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Abstract. Possibilistic clustering algorithms have attracted consider-
able attention, during the last two decades. A major issue affecting the
performance of these algorithms is that they involve certain parameters
that need to be estimated accurately beforehand and remain fixed during
their execution. Recently, a possibilistic clustering scheme has been pro-
posed that allows the adaptation of these parameters and imposes spar-
sity in the sense that it forces the data points to “belong” to only a few
(or even none) clusters. The algorithm does not require prior knowledge
of the exact number of clusters but, rather, only a crude overestimate
of it. However, it requires the estimation of two additional parameters.
In this paper, a sequential version of this scheme is proposed, which
possesses all the advantages of its ancestor and in addition, it requires
the (crude) estimation of just a single parameter. Simulation results are
provided that show the effectiveness of the proposed algorithm.

Keywords: possibilistic clustering, parameter adaptivity, sparsity, se-
quential processing, k-means, fuzzy c-means.

1 Introduction

Clustering is a well-established data analysis method, where the aim is to locate
the physical groups involved in the problem at hand (clusters) formed by a
number of entities (usually each entity is represented by a set of measurements
that constitute the corresponding feature vector). Various clustering philosophies
have been proposed during the last five decades. Among them are the hard
clustering philosophy, where each entity belongs exclusively to a single cluster,
the fuzzy clustering philosophy, where each entity is allowed to be shared among
more than one clusters and the possibilistic clustering philosophy, where what
matters is the “degree of compatibility” of an entity with a given cluster.

Several clustering algorithms that follow one of these philosophies have been
previously reported. The most celebrated among them are the k-means (hard
case), e.g. [12], the fuzzy c-means, FCM (fuzzy case), e.g. [1], [2], and several
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possibilistic c-means algorithms, PCM (possibilistic case), e.g. [7], [8], [10], [16],
[11]. These algorithms are suitable for recovering compact and hyperellipsoidally
shaped clusters and they represent each cluster by a single vector, called cluster
representative, which lies in the space of the feature vectors. The determination
of the cluster representatives is carried out via the minimization of suitable cost
functions. Also, all of them require knowledge of the number of clusters underly-
ing in the data set (which, of course, is rarely known in practice). However, the
k-means and the FCM differ from PCM algorithms in that the former two impose
a clustering structure on the data set (that is they split the data set into the
given number of clusters, independently of the fact that the data set may contain
more or less physical clusters than that number), while the latter, in principle,
leads the cluster representatives to regions that are “dense in data points”. Thus,
in this case, the scenario where two or more cluster representatives are led to
the same “dense in data” region in space, may arise.

Focusing on PCM algorithms, they have attracted considerable attention in
the recent years. Optimization of different cost functions gives rise to different
PCMs (e.g. [7], [8]). A significant issue with these cost functions is that they
involve a set of parameters (one for each cluster), usually denoted by η, which
need to be accurately estimated before the algorithm starts and they are kept
fixed during its execution. Poor estimation of these parameters (often) leads to
poor clustering performance (especially in more demanding data sets). Usually,
these parameters are estimated by utilizing the results of the FCM that needs to
be executed first. However, the resulted estimates are not always accurate. For
example, if FCM is not fed with the correct number of clusters, the resulting
estimates for η’s are expected to be poor.

Recently, in [14] a novel PCM algorithm, termed adaptive PCM (APCM),
has been proposed, where the parameters η are adapted during its execution.
In addition, APCM has, in principle, the ability to automatically detect the
true number of clusters, provided that it is fed with an overestimated value of
this number. A further extension of APCM, called sparse APCM (SAPCM), is
introduced in [15], where sparsity is imposed on the degrees of compatibilities of
the data vectors with the clusters, in the sense that each data vector is forced to
be compatible with only a few (or even none) of the clusters. SAPCM inherits
the characteristics of APCM and, in addition, it has the ability to locate the
clusters more accurately, since points that lie “away” from a given cluster are
prevented from contributing to the adjustment of its associate parameters.

