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This paper presents a comparative study of three different types of estimators used for supervised

linear unmixing of two MEx/OMEGA hyperspectral cubes. The algorithms take into account the

constraints of the abundance fractions, in order to get physically interpretable results. Abundance

maps show that the Bayesian maximum a posteriori probability (MAP) estimator proposed in Themelis

and Rontogiannis (2008) outperforms the other two schemes, offering a compromise between

complexity and estimation performance. Thus, the MAP estimator is a candidate algorithm to perform

ice and minerals detection on large hyperspectral datasets.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The surface of Mars is currently being imaged with a combina-
tion of high spectral and spatial resolution. This gives the ability to
detect and map chemical components on the Martian surface and
atmosphere more accurately than before. Spectral unmixing (SU) is
one of the techniques currently used for this purpose, Keshava and
Mustard (2002), Moussaoui et al. (2008), and Schmidt et al. (2010).
SU is the procedure by which the measured spectrum of a mixed
pixel is decomposed into a number of constituent spectra, called
endmembers, and the corresponding fractions, or abundances, that
indicate the proportion of the presence of each endmember in the
pixel, Keshava and Mustard (2002). Linear SU, which adopts the
hypothesis that the spectrum of a mixed pixel is a linear combina-
tion of its endmembers’ spectra, is more commonly used in practice.
Based on a physical interpretation, two hard constraints are imposed
on the abundance fractions of the materials in a pixel; they should
be non-negative and sum to one.

Several SU techniques for the unmixing of OMEGA (Observatoire
pour la Minéralogie, l’ Eau, les Glaces et l’ Activité hyperspectral
images), Bibring et al. (2004b), have been recently proposed in the
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bibliography. These techniques can be categorized into unsupervised,
where a special procedure is first executed to get the endmembers’
spectral signatures from the image, and supervised, where a priori
knowledge of the image endmembers is available. A recent example
of an unsupervised technique is the Bayesian source separation
method, developed in Schmidt et al. (2010). This technique is based
on a Gibbs sampling scheme to perform Bayesian inference. Due to
its high computationally complexity, a special implementation
strategy is developed for its application to a complete OMEGA image
data set, Schmidt et al. (2010). Band ratio is the most commonly used
supervised technique to detect minerals (Bibring et al., 2004a,b;
Langevin et al., 2005). However some multiple endmember linear
spectral unmixing algorithms have been proposed such as MELSUM,
Combe et al. (2008). MELSUM uses a reference library containing
various spectral signatures of minerals (used as endmembers), and is
based on the classical spectral mixture analysis (SMA) algorithm. In
Kanner et al. (2007), a modified Gaussian model (MGM) has been
exploited to estimate the fractional abundances of a compositionally
diverse suite of pyroxene spectra in the martian surface. A wavelet
based method has also been applied for the unmixing of hyperspec-
tral martian data in Gendrin et al. (2006) and Schmidt et al. (2007).

In this paper, we focus on the problem of supervised SU. Our
main objective is to estimate the abundances of the endmembers
that are present in two OMEGA images, subject to the non-
negativity and sum-to-one constraints. In the following, three
different supervised unmixing algorithms are considered, namely
the ENVI-SVD method, Boardman (1989); a quadratic program-
ming (QP) technique, Coleman and Li (1996); and a recently
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proposed Bayesian maximum a posteriori probability soft-con-
straint (MAPs) estimator, Themelis and Rontogiannis (2008).
These algorithms are applied on two different hyperspectral
OMEGA data sets, and they are evaluated through their corre-
sponding abundance maps. The endmember reference spectra
used for supervised unmixing are either extracted from the image
itself, or selected from a spectral library of pure minerals. The
experimental results show that the MAPs estimator results in
abundance values that satisfy the constraints of the problem and
provides a compromise between the performance of the QP
technique and the complexity of the ENVI-SVD method. An earlier
version of this paper was presented at the 2010 European
Planetary Science Congress, Themelis et al. (2010).
2. Linear spectral unmixing techniques

