pi, j(k).

Algorithm 1: The proposed SROC algorithm.

4. MIMO EQUALIZATION ALGORITHMS

The basic steps of the proposed squared root equalization al-
gorithm with Ordered Cancellation (SROC) are summarized
in Algorithm 1. During the initial training mode, known
symbols are used in place of the hard decisions of the equal-
izer. Then the equalizer switches to the decision-directed
mode, and hard decisions are computed via (21). Moreover,
following the generic rule for DFE design, a decision delay
should be inserted between equalizer decisions and transmit-
ted symbols. As in [2, 3], we consider a decision delay pa-
rameter Δ common for all streams, and set it to Δ = Kf − 1.
Hence, the decision doi(k) corresponds to symbol soi(k − Δ).

In case of slow channel variations, the detection ordering
may be kept fixed. The SROC algorithm can then be prop-
erly modified, leading to the square-root equalizer with Can-
cellation (SRC), as shown in Algorithm 2. Without loss of
generality we assume that detection ordering is the default
stream indexing {1, . . . ,M}. In Algorithm 2, pi(k) stands for
the transformed equalizer coefficients vector of the ith stage
of the DFE, and Ti(k), Ei(k) are the corresponding rota-
tion matrices and LS energies, respectively. The term ei(k)
is the so-called angle-normalized LS estimation error, which
can be used for time updating Ei(k − 1) as in Step (2)f of
Algorithm 2 [18]. Note that due to the order recursive prop-
erty of gi(k), that is, (28), the pairs of rotation parameters
(cl(k), sl(k)) for l = 1, . . . ,Ki − 1 are common for the ro-
tation matrices Ti(k) and Ti−1(k), i = 2, . . . ,M. Hence, to
evaluate Ti(k) at Step (2)d of Algorithm 2 for i > 1, only the
rotation pair (cKi(k), sKi(k)) need to be computed according

to
[
cKi(k) −s∗Ki

(k)

sKi(k) cKi(k)

][−λ−1/2
[

gi(k)
]
Ki

αi−1(k)

]
=
[

0

αi(k)

]
. (35)

Two important issues closely related to the performance
of the algorithms are further discussed below, that is, com-
putational complexity and numerical robustness.

4.1. Computational complexity

The computational complexity of the proposed equalization
algorithms in terms of the number of multiplications and
additions is shown in Table 1. We observe that, inevitably,
K1M2 extra operations are required, in order to achieve or-
dering update in each iteration. This is, however, traded off
with a noticeable improvement of the performance of the al-
gorithm under fast time-varying conditions. Notice that in
our derivation, we have taken advantage of the special struc-
ture of the problem to reduce the number of required opera-
tions.

The methods mostly related to our work are those pre-
sented in [3, 14], even though the respective equalization ar-
chitectures are different. The equalizer of [14] corresponds
to the first detection scenario, where no stream ordering is
needed. The authors propose a conventional RLS algorithm
with a computational complexity slightly lower compared
to that of the SRC algorithm. However as will be shown in
Section 4.2 and verified by simulations, due to the nature of
the equalization problem, the conventional RLS algorithm
exhibits severe numerical problems.
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(1) g1(k) = R−H1 (k − 1)y1(k)

(2) For i = 1 to M

(a) d̃i(k) = pH
i (k − 1)gi(k)

(b) di(k) = f
{
d̃i(k)

}

(c) Ti(k)

⎡
⎢⎣
−λ−1/2gi(k)

1

⎤
⎥⎦ =

⎡
⎢⎣

0

αi(k)

⎤
⎥⎦

(d) Ti(k)

⎡
⎢⎣
λ1/2pi(k − 1)

d∗i (k)

⎤
⎥⎦ =

⎡
⎢⎣

pi(k)

ei(k)

⎤
⎥⎦

(e) gi+1(k) =

⎡
⎢⎢⎢⎣

gi(k)

di(k)− d̃i(k)√
Ei(k − 1)

⎤
⎥⎥⎥⎦

(f) Ei(k) = λEi(k − 1) +
∣∣ei(k)

∣∣2

(3) T1(k)

⎡
⎢⎣
λ−1/2R−H1 (k − 1)

0T

⎤
⎥⎦ =

⎡
⎢⎣

R−H1 (k)

�

⎤
⎥⎦

Algorithm 2: The proposed SRC algorithm.

Table 1: Computational complexity of the proposed algorithms.

Algorithm Complex multiplications Complex additions

SROC-DFE

5
2
K2

1 +
1
2
K1M2

+
9
2
K1M+O

(
K1
)

3
2
K2

1 +
1
2
K1M2

+
5
2
K1M+O

(
K1
)

SRC-DFE
5
2
K2

1 + 5K1M + O
(
K1
) 3

2
K2

1 + 3K1M + O
(
K1
)

In [3], two related equalizers are presented, which per-
form ordered successive cancellation of past, as well as fu-
ture decisions from already detected streams. The channel is
considered known at the receiver or estimated in the training
phase along with the detection ordering, which remains fixed
during the decision-directed phase. The computational com-
plexity of these schemes is O(MK2

1 ) without counting in the
computations for ordering update, channel estimation, and
filtering, that is, it is much higher compared to the complex-
ity of the proposed algorithms.