Both APCM and SAPCM require (a) a certain parameter, denoted by β,
that is used in the initialization of the parameters η, (b) an overestimation of
the number of clusters and (c) (only for SAPCM) a certain parameter, λ, that
controls sparsity. Although these algorithms exhibit, in principle, some degree
of robustness in the choice of the previous parameters, parameter fine tuning
is unavoidable. To deal with this issue, a sequential version of SAPCM, termed
SeqSAPCM, is proposed here, which requires neither an overestimated value of
the number of clusters, nor the definition of any parameter like β. The only
paramater that needs to be defined is the one that controls the sparsity, i.e. λ.
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The paper is organized as follows. In section 2, the SAPCM is described, while
in section 3, the proposed SeqSAPCM algorithm is presented in detail. Section 4
contains simulation results that allow the assessment of the performance of the
proposed algorithm. Finally, section 5 concludes the paper.

2 The Sparse Adaptive Possibilistic c-Means (SAPCM)
Algorithm

Let
X = {xi ∈ ��, i = 1, ..., N}

be a set of N , l-dimensional data vectors that are to be clustered. Let also

Θ = {θj ∈ ��, j = 1, ...,m}
be a set of m vectors that will be used for the representation of the clusters
formed in X . In what follows, || · || denotes the Euclidean norm. Let U = [uij ]
be an N × m matrix whose (i, j) element stands for the so called degree of
compatibility of xi to the jth cluster, denoted by Cj , and represented by the
vector θj . Let also uT

i = [ui1, ..., uim] be the vector containing the elements of
the ith row of U .

According to [7] the uij ’s in the classical (non-sparse) PCM algorithms should
satisfy the conditions, (a) uij ∈ [0, 1], (b) maxj=1,...,m uij > 0 and (c) 0 <
∑N

i=1 uij < N . However, in SAPCM, the last two conditions are removed, since
a point may not be compatible with anyone of the clusters (removal of condition

(b)). A consequence of the removal of condition (b) is that the case
∑N

i=1 uij = 0
for a cluster Cj becomes possible in the extreme scenario where the degrees of
compatibility of all points with Cj are zero. Thus, condition (c) is also removed.

SAPCM results from the minimization of the following cost function

J(Θ,U) =

N∑

i=1

[

m∑

j=1

uij‖xi − θj‖2 +
m∑

j=1

ηj(uij lnuij − uij) + λ‖ui‖pp] (uij > 0) 1

(1)
where ‖ui‖p is the p-norm of the vector ui and p ∈ (0, 1). The first two terms
constitute the classical possibilistic cost function proposed and explained in [8],
while ηj is a measure of how much the influence of a cluster is spread around its
representative. The last term is the sparsity inducing term.

Minimization of J(Θ,U) with respect to θj leads to the following updating
equation

θj =

∑N
i=1 uijxi

∑N
i=1 uij

(2)

On the other hand, taking the derivative of J(Θ,U) with respect to uij , we
obtain

∂J(Θ,U)

∂uij
≡ ηjf(uij) = ηj(

dij
ηj

+ lnuij +
λ

ηj
pup−1

ij ), (3)

1 The positivity of uij is a prerequisite in order for the ln uij to be well-defined.
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where dij = ‖xi − θj‖2. Obviously, ∂J(Θ,U)
∂uij

= 0 is equivalent to f(uij) = 0. For

the latter, the following propositions hold.

Proposition 1: f(uij) may become zero only for uij ∈ (0, 1].2

This happens since only in this case the second term in the right-hand side of
eq. (3) is negative (the other two are always positive).

Proposition 2: Theuniqueminimumoff(uij) is ûij =
[

λ
ηj
p(1− p)

] 1
1−p

(∈ (0, 1]).

This results from the direct minimization of f(uij) with respect to uij .
Taking into account the previous two propositions and provided that there

exists at least one point u0
ij ∈ (0, 1] (e.g., u0

ij = exp (−dij/ηj)) for which f(u0
ij) >

0, it can be deduced that f(uij) = 0 has two solutions, if f(ûij) < 0 and one
solution, if f(ûij) = 0. In any other case, f(uij) = 0 has no solutions. In any case
all solutions (if they exist) lie in (0, 1]. Also, the following proposition holds.