Before we present the unmixing techniques considered in this
paper, a short description is presented here on the linear mixing
model (LMM), Keshava and Mustard (2002), which is assumed in all
three of them. In a hyperspectral image, each pixel is represented by
a L- dimensional vector y, where L is the number of the available
spectral bands. The elements of y correspond to the reflectance
measured at the respective spectral bands. The LMM assumes that
the received pixel’s spectrum is generated by a linear combination of
endmembers’ spectra. Suppose that the spectral signatures of p

materials that may exist in the image are available. Then, y can be
expressed by the following linear regression model:

y¼Uxþn, ð1Þ

where U¼ ½/1/2 . . ./p�ARL�p
þ , is the mixing matrix containing the

endmembers’ spectra (L-dimensional vectors /i,i¼ 1;2, . . . ,p), x is a
p� 1 vector with the corresponding abundance fractions, and n is a
L� 1 additive noise vector.

Adopting the linear model in (1), three different unmixing
algorithms are applied to the OMEGA data sets: (i) a singular
value decomposition method (ENVI-SVD), Boardman (1989),
available in the ENVI image processing software (ii) a QP techni-
que, Coleman and Li (1996), available in the Matlab environment,
and (iii) a recently proposed Bayesian MAPs estimator, Themelis
and Rontogiannis (2008). These algorithms are briefly described
in the following subsections.

2.1. ENVI-SVD

ENVI-SVD is a constrained least squares approach to the unmix-
ing problem. Using the singular value decomposition (SVD) algo-
rithm, the pseudo-inverse of the mixing matrix U is computed.
Then, the abundance fractions are easily estimated by multiplying
the pseudo-inverse matrix with each image pixel’s spectral vector.
The advantage of this method is its low computational complexity,
since the pseudo-inverse matrix is computed only once as a
preprocessing step, and is then applied to all image pixel vectors.
As far as the sum-to-one constraint is concerned, it is imposed to the
problem using an extra (weighted) equation to the linear system of
Eq. (1). However, ENVI-SVD does not take into account the non-
negativity of the abundances, which can result in negative abun-
dance values that have no physical meaning.

2.2. Quadratic programming technique

This quadratic programming technique is a reflective Newton
method, which minimizes the quadratic function of the least
squares error of the unimixing problem, subject to the sum-to-one
and non-negativity constraints imposed on the abundances. The QP
technique is based on an iterative optimization scheme, which has
to be repeated separately for each image pixel vector. Keeping in
mind that a hyperspectral image may be composed of thousands of
pixels, solving a separate optimization problem for each pixel adds
up to the computational complexity of the method. An implementa-
tion of the quadratic programming technique is available in the
optimization toolbox of Matlab.

2.3. MAPs estimator

The MAPs estimator proposed in Themelis and Rontogiannis
(2008) is a Bayesian estimator specifically designed to address the
inverse problem of supervised hyperspectral unmixing. In a
Bayesian framework, appropriate prior distributions are assigned
to the unknown parameters of the estimation problem, which
usually reflect the parameters’ natural characteristics. The Baye-
sian approach of Benavoli et al. (2007) is adopted in which a
Gaussian distribution is used as a prior for the abundance vector x
and the MAP estimator is then utilized. By exploiting the
symmetry of the problem’s convex constraints, the parameters
of the Gaussian posterior distribution (i.e., the mean and the
covariance matrix) can be expressed in closed forms, Themelis
and Rontogiannis (2008). Due to the statistical nature of the
Bayesian estimator, the constraints are not explicitly imposed to
the estimated parameters. To alleviate this, the final step of the
algorithm is a projection of the MAP estimation point on the
polytope of constraints, providing its nearest estimate that
satisfies the constraints, Themelis and Rontogiannis (2008). This
algorithm has substantially lower complexity than the QP tech-
nique, since it relies on the computation of simple closed-form
expressions.
3. Discussion