4.2. Numerical behavior

The numerical behavior of the proposed MIMO equalizers
is related to the properties of the autocorrelation matrices
Φi = E[yi(k)yH

i (k)] for i = 1, . . . ,M, where E[·] is the expec-
tation operator. To study the properties of these matrices, let
us assume that the equalizer is designed such that Δ = Kf −1,
andKb = L, which is a common choice in practice. Moreover,
the channel is considered static, H(k; l) = H(l), and symbol

streams are assumed independent and of unitary variance,
that is, E[s(k)sH(k)] = (1/M)IM .

By ignoring error propagation effects of the DFE, the Ki×
Ki matrix Φi can be expressed as

Φi = 1
M

⎡
⎣H H

H
+ Mσ2

nINKf H1,i

H
H
1,i IMKb+i−1

⎤
⎦ , (36)

where matrix H can be partitioned in two blocks as follows:

H =
[

H1,i | H2,i

]
. (37)

Matrix H1,i is of dimension NKf×(MKb+i−1) and is defined
as

H1,i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

H(L) · · · · · · H(1) HS̃i
(0)

O H(L) · · · · · · H(2) HS̃i
(1)

...
. . .

...
...

O · · · O H(L) · · · H(Δ + 1) HS̃i
(Δ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(38)

while H2,i is the NKf × (MKf − i + 1) matrix

H2,i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

HSi(0) O · · · O

HSi(1) H(0) · · · O

...
...

. . .
...

HSi(Δ) H(Δ− 1) · · · H(0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (39)

The N×(i−1) matrix HS̃i
(l), l = 0, . . . ,Δ in (38) results from

H(l) by selecting only those columns corresponding to al-
ready detected streams, in the order they have been extracted.
Correspondingly, matrix HSi(l) for l = 0, . . . ,Δ, in (39) con-
sists of the remaining columns of H(l).

In the high SNR region, the effect of noise can be ignored,
and for σ2

n = 0, (36) is expressed as

Φi =
⎡
⎣H1,i

I

⎤
⎦
⎡
⎣H1,i

I

⎤
⎦
H

+

⎡
⎣H2,i

O

⎤
⎦
⎡
⎣H2,i

O

⎤
⎦
H

. (40)

The rank of the first term in the right-hand side of (40) is
MKb + i−1, while the rank of the second term is MKf − i+1.
Thus, the rank of matrix Φi is less than or equal to MKb +
MKf [22], rendering Φi rank deficient. Similar results can
be extracted for other practical choices of filter lengths. As a
conclusion, in the medium to high SNR region, the autocor-
relation matrices involved in the DFE problems exhibit high
condition numbers, and hence numerical problems arise. In
the proposed square-root implementation of the RLS algo-
rithm, the Cholesky factor Ri of Φi is used instead of Φi,
having a condition number equal to the square root of that of
the original autocorrelation matrix. Thus, the proposed algo-
rithm is expected to remain numerically robust for a wide
range of operating SNRs and forgetting factors λ. If, instead,
the conventional RLS was utilized as the basis of our deriva-
tion, numerical problems would be present even for relatively
low SNR values.
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5. PERFORMANCE EVALUATION

The performance of the proposed equalizers was evaluated
through extensive computer simulations. More precisely, we
considered a 4× 4 system transmitting uncoded QPSK sym-
bols of duration Ts = 0.25 μsec over a wireless channel. All
transmitter-receiver links were assumed independent, and
modeled according to the UMTS Vehicular Channel Model
A [23]. This channel model consists of six independent,
Rayleigh faded paths, with a power delay profile described
in [23]. The physical channel was convolved with a raised co-
sine pulse having a roll-off factor 0.3, resulting in a channel
impulse response with a total channel length L = 23. The
SNR was defined as the expected SNR (over the ensemble of
channel realizations) on each receive antenna, while the feed-
forward and feedback filters had a temporal span of Kf = 20,
and Kb = 10 taps, respectively.

The new equalizers were compared to the most rele-
vant ones from the existing literature. More specifically, the
equalizer proposed in [14], the partially connected DFE (PC-
DFE), and the fully connected DFE (FC-DFE) of [3] were
tested. To study the convergence and the steady state per-
formance of the equalizers, the Doppler effect was ignored
and the channel was kept static for an interval of 4096Ts.
The system was operating constantly in the training mode at
SNR = 16 dB, while parameter λ was set to 0.995. In Figure 2,
the mean square error (MSE) is plotted, that is, the instanta-
neous squared error at the filter outputs, averaged over all
four streams and over 500 independent runs. The RLS adap-
tation conducted by the algorithms of [3, 14] is susceptible to
numerical instability, as verified by the computer simulations
shown in Figure 2 for the algorithm of [14]. For medium to
high SNRs and small values of λ, the algorithms sooner or
later diverge. Thus, in our comparisons, to avoid divergence,
we have not used the original algorithms of [3, 14], but their
square-root versions, instead.