Proposition 3: If f(uij) = 0 has two solutions, the largest of them is the one
that minimzes J(Θ,U).

This results by proving that f(uij) is positive (negative) on the left (right) of
the largest solution.

Based on the above propositions, we proceed to the solution of f(uij)= 0 as
follows. First, we check whether f(ûij) > 0. If this is the case, then f(uij) > 0,
for all uij> 0, thus J is increasing with respect to uij . Therefore, setting uij = 0
(i.e., imposing sparsity), J is minimized with respect to uij . If f(ûij)= 0, we set
uij = ûij . If f(ûij) < 0, f(uij)=0 has two solutions in (0, 1]. In order to determine
the largest of the solutions of f(uij)= 0, we apply the bisection method (e.g. [3])
in the range [ûij , 1], which is known to converge very rapidly to the optimum
uij , that is, in our case, to the largest of the two solutions of f(uij)= 0.

After the above analysis, the SAPCM algorithm can be stated as follows.

The SAPCM algorithm

– t = 0
– Initialization of θj ’s: θj ≡ θj(0), j = 1, ...,m, using the Max-Min alg. ([9])

– Initialization of ηj ’s: Set ηj =
minθs �=θj

‖θj−θs‖2/2

− log β , β ∈ (0, 1), j = 1, ...,m
– Repeat:

• t = t+ 1

• Update U : As described in the text

• Update Θ: θj(t) =
N∑

i=1

uij(t− 1)xi

/
N∑

i=1

uij(t− 1) , j = 1, ...,m

• Possible cluster elimination part:

∗ Determine: uir = maxj=1,...,m uij , i = 1, ..., N

∗ If uir �= 0 then Set label(i) = r else Set label(i) = 0 end

∗ Check for j = 1, ...,m: If j /∈ label then Remove Cj end

2 Due to space limitations the proof of this and the following propositions are omitted.
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• Adaptationofηj ’s:ηj(t) =
1

nj(t)

∑
xi:uij(t)=maxr=1,...,m uir(t)

‖xi−μj(t)‖,
with μj(t) =

1
nj(t)

∑
xi:uij(t)=maxr=1,...,m uir(t)

xi, j = 1, ...,m

– Until: the change in θj ’s between two successive iterations gets very small

Some comments on the algorithm are now in order.

– Initialization: In SAPCM, the initialization of θj ’s for an overestimated num-
ber of clusters is carried out using a fast approximate variation of the Max-
Min algorithm proposed in [9] (see also [14]). This is done in order to increase
the probability of each θj to be placed initially close to a “dense in data”
region3. Denoting by Xre the set of the initial cluster representatives, ηj ’s
are initialized as follows. First, the distance of each θj ∈ Xre from its closest
θs ∈ Xre − {θj}, denoted by dmin(θj), is determined and then ηj is set to

ηj =
dmin(θj)/2

− log β , where β ∈ (0, 1) is an appropriately chosen parameter (see

Initialization of ηj’s part in the description of the SAPCM algorithm). As
it has been verified experimentally, typical values for β that lead to good
initializations are in the range [0.1, 0.5]. The experiments showed also that
β depends on how densely the natural clusters are located; smaller values of
β are more appropriate for sparsely located clusters, while larger values of
β are more appropriate for more densely located clusters.