The previously described algorithms are applied to two different
OMEGA data cubes: (a) a scene of Mars’ South Polar Cap, and (b) a
Syrtis Major observation. The OMEGA instrument is a spectrometer
on board ESA’s Mars Express satellite, which provides hyperspectral
images of the Mars surface, with a spatial resolution from 300 m to
4 km, 96 wavelength channels in the visible band and 256 wave-
length channels in the near infrared band, Bibring et al. (2004b).
OMEGA uses three different detectors, with spectral resolutions
about 7.5 nm in the 0:35�1:05 mm wavelength range (visible and
near infrared channel or VNIR), 14 nm between 0.94 and 2:70 mm
(short wave infrared channel or SWIR) and an average of 21 nm
from 2.65 to 5:2 mm (long wave infrared channel or LWIR),
respectively. The two hyperspectral data sets, the reference spectra
used for each image and the SU results obtained from the applica-
tion of the three methods are analytically described in the following
sections.

3.1. South Polar Cap image cube

This data set consists of a single hyperspectral data cube obtained
by looking towards the South Polar Cap of Mars in the local summer
(January 2004). The data cube is made up of two channels: 128
spectral planes from 0.93 to 2:73 mm with a resolution of 14 nm and
128 spectral planes from 2.55 to 5:11 mm with a resolution of 21 nm.
Noisy bands were excluded, and 156 out of the 250 initial bands
were finally utilized in the region from 0.93 to 2:98 mm to avoid the
thermal emission spectral range. The linear model mixing matrix
consists of the following three reference spectra: (a) CO2 ice
(synthetic data with grain size¼100 mm), (b) H2O ice (synthetic
data with grain size¼10 mm), and (c) dust, which were all detected a
priori using the Wavanglet method of Schmidt et al. (2007).
These endmembers are discussed in the first OMEGA publication,
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Fig. 1. Reference spectra of the South Polar Cap OMEGA image. The available

endmembers are: (a) OMEGA typical dust materials with atmosphere absorption,

(b) synthetic CO2 ice with grain size of 100 mm, (c) synthetic H2O ice with grain

size of 100 mm.
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Fig. 2. Abundance map of the dust endmember, estimated using (a) ENVI-SVD,

(b) QP, and (c) MAPs.
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Bibring et al. (2004a), and are also verified by Schmidt et al. (2010),
using the Bayesian positive source separation method of Moussaoui
et al. (2008). The respective spectral signatures of the endmembers
are shown in Fig. 1.

The abundance maps for each endmember resulting after the
application of the three estimators are displayed in Figs. 2–4. As
shown in these figures, the ENVI-SVD abundances do not satisfy
the non-negativity constraint, e.g., regarding the CO2 endmember,
the minimum computed abundance value is �9:9� 10�2. Notice
also that the abundance values calculated by QP and MAPs are in
full agreement, they share the same scale and are quite different
from those obtained by ENVI-SVD. This shows that the MAPs
estimates provide reliable information about the abundances. It
also adds up to the fact that the MAPs estimator has almost
similar performance with the QP algorithm in simulation scenar-
ios with synthetic data, as shown in Themelis and Rontogiannis
(2008).

3.2. Syrtis Major image cube

This data set consists of a single hyperspectral data cube of the
Syrtis Major region, which contains well-identified areas with
very strong signatures of mafic minerals, Mustard et al. (2005).
The data cube consists of 109 spectral bands out of the 128
original wavelengths of the SWIR detector. The spatial dimensions
of the cube are 366�128 pixels. The OMEGA observations have
been calibrated for known instrument artifacts and for atmo-
spheric CO2. The cube has been radiometrically corrected using
the standard correction pipeline (SOFT06) and the atmospheric
gas transmission has been empirically corrected using the volcano
scan method, Langevin et al. (2005). It is well known that OMEGA
can identify pyroxene and olivine; it discriminates between the
high-calcium pyroxenes (HCPs, e.g., clinopyroxenes) and low-
calcium pyroxenes (LCPs, e.g., orthopyroxenes), Bibring et al.
(2005). In the scene under investigation, we utilized three end-
members which have previously been identified to be present
in the image, Mustard et al. (2005), namely, (a) Hypersthene,
(b) Diopside, (c) Fayalite. These are all laboratory reference spectra,
which have also been used in Schmidt et al. (2011) for supervised
unmixing. It is interesting to note that the last two endmembers
have been retrieved using CRISM multispectral observations. Their
respective spectral signatures are displayed in Fig. 5. Three more
artifact endmember spectra are utilized, specifically two neutral
spectral components (flat lines at 10�4 and 1), and a slope line, as in
Schmidt et al. (2011) and Le Mouelic et al. (2009).