As expected, each equalizer converges to a different level
of steady state MSE due to the different detection scenarios
and architectures implemented. Moreover, a training period
of 512Ts suffices for all algorithms to converge. Note that the
delay introduced due to initial channel and equalizer estima-
tion in the algorithms of [3], is not shown in the figure, and
this is the reason why these algorithms seem to converge im-
mediately. Concerning the SRC-DFE, when a random order-
ing is used, some performance degradation is inevitable, but
when the correct stream ordering is applied, it has identical
performance to the SROC-DFE.

To study the effects of error propagation, we tested the
equalizers under a more practical situation, where a deci-
sion directed mode of operation follows a training period of
512Ts. The results shown in Figure 3 indicate that the PC-
DFE and FC-DFE are strongly affected, while the two other
algorithms remain robust to error propagation.

The tracking performance together with the error propa-
gation effects were studied by simulating a system that oper-
ates over a time-varying channel. Assuming operation in the
2.4 GHz band, and a maximum mobile velocity of 100 Km/h,
a normalized Doppler frequency fDTs = 5.5·10−5 was
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Figure 2: Convergence and steady-state performance of equalizers
for a 4×4 system operating constantly in training mode over a static
frequency-selective MIMO channel at SNR = 16 dB.
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Figure 3: Convergence and steady-state performance of equalizers
for a 4 × 4 system trained for 512Ts, and operating over a static
frequency-selective MIMO channel at SNR = 16 dB.

simulated for all channel paths, by using the Jakes method
[23]. The MSE curves obtained for this experiment are il-
lustrated in Figure 4. As shown in this figure, the proposed
SROC-DFE successfully tracks channel variations, while the
algorithms of [3], seem to be strongly affected by the chan-
nel dynamics. Furthermore, a hybrid equalizer was simulated
by combining the Algorithms 1-2: during the training period
the receiver employs SROC-DFE, while in decision-directed
mode switches to the SRC-DFE algorithm with the stream
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Figure 4: Convergence and tracking performance of equalizers for
a 4×4 system trained for 512Ts, and operating over a time-varying,
frequency-selective MIMO channel at SNR = 16 dB. The normal-
ized Doppler frequency is 5.5 · 10−5.
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Figure 5: Uncoded BER curves of equalizers for a 4 × 4 system
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selective MIMO channel with a normalized Doppler frequency of
5.5 · 10−5.

ordering already found. We observe from Figure 4 that by
keeping the ordering as determined at the training phase, the
MSE increases after a period of time.

The BER performance achieved by the equalizers for
the previous experiment is presented in Figure 5. The BER
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Figure 6: Uncoded BER of equalizers for a 4 × 4 system trained
for 512Ts, and operating over a time-varying frequency-selective
MIMO channel at SNR = 16 dB. The normalized Doppler fre-
quency ranges from 1·10−6 to 1·10−4.

curves indicate that the proposed algorithms can operate ef-
ficiently under the severe channel selectivity simulated, while
the updating of detection ordering can improve performance
at high SNRs at the expense of an increase in computational
complexity.

Finally, to evaluate the tracking performance and the ne-
cessity of continuously updating both equalizer filters and
detection ordering, we performed BER measurements for
different channel fading rates. More precisely, the normalized
Doppler frequency laid in the range of 1 · 10−6 to 1 · 10−4 at
SNR = 16 dB. Due to the difference in fading rates, parame-
ter λ was tuned to its best value, ranging from 0.9995 down to
0.993. As shown in Figure 6, the proposed algorithms are ro-
bust to error propagation effects and can track channel vari-
ations for a wide range of channel fading rates. On the other
hand, the architecture advantage of the receivers proposed in
[3] almost disappears due to channel variations and severe
error propagation.

6. CONCLUSIONS

A novel adaptive decision feedback equalization method has
been developed for wideband MIMO channels. After prop-
erly formulating the problem, an LS adaptive algorithm is
derived, in which not only the equalizer filters, but also the
detection ordering of the input streams are naturally up-
dated at each time instant. Two are the main characteristics
of the proposed algorithm. First, the initial RLS solution is
transformed according to the Cholesky factorization of the
equalizer input autocorrelation matrix. Second, efficient or-
der update expressions are derived for all significant algo-
rithmic quantities. The proposed algorithm is numerically
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robust and offers improved convergence and tracking perfor-
mance at a reasonable computational complexity, compared
to other related methods. Extensive simulations have been
carried out to confirm our theoretical results.
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