– Adaptation: In SAPCM, this part refers to (a) the adjustment of the num-
ber of clusters and (b) the adaptation of ηj ’s, which are two interrelated
processes. Here, let label be a N -dimensional vector, whose ith component
is the index of the cluster that xi is most compatible with, i.e., the cluster
Cj for which uij = maxr=1,...,m uir. Let also nj denote the number of the
data points xi, that are most compatible with the jth cluster and μj be
the mean vector of these data points. The adjustment (reduction) of the
number of clusters is achieved by examining if the index j of a cluster Cj

appears in the vector label. If this is the case, Cj is preserved. Otherwise,
Cj is eliminated (see Possible cluster elimination part in the SAPCM algo-
rithm). Moreover, the parameter ηj of a cluster Cj is estimated as the mean
value of the distances of the most compatible to Cj data vectors from their
mean vector μj and not from the representative θj, as in previous works (e.g.
[7], [17]) (see Adaptation of ηj’s part in the SAPCM algorithm). It is also
noted that, in the case where there are two or more clusters, that are equally
compatible with a specific xi, then xi will contribute to the determination
of the parameter η of only one of them, which is chosen arbitrarily.

– Sparsity: Taking into account that dij/ηj ≥ 0 and utilizing proposition 2, for

ln ûij +
λ
ηj
pûp−1

ij > 0, i.e., λ > max
i,j

(
− ln(ûij)û

1−p
ij ηj

p ), no point is allowed to be

compatible with any one of the clusters. On the other hand, for λ 	 0 almost
no sparsity is imposed, that is, almost all points will be compatible with all
clusters up to a non-zero degree of compatibility. Therefore, λ is required

3 In contrast, random initialization may lead several representatives to the same phys-
ical cluster, leaving other clusters without a representative.



34 S.D. Xenaki, K.D. Koutroumbas, and A.A. Rontogiannis

to be chosen carefully between these two extremes. In addition, for p → 0
or p → 1 no sparsity is imposed, since eq. (3) has always a single solution
in both cases. A requirement for sparsity to enter into the scene is to have
p ∈ (0, 1), but with p away from both 0 and 1.

3 The Sequential SAPCM (SeqSAPCM)

We proceed now with the description of the sequential SAPCM, which involves
in its heart the SAPCM. Note that in the framework of SeqSAPCM, the SAPCM
algorithm does not initialize by itself the parameters θ and η. It rather takes
as input the initial estimates of these parameters. To denote this explicitly we
write

[Θ,H ] = SAPCM(X,Θini, Hini, λ) (4)

In words, the algorithm takes as input, initial estimates of the cluster repre-
sentatives (included in Θini) and their corresponding parameters η (included in
Hini) and returns the updated set of (a) representatives (Θ) and (b) their cor-
responding parameters η (H). Also, recall that λ is the parameter that controls
sparsity.

Unlike SAPCM, in SeqSAPCM the number of clusters increases by one at a
time, until the true number of clusters is (hopefully) reached. From this point
of view, if SAPCM, as described in Section 2, can be considered as a top-down
technique in the sense that it starts with an overestimated number of clusters
and gradually reduces it, SeqSAPCM can be considered as a bottom-up approach
in the sense that it starts with two clusters and gradually increases them up to
the true number of clusters.

The algorithm works as follows. Initially, the two most distant points of X ,
say xs and xt, are determined and serve as initial estimates of the first two
cluster representatives, θ1 and θ2, denoted by θini

1 and θini
2 . Thus, at this time

it is m = 2 and Θini = {θini
1 , θini

2 }. The initial estimation of each one of the
parameters η1 and η2 (ηini1 , ηini2 ) that correspond to the first two clusters, is
computed as the maximum of the following two quantities:

– dmax, which is the maximum among the distances between each data vector
xi ∈ X and its nearest neighbor xnei

i ∈ X , i.e.,

dmax = max
i=1,...,N

d(xi,x
nei
i )

– djslope, which is determined as follows: The distances of θini
j from its q nearest

neighbors in X 4, djs, s = 1, . . . , q, are computed and plotted in increasing
order. The neighboring point of θini

j where the resulting curve exhibits the

maximum slope, say the rth one, is identified and djslope is set equal to djr
(the distance between θini

j and its rth neighbor).