The abundance maps obtained from the application of the
three methods to the Syrtis Major hyperspectral scene are shown
in Figs. 6–8. Each Figure illustrates the corresponding abundance
map of a single endmember, as it is estimated by all three
methods. As a reference, the abundance maps of all three end-
members using the band ratio method are also shown in Fig. 9.
The band ratio and bands depth estimation methods are commonly
used to detect minerals on OMEGA data (Bibring et al., 2005).
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This method is valid only if at least two wavelength channels
can be identified as affected by only one particular mineral.
Following the methodology of Schmidt et al. (2011), we used
four band ratios

IndexðOlivineÞ ¼ b2:39=b1:06 ð2Þ

IndexðopxÞ ¼ 1�b1:84=ðð1:84�1:25Þnb1:25

þð2:47�1:84Þnb2:47Þnð2:47�1:25Þ ð3Þ
IndexðcpxÞ ¼ 1�b1:85=ðð2:32�1:85Þnb2:32

þð2:56�2:32Þnb2:56Þnð2:56�1:85ÞÞ ð4Þ

where the wavelength band ‘‘b1.84’’ stands for the band at 1.84
microns, Orthopyroxenes (Hypersthene) are noted as ‘‘opx’’ and
Clinopyroxenes (Diopside) are noted as ‘‘cpx’’. The differences
between the three methods are again prominent. Both the MAPs
and the QP methods provide consistent results, as far as the
endmembers Fayalite and Hypersthene is concerned. In addition,
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for both Fayalite and Hypersthene, ENVI-SVD returns negative
abundance values and its resulting maps substantially deviate
from the other two methods. As far as Diopside is concerned, the
MAPs estimator seems to produce a slightly different abundance
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Fig. 5. Reference spectra of the Syrtis Major OMEGA image.
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Fig. 6. Abundance map of Hypersthene, estimated usin
map in comparison to the other two methods. However, it can be
easily verified by comparing Figs. 6–9 that the abundance maps of
the MAPs estimator are in better agreement with those obtained
using the band ratio method, compared to the other two methods.
Thus, it can be argued that MAPs provides more reliable results
than ENVI-SVD and QP.
4. Conclusions

In this paper, we have presented a comparison of three
different supervised spectral unmixing methods (Bayesian MAPs
estimator, ENVI-SVD, QP), on the basis of two different OMEGA
hyperspectral data sets. As opposed to iterative algorithms or
Markov Chain Monte Carlo methods, e.g. Schmidt et al. (2010),
commonly used for the constrained inverse problem of abun-
dance estimation, the computational complexity of the MAPs
estimator is much lower. Specifically, for the Syrtis Major dataset,
the running time of the MAPs algorithm was 4.7 s in a roughly
optimized Matlab implementation, while the QP needed 26.4 s
(both algorithms were run on a 2.4-GHz Intel Core 2 CPU). In
addition, as verified by experimental results, the performance of
the two methods is approximately equal. Therefore, the MAPs
estimator seems to offer the best compromise between estima-
tion performance and complexity among the three algorithms,
and it is thus a serious candidate for spectral unmixing of
hyperspectral data in Planetary Sciences.
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g (a) ENVI-SVD, (b) QP, and (c) MAPs algorithms.
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