4 Typically, q is set to a value around 10.
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Thus ηinij = max{dmax, d
j
slope} andHini = {ηini1 , ηini2 }. Then, we run the SAPCM

algorithm (4) and after its convergence, θ1 and θ2 are placed to the centers
of dense regions, while η1 and η2 take values that characterize the spreads of
these regions around θ1 and θ2, respectively. We have now Θ = {θ1, θ2} and
H = {η1, η2}.

We proceed next by identifying the point in X that will be used as initial
estimate of the next representative as follows. For each xi ∈ X we compute its
distances from the points of Θ and we select the minimum one. Then, among all
N minimum distances we select the maximum one and the corresponding point,
say xr is the initial estimate of the next representative (θ3), that is θini

3 ≡
xr. In mathematical terms, xr is the point that corresponds to the distance
maxi=1,...,N(minj=1,...,m d(xi, θj)). Also, η

ini
3 is computed as the previous ones.

Next, the SAPCM algorithm is employed with Hini = {η1, η2, ηini3 } and Θini =
{θ1, θ2, θ

ini
3 } and executed for three clusters now. After its convergence, all θj ’s

are found to the centers of “dense in data” regions and we have Θ = {θ1, θ2, θ3}
and H = {η1, η2, η3}. The algorithm terminates when no new cluster is detected
between two successive iterations.

The algorithm can be stated as follows:

The SeqSAPCM algorithm

– Normalize the data set X to the [0, 10]l space5.

– Set λ to an appropriate value.

– Determine the two most distant points in X , say xs and xt and use them
as initial estimates of the first two representatives θ1 and θ2 (i.e., θini

1 ≡ xs,
θini
2 ≡ xt)

6.

– Initialize η1 and η2 (ηini1 , ηini2 ) as described in the text.

– [Θ,H ] = SAPCM(X, {θini
1 , θini

2 }, {ηini1 , ηini2 }, λ}
– Repeat

• (A) Use as initial estimate of the next cluster the point xr ∈ X that
corresponds to the distance maxi=1,...,N (minj=1,...,m d(xi, θj)) and set
θini
new = xr.

• Compute the ηininew as described in the text

• [Θ,H ] = SAPCM(X,Θ ∪ {θini
new}, H ∪ {ηininew}, λ}

– Until no new cluster is detected

Some comments on the proposed SeqSAPCM are in order now.

– The initialization of the representatives is carried out so that to increase the
probability to select a point from each one of the underlying clusters. It is

5 This is a prerequisite that stems from the fact that uij decreases rapidly as the
distance between xi and θj increases. However, it should be noted that things work
also for any value around 10.

6 In order to avoid high computational burden, this step is carried out approximately
using the method described in [4].
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noted that, in contrast to SAPCM where the initialization of the represen-
tatives is carried out via the Max-Min algorithm, in SeqSAPCM a single
step of the Max-Min (step (A) in the SeqSAPCM algorithm) is executed
each time a new representative is to be initialized.

– The initialization of the parameters η for each new cluster may seem a bit
tricky. Its rationale is the following. For data sets whose points form well
separated clusters, dmax is, in general, a good estimate for ηininew of each new
cluster. In this case, since the initial estimates of the representatives are
clusters points7, dmax is a reasonable value for controlling the influence of a
cluster around its representative. Note also, that in this case djslope is close to
dmax. On the other hand, when there are points in the data set that lie away
from the clusters (e.g. outliers), the algorithm is likely to choose some of
them as initial estimates of cluster representatives. However, a small initial
value of η for these representatives will make difficult their movement to
dense in data regions. In this case η is set initially equal to djslope which, in
this case, turns out to be significantly larger than dmax. Experiments show
that dmax is a small value for η in this case, while djslope leads to better
cluster estimations.

– It is worth mentioning that previously determined ηj ’s (and θj ’s) may be
adjusted in subsequent iterations, as new clusters are formed.

– The SeqSAPCM algorithm, actually requires fine tuning only for the sparsity
promoting parameter λ. On the other hand, SAPCM requires additional fine
tuning for the initial number of clusters as well as for the parameter β that
is used for the initialization of η’s.

– A generalization of the proposed scheme may follow if, instead of adding a
single representative at each time, we seek for more than one of them at each
iteration. In principle, this may reduce the required computational time.

4 Experimental Results

In this section, we assess the performance of the proposed method in several
experimental synthetic and real data settings. More specifically, we compare the
clustering performance of SeqSAPCM with that of the k-means, the FCM, the
PCM, the APCM and the SAPCM algorithms8. To this end, we need to evaluate
a clustering outcome, that is to compare it with the true data label information.
This is carried out via three different measures. The first is the so-called Rand
Measure (RM), described in [12], which can cope with clusterings whose number
of clusters may differ from the true number of clusters. A generalization of RM is
the Generalized Rand Measure (GRM) described in [6], which further takes into
account the degrees of compatibility of all data points to clusters. Note that in
k-means algorithm, the RM does not differ from GRM, since each vector belongs
exclusively to a single cluster. Thus, the GRM is not considered in the k-means
case. Finally, the classical Success Rate (SR) is employed, which measures the
percentage of the points that have been correctly labeled by each algorithm.

7 Ususally, they are “peripheral” points of the clusters.
8 In order to make a fair comparison, all algorithms are initialized as SeqSAPCM.
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(a) k-means with mini = 3
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(b) k-means with mini = 5
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(c) FCM with mini = 3
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(d) FCM with mini = 5
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(e) PCM with mini = 20
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(f) APCM with mini = 5
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(g) SAPCM with mini = 5
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(h) SeqSAPCM

Fig. 1. Clustering results for Experiment 1. Bolded dots represent the final cluster
representatives. Note that in PCM only the truly “different” clusters are taken into
account.
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Table 1. The results of the Experiment 1 synthetic data set

λ β mini mfinal RM(%) GRM(%) SR(%)
k-means - - 3 3 93.62 - 95.36

- - 5 5 80.82 - 62.00
- - 12 12 71.97 - 28.27

FCM - - 3 3 93.62 79.10 95.36
- - 5 5 81.36 67.81 63.00
- - 12 12 71.72 59.51 29.00

PCM - - 5 1 35.48 35.48 45.45
- - 20 2 74.32 51.67 72.09

APCM - 0.1 3 2 74.32 73.81 72.09
- 0.1 to 0.5 5 to 12 2 74.32 73.81 72.09

SAPCM 0.3 0.1 3 2 74.32 73.94 72.09
0.3 0.1 5 3 93.39 90.27 95.18
0.3 0.5 5 2 74.32 74.16 72.09
0.3 0.1 12 2 74.32 74.16 72.09

SeqSAPCM 0.28 - - 3 93.51 90.03 95.27

Experiment 1: Let us consider a synthetic two-dimensional data set con-
sisting of N = 1100 points, where three clusters C1, C2, C3 are formed. Each
cluster is modelled by a normal distribution. The means of the distributions are
c1 = [4.1, 3.7]T , c2 = [2.8, 0.8]T and c3 = [3.5, 5.7]T , respectively, while their
(common) covariance matrix is set to 0.4·I2, where I2 is the 2×2 identity matrix.
A number of 500 points are generated by the first distribution and 300 points
are generated by each one of the other two distributions. Note that clusters C1

and C3 differ significantly in their density (since both share the same covariance
matrix but C3 has significantly less points than C1) and since they are closely
located to each other, a clustering algorithm could consider them as a single
cluster. Figs. 1 (a), (b) show the clustering outcome obtained using the k-means
algorithm with mini = 3 and mini = 5, respectively. Similarly, in Figs. 1 (c), (d)
we present the corresponding results for FCM. Fig. 1 (e) depicts the performance
of PCM for mini = 20, while, in addition, it shows the circled regions, centered
at each θj and having radius equal to ηj , in which Cj has increased influence.
Fig. 1 (f) shows the results of APCM with mini = 5 and β = 0.1 and Fig. 1 (g)
shows the results of SAPCM with mini = 5, β = 0.1 and λ = 0.3. Finally, Fig. 1
(h) shows the results of SeqSAPCM with λ = 0.28. Moreover, Table 1 shows
RM, GRM, SR for the previously mentioned algorithms, where mini and mfinal

denote the initial and the final number of clusters, respectively.
As it is deduced from Fig. 1 and Table 1, when k-means and FCM are ini-

tialized with the (rarely known in practice) true number of clusters (m = 3),
their clustering performance is very satisfactory. However, any deviation from
this value causes a significant degradation to the obtained clustering quality.
On the other hand, the classical PCM fails to unravel the underying clustering
structure, due to the fact that two clusters are close enough to each other and
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the algorithm does not have the ability to adapt ηj ’s in order to cope with this
situation. In this data set, the APCM algorithm also fails to detect all natu-
rally formed clusters and unites clusters C1 and C3 thus leading to a two-cluster
clustering result for several values of β. On the other hand, for a large enough
value of λ (λ = 0.3) and a proper overestimation of the initial number of clusters
(mini), SAPCM heavily imposes sparsity so that the remotely located from the
mean of the C3 cluster points are not taken into account to the estimation of the
parameters of cluster C3 (θ3 and η3), thus leading to smaller values for η3. As
a consequence, the unification of C3 with its neighboring (denser) C1 cluster is
prevented. However, as it is deduced from Table 1, the parameters (λ, β,mini)
of SAPCM have to be fine tuned, in order for SAPCM to be successful. This is
not the case for SeqSAPCM, which produces very accurate results after cross
validating just a single parameter (λ).

Experiment 2: Let us consider a synthetic two-dimensional data set consist-
ing of N = 5000 points, where fifteen clusters are formed (data set S2 in [5]), as
shown in Fig. 2. All clusters are modelled by normal distributions with differ-
ent covariance matrices. As it is deduced from Table 2, k-means fails to unravel
the underlying clustering structure, even when it is initialized with the actual
number of natural clusters (mini = 15). On the other hand, FCM works well
when it is initialized with the true number of clusters (mini = 15), providing
very satisfactory results. However, any deviation from this value causes, again,
a significant degradation to the obtained clustering quality. The classical PCM
fails independently of the initial number of clusters. In this data set, the APCM
and the SAPCM algorithms work well after fine-tuning their parameters and
properly selecting mini. Finally, by simply selecting λ = 0.1, SeqSAPCM is able
to capture the underlying clustering structure very accurately.

0 2 4 6 8 10

x 10
5

1

2

3

4

5

6

7

8

9

x 10
5

Fig. 2. The data set in Experiment 2. Colors indicate the true label information.

Experiment 3: Let us consider the real Iris data set ([13]) consisting of
N = 150, 4-dimensional data points that form three classes, each one having 50
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Table 2. The results of the Experiment 2 synthetic data set

λ β mini mfinal RM(%) GRM(%) SR(%)
k-means - - 15 15 97.24 - 81.68

- - 20 20 98.23 - 84.84
- - 25 25 97.61 - 78.48

FCM - - 15 15 99.23 80.09 97.00
- - 20 20 98.40 75.36 87.50
- - 25 25 97.46 71.30 75.02

PCM - - 15 3 62.05 20.43 20.40
- - 25 6 78.67 22.02 39.22

APCM - 0.1 10 10 93.28 90.98 67.16
- 0.1 20 14 98.38 95.71 91.18
- 0.1 25 15 99.23 96.88 97.00

SAPCM 0.1 0.1 10 10 93.28 91.07 67.22
0.1 0.1 20 14 98.39 95.84 91.18
0.1 0.1 25 15 99.24 96.94 97.04

SeqSAPCM 0.1 - - 15 99.23 96.94 97.02

points. In Iris data set, two classes are overlapped, thus one can argue whether
the true number of clusters m is 2 or 3. As it is shown in Table 3, k-means and
FCM provide satisfactory results, only if they are initialized with the true number
of clusters (mini = 3). The classical PCM fails to end up with mfinal = 3 clusters
independently of the initial number of clusters. On the contrary, the APCM and
the SAPCM algorithms, after appropriate cross validation of their parameters
and a proper overestimated initial number of clusters, produce very accurate
results. Finally, SeqSAPCM detects the actual number of clusters, providing
constantly very accurate results.

Experiment 4: Let us now consider the Wine real data set ([13]) consisting of
N = 178, 13-dimensional data points that stem from three classes, the first with
59 points, the second with 71 and the third one with 48 points. The results of
the previously mentioned algorithms are summarized in Table 4. Again the same
conclusions can be drawn as far as the clustering performance of the algorithms is
concerned, with SeqSAPCM providing the best overall clustering quality results.

5 Conclusions

In this paper a novel iterative bottom-up possibilistic clustering algorithm,
termed SeqSAPCM, is proposed. At each iteration, SeqSAPCM determines a
single new cluster by employing the SAPCM algorithm ([15]). Being a possi-
bilistic scheme, SeqSAPCM does not impose a clustering structure on the data
set but, rather, unravels sequentially the underlying clustering structure. The
proposed algorithm does not require knowledge of the number of clusters (not
even a crude estimate, as SAPCM and APCM do), but only fine tuning of a sin-
gle parameter λ that controls sparsity (which is data dependent). SeqSAPCM
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Table 3. The results of the Iris (Experiment 3) real data set

λ β mini mfinal RM(%) GRM(%) SR(%)
k-means - - 2 2 77.63 - 66.67

- - 3 3 83.22 - 83.33
- - 10 10 72.84 - 36.00

FCM - - 2 2 77.63 69.15 66.67
- - 3 3 83.68 71.56 84.00
- - 10 10 75.97 59.96 37.33

PCM - - 2 1 32.89 32.89 33.33
- - 3 2 77.63 50.45 66.67
- - 10 2 77.63 51.99 66.67

APCM - 0.2 2 2 77.63 77.63 66.67
- 0.2 5 3 78.20 77.66 72.00
- 0.3 5 3 89.23 87.78 90.67
- 0.3 10 5 83.02 78.06 68.00

SAPCM 0.1 0.1 2 2 77.63 77.63 66.67
0.1 0.1 5 4 83.57 82.70 78.67
0.1 0.2 5 3 88.59 88.69 90.00
0.1 0.2 10 4 83.57 82.72 78.67

SeqSAPCM 0.15 - - 3 88.59 88.73 90.00

Table 4. The results of the Wine (Experiment 4) real data set

λ β mini mfinal RM(%) GRM(%) SR(%)
k-means - - 3 3 68.55 - 51.69

- - 5 5 69.66 - 56.74
- - 8 8 69.56 - 40.45

FCM - - 3 3 71.05 64.91 68.54
- - 5 5 71.68 65.37 54.49
- - 8 8 70.15 63.40 35.96

PCM - - 3 1 33.80 33.80 39.89
- - 15 1 33.80 33.80 39.89

APCM - 0.2 2 2 68.33 68.42 60.11
- 0.2 5 2 68.33 68.42 60.11
- 0.1 5 3 92.42 91.61 94.38
- 0.1 8 4 89.94 87.72 87.08

SAPCM 0.01 0.1 2 2 67.72 67.91 60.11
0.01 0.1 5 3 67.70 65.01 60.11
0.01 0.05 5 3 93.18 92.75 94.94
0.01 0.05 8 4 89.27 87.77 86.52

SeqSAPCM 0.08 - - 3 93.31 91.25 94.94
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outperforms the classical k-means and FCM when the latter are not fed with the
actual number of clusters. In addition, it has almost the same clustering perfor-
mance with SAPCM, when the latter is equipped with the optimal values for its
parameters, which are three (initial estimate of the number of representatives,
the parameter β for the initialization of η’s and the paramater λ that controls
sparsity) against one in SeqSAPCM (λ).

The automatic selection of the sparsity inducing parameter λ and a conver-
gence analysis of the proposed SeqSAPCM are subjects of current research.
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